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We provide sufficient conditions for the existence of mild solutions for a class of abstract fractional
integrodifferential equations with state-dependent delay. A concrete application in the theory of
heat conduction in materials with memory is also given.

1. Introduction

In the last two decades, the theory of fractional calculus has gained importance and
popularity, due to its wide range of applications in varied fields of sciences and engineering as
viscoelasticity, electrochemistry of corrosion, chemical physics, optics and signal processing,
and so on. The main object of this paper is to provide sufficient conditions for the existence of
mild solutions for a class of abstract partial neutral integrodifferential equations with state-
dependent delay described in the form

Dα
t x(t) = Ax(t) +

∫ t

0
B(t − s)x(s)ds + f

(
t, xρ(t,xt)

)
, α ∈ (1, 2), (1.1)

x0 = ϕ ∈ B, x′(0) = 0, (1.2)

where t ∈ I = [0, b], A, (B(t))t≥0 are closed linear operators defined on a common domain
which is dense in a Banach space (X, ‖ · ‖), and Dα

t h(t) represent the Caputo derivative of



2 Advances in Difference Equations

α > 0 defined by

Dα
t h(t) :=

∫ t

0
gn−α(t − s)

dn

dsn
h(s)ds, (1.3)

where n is the smallest integer greater than or equal to α and gβ(t) := tβ−1/Γ(β), t > 0, β ≥ 0.
The history xt : (−∞, 0] → X given by xt(θ) = x(t + θ) belongs to some abstract phase space
B defined axiomatically, and f : [0, b]×B → X and ρ : [0, b]×B → (−∞, b] are appropriated
functions.

Functional differential equations with state-dependent delay appear frequently in
applications as model of equations, and for this reason, the study of this type of equations has
received great attention in the last years. The literature devoted to this subject is concerned
fundamentally with first-order functional differential equations for which the state belong to
some finite dimensional space, see among other works, [1–10]. The problem of the existence
of solutions for partial functional differential equations with state-dependent delay has been
recently treated in the literature in [11–15]. On the other hand, existence and uniqueness of
solutions for fractional differential equations with delay was recently studied by Maraaba
et al. in [16, 17]. In [18], the authors provide sufficient conditions for the existence of
mild solutions for a class of fractional integrodifferential equations with state-dependent
delay. However, the existence of mild solutions for the class of fractional integrodifferential
equations with state-dependent delay of the form (1.1)-(1.2) seems to be an unread topic.

The plan of this paper is as follows. The second section provides the necessary
definitions and preliminary results. In particular, we review some of the standard properties
of the α-resolvent operators (see Theorem 2.11). We also employ an axiomatic definition for
the phase space B which is similar to those introduced in [19]. In the third section, we use
fixed-point theory to establish the existence of mild solutions for the problem (1.1). To show
how easily our existence theory can be used in practice, in the fourth section, we illustrate an
example.

2. Preliminaries

In what follows, we recall some definitions, notations, and results that we need in the sequel.
Throughout this paper, (X, ‖ · ‖) is a Banach space, and A,B(t), t ≥ 0, are closed linear
operators defined on a common domain D = D(A) which is dense in X; the notations ρ(A)
and [D(A)] represent the resolvent set of the operatorA and the domain ofA endowed with
the graph norm, respectively. For λ ∈ ρ(A), we fix R(λ,A) := (λ −A)−1, and we represent by
‖R(λ,A)‖ the norm of R(λ,A) in L(X). Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W) be Banach spaces. In this
paper, the notation L(Z,W) stands for the Banach space of bounded linear operators from
Z into W endowed with the uniform operator topology, and we abbreviate this notation to
L(Z) when Z = W . Furthermore, for appropriate functions K : [0,∞) → Z, the notation
K̂ denotes the Laplace transform of K. The notation Br(x,Z) stands for the closed ball with
center at x and radius r > 0 in Z. On the other hand, for a bounded function γ : [0, a] → Z
and t ∈ [0, a], the notation ‖γ‖Z, t is given by

‖γ‖Z, t = sup
{‖γ(s)‖Z : s ∈ [0, t]

}
, (2.1)

and we simplify this notation to ‖γ‖t when no confusion about the space Z arises.
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We will define the phase space B axiomatically, using ideas and notations developed
in [19]. More precisely, B will denote the vector space of functions defined from (−∞, 0] into
X endowed with a seminorm denoted ‖ · ‖B, and such that the following axioms hold.

(A) If x : (−∞, σ + b) → X, b > 0, σ ∈ R is continuous on [σ, σ + b) and xσ ∈ B, then for
every t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,
(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} +M(t − σ)‖xσ‖B,
where H > 0 is a constant; K,M : [0,∞) → [1,∞), K(·) is continuous, M(·) is
locally bounded, and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), the function t → xt is continuous from [σ, σ + b) into
B.

(B) The space B is complete.

Example 2.1 (the phase space Cr × Lp(g,X)). Let r ≥ 0, 1 ≤ p < ∞, and let g : (−∞,−r] → R

be a nonnegative measurable function which satisfies the conditions (g-5), (g-6) in the
terminology of [19]. Briefly, this means that g is locally integrable and there exists a
nonnegative, locally bounded function γ on (−∞, 0], such that g(ξ + θ) ≤ γ(ξ)g(θ), for all
ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.
The space Cr × Lp(g,X) consists of all classes of functions ϕ : (−∞, 0] → X, such that ϕ is
continuous on [−r, 0], Lebesgue-measurable, and g‖ϕ‖p is Lebesgue integrable on (−∞,−r).
The seminorm in Cr × Lp(g,X) is defined by

‖ϕ‖B := sup
{‖ϕ(θ)‖ : −r ≤ θ ≤ 0

}
+
(∫−r

−∞
g(θ)‖ϕ(θ)‖pdθ

)1/p

. (2.2)

The space B = Cr × Lp(g;X) satisfies axioms (A), (A1), (B). Moreover, when r = 0 and p = 2,

we can takeH = 1,M(t) = γ(−t)1/2, andK(t) = 1+ (
∫0
−t g(θ)dθ)

1/2
, for t ≥ 0 (see [19, Theorem

1.3.8] for details).

For additional details concerning phase space we refer the reader to [19].
To obtain our results, we assume that the integrodifferential abstract Cauchy problem

Dα
t x(t) = Ax(t) +

∫ t

0
B(t − s)x(s)ds, α ∈ (1, 2), (2.3)

x(0) = z ∈ X, x′(0) = 0 (2.4)

has an associated α-resolvent operator of bounded linear operators (Rα(t))t≥0 on X.

Definition 2.2. A one parameter family of bounded linear operators (Rα(t))t≥0 on X is called a
α-resolvent operator of (2.3)-(2.4) if the following conditions are verified.

(a) The function Rα(·) : [0,∞) → L(X) is strongly continuous and Rα(0)x = x for all
x ∈ X and α ∈ (1, 2).
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(b) For x ∈ D(A), Rα(·)x ∈ C([0,∞), [D(A)])
⋂
C1((0,∞), X), and

Dα
t Rα(t)x = ARα(t)x +

∫ t

0
B(t − s)Rα(s)x ds, (2.5)

Dα
t Rα(t)x = Rα(t)Ax +

∫ t

0
Rα(t − s)B(s)x ds, (2.6)

for every t ≥ 0.

The existence of a resolvent operator for problem (2.3)-(2.4) was studied in [20]. In
this paper, we have considered the following conditions.

(P1) The operator A : D(A) ⊆ X → X is a closed linear operator with [D(A)] dense in
X. There is positive constants C0 = C0(φ), such that

Σ0,αϑ =
{
λ ∈ C : λ/= 0,

∣∣arg(λ)∣∣ < αϑ
} ⊂ ρ(A), (2.7)

where α ∈ (1, 2), ϑ = φ+π/2, φ < φ0 for some φ0 ∈ (0, π/2], and ‖R(λ,A)‖ ≤ C0/|λ|
for all λ ∈ Σ0,αϑ.

(P2) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear operator, D(A) ⊆ D(B(t)),
and B(·)x is strongly measurable on (0,∞) for each x ∈ D(A). There exists b(·) ∈
L1
loc(R

+) (the notation L1
loc(R

+) stands for the set of all locally integrable functions
from R

+ into R
+) such that b̂(λ) exists for Re(λ) > 0 and ‖B(t)x‖ ≤ b(t)‖x‖1 for

all t > 0 and x ∈ D(A). Moreover, the operator-valued function B̂ : Σ0,π/2 →
L([D(A)], X) has an analytical extension (still denoted by B̂) to Σ0,ϑ = {λ ∈ C :
λ/= 0, | arg(λ)| < ϑ} such that ‖B̂(λ)x‖ ≤ ‖B̂(λ)‖ ‖x‖1 for all x ∈ D(A), and ‖B̂(λ)‖ =
O(1/|λ|), as |λ| → ∞.

(P3) There exists a subspace D ⊆ D(A) dense in [D(A)] and positive constant C1, such
that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), ‖AB̂(λ)x‖ ≤ C1‖x‖ for every x ∈ D and all
λ ∈ Σω,ϑ.

In the sequel, for r > 0 and θ ∈ (π/2, ϑ),

Σr,θ =
{
λ ∈ C : λ/= 0, |λ| > r,

∣∣arg(λ)∣∣ < θ
}
, (2.8)

for Γr,θ, Γir,θ, i = 1, 2, 3, are the paths

Γ1r,θ =
{
teiθ : t ≥ r

}
,

Γ2r,θ =
{
reiξ : −θ ≤ ξ ≤ θ

}
,

Γ3r,θ =
{
te−iθ : t ≥ r

}
,

(2.9)
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and Γr,θ =
⋃3

i=1 Γ
i
r,θ oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) =
{
λ ∈ C : Gα(λ) := λα−1

(
λαI −A − B̂(λ)

)−1 ∈ L(X)
}
. (2.10)

We now define the operator family (Rα(t))t≥0 by

Rα(t) =

⎧⎪⎨
⎪⎩

1
2πi

∫
ω+Γr,θ

eλtGα(λ)dλ, t > 0,

I, t = 0.
(2.11)

The following result has been established in [20, Theorem 2.1].

Theorem 2.3. Assume that conditions (P1)–(P3) are fulfilled, then there is a unique α-resolvent
operator for problem (2.3)-(2.4).

In what follows, we always assume that the conditions (P1)–(P3) are verified.
We consider now the nonhomogeneous problem.
In the rest of this section, we discuss existence and regularity of solutions of

Dα
t x(t) = Ax(t) +

∫ t

0
B(t − s)x(s)ds + f(t), t ∈ [0, a], (2.12)

x(0) = z ∈ X, x′(0) = 0, (2.13)

where α ∈ (1, 2) and f ∈ L1([0, a], X). In the sequel, Rα(·) is the operator function defined by
(2.11). We begin by introducing the following concept of classical solution.

Definition 2.4. A function x : [0, a] → X, 0 < a is called a classical solution of (2.12)-(2.13) on
[0, a] if x ∈ C([0, a], [D(A)])∩C([0, a], X), gn−α∗x :=

∫ t
0 gn−α(t−s)x ds ∈ C1([0, a], X), n = 1, 2;

the condition (2.13) holds and (2.12) is verified on [0, a].

Definition 2.5. Let α ∈ (1, 2), we define the family (Sα(t))t≥0 by

Sα(t)x :=
∫ t

0
gα−1(t − s)Rα(s)x ds, x ∈ X, (2.14)

for each t ≥ 0.

The proof of the next result is in [20]. For reader’s convenience, we will give the proof.

Lemma 2.6. If the function Rα(·) is exponentially bounded in L(X), then Sα(·) is exponentially
bounded in L(X).
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Proof. If there are constants, M,ω > 0 such that ‖Rα(t)‖ ≤ Meωt, we obtain

‖Sα(t)‖ ≤
∫ t

0
gα−1(t − s)‖Rα(s)‖ds ≤ M

Γ(α − 1)

∫ t

0
(t − s)α−2eωsds

≤ M

Γ(α − 1)

∫ t

0
sα−2eω(t−s)ds ≤ Meωt

Γ(α − 1)

∫ t

0
sα−2e−ωsds

≤ Meωt

Γ(α − 1)ωα−1

∫ t

0
sα−2e−sds ≤ Meωt

Γ(α − 1)ωα−1 Γ(α − 1)

≤ Mωe
ωt,

(2.15)

where Mω = M/ωα−1.

The next result follows from Lemma 2.6. We will omit the proof.

Lemma 2.7. If the function Rα(·) is exponentially bounded in L([D(A)]), then Sα(·) is
exponentially bounded in L([D(A)]).

We now establish a variation of constants formula for the solutions of (2.12)-(2.13).
The proof of the next result is in [20]. For reader’s convenience, we will give the proof.

Theorem 2.8. Let z ∈ D(A). Assume that f ∈ C([0, a], X) and u(·) is a classical solution of (2.12)-
(2.13) on [0, a], then

u(t) = Rα(t)z +
∫ t

0
Sα(t − s)f(s)ds, t ∈ [0, a]. (2.16)

Proof. The Cauchy problem (2.12)-(2.13) is equivalent to the Volterra equation

u(t) = x +
∫ t

0
gα(t − s)Au(s)ds +

∫ t

0
gα(t − s)

∫s

0
B(s − ξ)u(ξ)dξds +

∫ t

0
gα(t − s)f(s)ds, (2.17)

and the α-resolvent equation (2.6) is equivalent to

Rα(t)x = x +
∫ t

0
gα(t − s)Rα(s)Axds +

∫ t

0
gα(t − s)

∫s

0
Rα(s − ξ)B(ξ)x dξ ds. (2.18)

To prove (2.16), we notice that

I ∗ u =
(Rα − gα ∗ RαA − gα ∗ Rα ∗ B

) ∗ u
= Rα ∗

(
u − gαAu − gα ∗ B ∗ u)

= Rα ∗
(
I + gα ∗ f

)
= Rα ∗ I + gα ∗ Rα ∗ f
= Rα ∗ I + g1 ∗ gα−1 ∗ Rα ∗ f.

(2.19)
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Therefore,

∫ t

0
u(s)ds =

∫ t

0
Rα(s)x ds +

∫ t

0

∫s

0
gα−1(s − ξ)

∫ ξ

0
Rα(ξ − u)f(u)dudξ ds

=
∫ t

0
Rα(s)x ds +

∫s

0

∫ s

0

∫ s

u

gα−1(s − ξ)Rα(ξ − u)f(u)dudξ ds

=
∫ t

0
Rα(s)x ds +

∫ t

0

∫s

0

∫ s−u

0
gα−1(s − u − ξ)Rα(ξ)f(u)dξ duds

=
∫ t

0
Rα(s)x ds +

∫ t

0

∫s

0

∫ s−u

0
gα−1(s − u − ξ)Rα(ξ)f(u)dξ duds

=
∫ t

0
Rα(s)x ds +

∫ t

0

∫s

0
Sα(s − u)f(u)duds.

(2.20)

We obtain

u(t) = Rα(t)x +
∫ t

0
Sα(t − u)f(u)du. (2.21)

It is clear from the preceding definition that Rα(·)z is a solution of problem (2.3)-(2.4)
on (0,∞) for z ∈ D(A).

Definition 2.9. Let f ∈ L1([0, a], X). A function u ∈ C([0, a], X) is called a mild solution of
(2.12)-(2.13) if

u(t) = Rα(t)z +
∫ t

0
Sα(t − s)f(s)ds, t ∈ [0, a], z ∈ X. (2.22)

The proof of the next result is in [20]. For reader’s convenience, we will give the proof.

Theorem 2.10. Let z ∈ D(A) and f ∈ C([0, a], X). If f ∈ L1([0, a], [D(A)]), then the mild
solution of (2.12)-(2.13) is a classical solution.

Proof. To begin with, we study the case in which f ∈ C1([0, a], [D(A)]). Let w be the mild
solution of (2.12)-(2.13) and assume that z = 0. It is easy to see thatw ∈ C([0, a], [D(A)]) and

‖w‖C([0,a],[D(A)]) ≤ M‖f‖L1([0,a]:[D(A)]), (2.23)

whereM is given byMωe
ωa. From [7, Lemma 3.12], we obtain thatw(·) is a classical solution

and satisfies

Dα
t w(t) = Aw(t) +

∫ t

0
B(t − s)w(s)ds + f(t). (2.24)
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Moreover, from (2.24) and taking into account that ‖B(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and
x ∈ D(A), we deduce the existence of constants C1, C2 > 0 (which are independent from f)
such that

‖w‖C([0,a],[D(A)]) + ‖Dα
t w‖C([0,a],X) ≤ C1‖f‖L1([0,a]:[D(A)]) + C2‖f‖C([0,a],X). (2.25)

Now, we assume that f ∈ L1([0, a] : [D(A)]). Let (fn)n∈N be a sequence in
C1([0, a], [D(A)]) such that fn → f in L1([0, a], [D(A)])∩C([0, a], X). From [7, Lemma 3.12],
we know thatwn = Sα ∗fn, n ∈ N, is a classical solution of (2.12)-(2.13)with fn in the place of
f . By using the estimate (2.25), we deduce the existence of functionsw,v ∈ C([0, a], X), such
thatwn → w = Sα ∗ f in C([0, a], [D(A)]) andDα

t wn → v in C([0, a], X). These facts, jointly
with our assumptions on B(·), permit to conclude that B ∗wn → B ∗w in C([0, a], X). On the
other hand,

Jαt v(t) = lim
n→∞

Jαt D
α
t wn(t)

= lim
n→∞

(
wn(t) −

1∑
k=0

w
(k)
n (0)gk+1(t)

)

= lim
n→∞

(
wn(t) −wn(0) −w′

n(0)t
)

= w(t) −w′(0)t,

(2.26)

we obtain

v = Dα
t J

α
t v = Dα

t w(t). (2.27)

Now, by making n → ∞ on

Dα
t wn(t) = Awn(t) +

∫ t

0
B(t − s)wn(s)ds + fn(t), t ∈ [0, a], (2.28)

we conclude that w = Sα ∗ f is a classical solution of (2.12)-(2.13). The proof is finished.

The proof of the next result is in [20]. For reader’s convenience, we will give the proof.

Theorem 2.11. Let z ∈ D(A) and f ∈ C([0, a], X). If f ∈ W1,1([0, a], X), then the mild solution
of (2.12)-(2.13) is a classical solution.

Proof. Let f ∈ W1,1([0, a], X), there is (fn)n∈N on C1([0, a], [D(A)]) such that fn → f on
C([0, a], X) and fn → f on W1,1([0, a] : X). Put wn(t) = Sα ∗ fn proceeding as in the proof
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of Theorem 2.10. It follows that wn(·) is a classical solution of (2.12)-(2.13). Moreover, from
[7, Lemma 3.13], we obtain

−Vα(t)f(0) =
∫ t

0

d

ds

[ Vα(t − s)f(s)
]
ds

= −
∫ t

0
Sα(t − s)f(s)ds +

∫ t

0
Vα(t − s)f ′(s)ds, t ∈ [0, a],

w(t) = Vα(t)f(0) +
∫ t

0
Vα(t − s)f ′(s)ds, t ∈ [0, a],

(2.29)

from which we deduce the existence of positive constants C3, C4 (independent from f) such
that

‖w‖C([0,a],[D(A)]) + ‖Dα
t w‖C([0,a],X) ≤ C3‖f‖C([0,a],X) + C4‖f ′‖L1([0,a],X). (2.30)

With similar arguments as in the proof of Theorem 2.10, we conclude that w = Sα ∗ f is a
classical solution of (2.12)-(2.13). We omit additional details. The proof is completed.

To establish our existence results, we need the following Lemma.

Lemma 2.12. Let α ∈ (1, 2). If R(λα0 , A) := (λα0 − A)−1 is compact for some λα0 ∈ ρ(A), then Rα(t)
and Sα(t) are compact for all t > 0.

Proof. From the resolvent identity, it follows that R(λα,A) is compact for every λα ∈ ρ(A).
We have from [20, Lemma 2.2] that Gα(λ) = λα−1R(λα,A)[I − B̂(λ)R(λα,A)]−1 is a compact
operator for λ ∈ Σr,θ; therefore, Rα(t) is a compact operator for t > 0.

From [20, Lemma 2.5], we have, Rα(t) is uniformly continuous for 0 < t < a, for any
a fixed, we can select points 0 = s0 < s1 < · · · < sn = t, such that if |si − si+1| < δ, we obtain
‖Rα(s)−Rα(si)‖L(X) < ε, for all s ∈ [si, si+1], i = 1, 2, . . . , n−1 and ‖ ∫s10 gα−1(t−s)Rα(s)ds‖L(X) <
ε.

Therefore, for all x ∈ Br(0, X), we have that

Sα(t)x =
∫ t

0
gα−1(t − s)Rα(s)x ds

=
∫s1

0
gα−1(t − s)Rα(s)x ds +

n−1∑
i=1

∫si+1

si

gα−1(t − s)[Rα(s)x − Rα(si)x]ds

+
n−1∑
i=1

Rα(si)
∫si+1

si

gα−1(t − s)x ds.

(2.31)

Noting now that

∥∥∥∥∥
n−1∑
i=1

∫si+1

si

gα−1(t − s)[Rα(s)x − Rα(si)x]ds

∥∥∥∥∥ ≤ εaα−1

Γ(α)
r, (2.32)
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from (2.31), we find that

Sα(t)Br(0, X) ⊂ Brε(0, X) + B(aα−1/Γ(α))εr(0, X) +
n−1∑
i=1

Rα(si)B(aα−1/Γ(α))εr(0, X). (2.33)

Thus,

Sα(t)Br(0, X) ⊂ Cε +Kε, (2.34)

where Kε =
∑n−1

i=1 Rα(si)B(aα−1/Γ(α))εr(0, X) is compact and Cε = Brε(0, X) + B(aα−1/Γ(α))εr(0, X),
then we observe that diam(Cε) → 0 as ε → 0. This permits us to conclude that Sα(t)Br(0, X)
is relatively compact in X. This proves that Sα(t) is a compact operator for all t > 0.

For completeness, we include the following well-known result.

Theorem 2.13 (Leray-Schauder alternative, [21, Theorem 6.5.4]). LetD be a closed convex subset
of a Banach space Z with 0 ∈ D. Let G : D → D be a completely continuous map. Then, G has a
fixed point in D or the set {z ∈ D : z = λG(z), 0 < λ < 1} is unbounded.

3. Existence Results

In this section, we study the existence of mild solutions for system (1.1)-(1.2). Along this
section, M is a positive constant such that ‖Rα(t)‖ ≤ M and ‖Sα(t)‖ ≤ M for every t ∈ I. We
adopt the notion of mild solutions for (1.1)-(1.2) from the one given in [20].

Definition 3.1. A function u : (−∞, b] → X is called a mild solution of the neutral system
(1.1)-(1.2) on [0, b] if u0 = ϕ, uρ(t,ut) ∈ B, u|[0,a] ∈ C([0, b], X), and

u(t) = Rα(t)ϕ(0) +
∫ t

0
Sα(t − s)f

(
s, uρ(s,us)

)
ds, t ∈ [0, b]. (3.1)

To prove our results, we always assume that ρ : I × B → (−∞, b] is continuous and
that ϕ ∈ B. If x ∈ C([0, b];X), we define x : (−∞, b] → X as the extension of x to (−∞, b]
such that x0 = ϕ. We define x̃ : (−∞, b] → X such that x̃ = x + y where y : (−∞, b] → X is
the extension of ϕ ∈ B, such that y(t) = Rα(t)ϕ(0) for t ∈ I.

In the sequel, we introduce the following conditions.

(H1) The function f : [0, b] × B → X verifies the following conditions:

(i) the function f(t, ·) : B → X is continuous for every t ∈ [0, b], and for every
ψ ∈ B, the function f(·, ψ) : [0, b] → X is strongly measurable,

(ii) there existmf ∈ C([0, b], [0,∞)) and a continuous nondecreasing functionΩf :
[0,∞) → (0,∞), such that ‖f(t, ψ)‖ ≤ mf(t)Ωf(‖ψ‖B), for all (t, ψ) ∈ [0, b]×B.

(H2) For all t, s ∈ [0, b], t ≥ s and r > 0, the set {f(s, ψ) : s ∈ [0, t], ‖ψ‖B ≤ r} is bounded
in X.
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(Hϕ) The function t → ϕt is well defined and continuous from the set

R(ρ−) =
{
ρ
(
s, ψ

)
:
(
s, ψ

) ∈ I × B, ρ(s, ψ) ≤ 0
}

(3.2)

into B, and there exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞),
such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ R(ρ).

Remark 3.2. The condition (Hϕ) is frequently verified by continuous and bounded functions.

Remark 3.3. In the rest of this section, Mb and Kb are the constants Mb = sups∈[0,b]M(s) and
Kb = sups∈[0,b]K(s).

Lemma 3.4 (see [13, Lemma 2.1]). Let x : (−∞, b] → X be continuous on [0, b] and x0 = ϕ. If
(Hϕ) holds, then

‖xs‖B ≤ (Mb + Jϕ)‖ϕ‖B +Kb sup{‖x(θ)‖; θ ∈ [0,max{0, s}]}, (3.3)

s ∈ R(ρ−) ∪ I, where Jϕ = supt∈R(ρ−)J
ϕ(t).

Theorem 3.5. Let conditions (H1), (H2), and (Hϕ) hold, and assume that R(·) ∈ C((0, b];L(X)).
If MKblim infξ→∞(Ωf(ξ)/ξ)

∫b
0 mf(s)ds < 1, then there exists a mild solution of (1.1)-(1.2) on

[0, b].

Proof. Let ϕ : (−∞, b] → X be the extension of ϕ to (−∞, b] such that ϕ(θ) = ϕ(0) on I =
[0, b]. Consider the space S(b) = {u ∈ C(I;X) : u(0) = ϕ(0)} endowed with the uniform
convergence topology and define the operator Γ : S(b) → S(b) by

Γx(t) = Rα(t)ϕ(0) +
∫ t

0
Sα(t − s)f

(
s, xρ(s,xs)

)
ds, (3.4)

for t ∈ [0, b]. It is easy to see that ΓS(b) ⊂ S(b). We prove that there exists r > 0 such that
Γ(Br(ϕ|I , S(b))) ⊆ Br(ϕ|I , S(b)). If this property is false, then for every r > 0 there exist xr ∈
Br(ϕ|I , S(b)) and tr ∈ I such that r < ‖Γxr(tr) − ϕ(0)‖. Then, from Lemma 3.4, we find that

r ≤ ‖Γxr(tr) − φ(0)‖ ≤ (M + 1)H‖ϕ‖B

+MΩf

(
(Mb + Jϕ)‖ϕ‖b +Kb

(
r + ‖ϕ(0)‖))

∫b

0
mf(s)ds,

(3.5)

and hence,

1 ≤ MKblim inf
ξ→∞

Ωf(ξ)
ξ

∫b

0
mf(s)ds, (3.6)

which contradicts our assumption.
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Let r > 0 be such that Γ(Br(ϕ|I , S(b))) ⊆ Br(ϕ|I , S(b)), in the sequel; r∗ and r∗∗ are the
numbers defined by r∗ := (Mb + Jϕ)‖ϕ‖B + Kb(r + ‖ϕ(0)‖) and r∗∗ := Ωg(r∗)

∫b
0 mg(s)ds. To

prove that Γ is a condensing operator, we introduce the decomposition Γ = Γ1 + Γ2, where

Γ1x(t) = Rα(t)ϕ(0),

Γ2x(t) =
∫ t

0
Sα(t − s)f

(
s, xρ(s,xs)

)
ds,

(3.7)

for t ∈ I.
It is easy to see that Γ1(·) is continuous and a contraction on Br(ϕ|I , S(b)). Next, we

prove that Γ2(·) is completely continuous from Br(ϕ|I , S(b)) into Br(ϕ|I , S(b)).

Step 1. Let x ∈ Br(ϕ|I , S(b)), and let ε be a positive real number such that 0 < ε < t ≤ b. We
can infer that

Γ2x(t) =
∫ t−ε

0
Sα(t − s)f

(
s, xρ(s,xs)

)
ds +

∫ t

t−ε
Sα(t − s)f

(
s, xρ(s,xs)

)
ds

∈ (t − ε)co(K) + Cε,

(3.8)

where K = {Sα(t − θ)f(θ, ψ) : θ ∈ [0, t − ε], ‖ψ‖B ≤ r∗}, co(K) is the convex hull of the set K
and Cε = {∫ tt−ε Sα(t − s)f(s, xρ(s,xs))ds : x ∈ Br(ϕ|I , S(b))}, since

diam Cε ≤ 2MΩf(r∗)
∫ t

t−ε
mf(s)ds, (3.9)

which proves that Γ2(Br(ϕ|I , S(b)))(t) is relatively compact in X.

Step 2. The set Γ2(Br(ϕ|I , S(b))) is equicontinuous on [0, b].

Let 0 < ε < t < b and 0 < δ < ε such that ‖Sα(s)−Sα(s′)‖ ≤ ε for every s, s′ ∈ [ε, b]with
|s − s′| ≤ δ. Under these conditions, for x ∈ Br(ϕ|I , S(b)) and 0 < h ≤ δ with t + h ∈ [0, b], we
get

‖Γ2x(t + h) − Γ2x(t)‖

≤
∫ t−ε

0

∥∥[Sα(t + h − s) − Sα(t − s)]f
(
s, xρ(s,xs)

)∥∥ds

+
∫ t

t−ε

∥∥[Sα(t + h − s) − Sα(t − s)]f
(
s, xρ(s,xs)

)∥∥ds

+
∫ t+h

t

∥∥Sα(t + h − s)f
(
s, xρ(s,xs)

)∥∥ds

≤ εΩf(r∗)
∫b

0
mf(s)ds + 2MΩf(r∗)

∫ t

t−ε
mf(s)ds +MΩf(r∗)

∫ t+h

t

mf(s)ds,

(3.10)
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which shows that the set of functions Γ2(Br(ϕ|I , S(b))) is right equicontinuity at t ∈ (0, b).
A similar procedure permits us to prove the right equicontinuity at zero and the left
equicontinuity at t ∈ (0, b]. Thus, Γ2(Br(ϕ|I , S(b))) is equicontinuous. By using a similar
procedure to proof of the [13, Theorem 2.3], we prove that that Γ2(·) is continuous on
Br(ϕ|I , S(b)), which completes the proof Γ2(·) is completely continuous.

The existence of a mild solution for (1.1)-(1.2) is now a consequence of [22, Theorem
4.3.2]. This completes the proof.

Theorem 3.6. Let conditions (H1), (H2), (Hϕ) hold, ρ(t, ψ) ≤ t for every (t, ψ) ∈ I × B, and assume
that Rα(·) ∈ C((0, b];L(X)). If

KbM

∫b

0
mf(s)ds <

∫∞

C

1
Ωf(s)

ds, (3.11)

where C = (Mb +KbMH + Jϕ)‖ϕ‖B, then there exists a mild solution of (1.1)-(1.2) on [0, b].

Proof. Let Γ : C([0, b];X) → C([0, b];X) be the operator defined by (3.4). In the sequel we
use Theorem 2.13. If xλ = λΓxλ, λ ∈ (0, 1), then from Lemma 3.4, we have that

‖xλ(t)‖ ≤ MH‖ϕ‖B +
∫ t

0
Mmf(s)Ωf

(
(Mb + Jϕ)‖ϕ‖B +Kb‖xλ‖s

)
ds, (3.12)

since ρ(s, xλ
s) ≤ s for every s ∈ [0, b]. If αλ(t) = (Mb + Jϕ)‖ϕ‖B +Kb‖xλ‖t, we obtain that

αλ(t) ≤ (KbMH +Mb + Jϕ)‖ϕ‖B +KbM

∫ t

0
mf(s)Ωf

(
αλ(s)

)
ds. (3.13)

Denoting by βλ(t) the right-hand side of the last inequality, we obtain that

β′λ(t) ≤ KbMmf(t)Ωf

(
βλ(t)

)
, (3.14)

and hence

∫βλ(t)

C

1
Ωf(s)

ds ≤ KbM

∫b

0
mf(s)ds. (3.15)

This inequality and (3.11) permit us to conclude that the set of functions {βλ : λ ∈ (0, 1)} is
bounded, which in turn shows that {xλ : λ ∈ (0, 1)} is bounded.

By using a similar procedure allows to proof Theorem 3.5, we obtain that Γ is
completely continuous. By Theorem 2.13, the proof is ended.
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4. Example

To finish this section, we apply our results to study an integrodifferential equation which
arises in the theory of heat equation. Consider the system

∂α

∂tα
u(t, ξ) =

∂2u(t, ξ)
∂ξ2

+
∫ t

0
(t − s)δe−γ(t−s)

∂2u(s, ξ)
∂ξ2

ds

+
∫ t

−∞
a(s − t)u

(
s − ρ1(t)ρ2(‖u(t)‖), ξ

)
ds, (t, ξ) ∈ I × [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, b],

ut(0, ξ) = 0, ξ ∈ [0, π],

u(θ, ξ) = ϕ(θ, ξ), θ ≤ 0, ξ ∈ [0, π].

(4.1)

In this system, α ∈ (1, 2), δ, γ are positive numbers and ∂α/∂tα = Dα
t . To represent this system

in the abstract form (1.1)-(1.2), we choose the spaces X = L2([0, π]) and B = C0 × L2(g,X),
see Example 2.1 for details. In the sequel, A : D(A) ⊆ X → X is the operator given by
Ax = x′′ with domain D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that
Δx = x′′ is the infinitesimal generator of an analytic semigroup (T(t))t≥0 on X. Hence, A is
sectorial of type and (P1) is satisfied. We also consider the operator B(t) : D(A) ⊆ X → X,
t ≥ 0, B(t)x = tδe−γtΔx for x ∈ D(A). Moreover, it is easy to see that conditions (P2)-(P3) in
Section 2 are satisfied with b(t) = tδe−γt and D = C∞

0 ([0, π]), where C∞
0 ([0, π]) is the space of

infinitely differentiable functions that vanish at ξ = 0 and ξ = π .
We next consider the problem of the existence of mild solutions for the system (4.1).

To this end, we introduce the following functions:

f
(
t, ϕ

)
(ξ) =

∫0

−∞
a(−s)ϕ(s, ξ)ds, ρ

(
s, ψ

)
= ρ1(s)ρ2

(‖ϕ(0)‖). (4.2)

Under the above conditions, we can represent the system (4.1) in the abstract form (2.12)-
(2.13). The following result is a direct consequence of Theorem 3.5.

Proposition 4.1. Let ϕ ∈ B be such that condition (Hϕ) holds, the functions ρ1, ρ2 are bounded, and
assume that the above conditions are fulfilled, then there exists a mild solution of (4.1) on [0, b].
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