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The expression and properties of Green’s function for a class of nonlinear fractional differential
equations with integral boundary conditions are studied and employed to obtain some results on
the existence of positive solutions by using fixed point theorem in cones. The proofs are based upon
the reduction of problem considered to the equivalent Fredholm integral equation of second kind.
The results significantly extend and improve many known results even for integer-order cases.

1. Introduction

Fractional calculus is an area having a long history, its infancy dates back to three hundred
years, the beginnings of classical calculus. It had attracted the interest of many old famous
mathematicians, such as L’Hospital, Leibniz, Liouville, Riemann, Grünward, Letnikov, and
so forth [1, 2]. As the old mathematicians expected, in recent several decades fractional
differential equations have been found to be a powerful tool in more and more fields, such
as materials, physics, mechanics, and engineering [1–5]. For the basic theory and recent
development of the subject, we refer the reader to a text by Lakshmikantham et al. [6]. For
more details and examples, see [7–24] and the references therein. However, the theory of
boundary value problems for nonlinear fractional differential equations is still in the initial
stages, andmany aspects of this theory need to be explored. In [13], Bai and Lü used the fixed
point theorems to show the existence and multiplicity of positive solutions to the nonlinear
fractional boundary value problem

Dαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,
(1.1)
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where 1 < α ≤ 2,Dα is the standard Riemann-Liouville differentiation, and f : [0, 1]×[0,∞) →
[0,∞) is a given continuous function.

In [15], Zhang showed the existence and multiplicity of positive solutions of the
fractional boundary value problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,
(1.2)

where 1 < α ≤ 2 is a real number, and Dα
0+ is the Caputo’s fractional derivative. The function

f is continuous on [0, 1] × [0,∞).
Recently, Ahmad and Nieto [11] investigated some existence results for a nonlinear

fractional integrodifferential equation with integral boundary conditions

cDqx(t) + f
(
t, x(t),

(
χx

)
(t)

)
= 0, 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) =
∫1

0
q1(x(s))ds,

αx(1) + βx′(1) =
∫1

0
q2(x(s))ds,

(1.3)

where cDq is the Caputo fractional derivative, f : [0, 1]×X ×X → X, for � : [0, 1]× [0, 1] →
[0,∞),

(
χx

)
=
∫1

0
�(t, s)x(s), (1.4)

q1, q2 : X → X, α > 0, β ≥ 0 are real numbers, and X is a Banach space.
Being directly inspired by [11, 13, 15], we intend in this paper to study the following

boundary value problems of fractional order differential equation

Dα
0+x(t) + g(t)f(t, x) = 0, 0 < t < 1,

x(0) = 0, x′(1) =
∫1

0
h(t)x(t)dt,

(1.5)

where 1 < α ≤ 2, g ∈ C((0, 1), [0,+∞)) and g may be singular at t = 0 or/and at t = 1, Dα
0+ is

the standard Riemann-Liouville differentiation, h ∈ L1[0, 1] is nonnegative, and f ∈ C([0, 1]×
[0,+∞), [0,+∞)).

In the case of h(t) ≡ 0, for all t ∈ [0, 1], boundary value problem (1.5) reduces to the
problem studied by Kaufmann and Mboumi [19]. In [19], the authors used the fixed point
theorems to show sufficient conditions for the existence of at least one and at least three
positive solutions to problem (1.5). For the case of α = 2, boundary value problem (1.5) is
related to a boundary value problems of integer-order differential equation. Feng et al. [25]
considered the existence and multiplicity of positive solutions to boundary value problem
(1.5) by applying the fixed point theory in a cone for strict set contraction operators.
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The organization of this paper is as follows. We will introduce some lemmas and
notations in the rest of this section. In Section 2, we present the expression and properties of
Green’s function associated with boundary value problem (1.5). In Section 3, we give some
preliminaries about operator. In particular, we state fixed point theory in cones. In Section 4,
the main results of boundary value problem (1.5) will be stated and proved. In Section 5,
we offer some interesting discussion of the associated boundary value problem (1.5). Finally,
conclusions in Section 6 close the paper.

The fractional differential equations-related notations adopted in this paper can be
found, if not explained specifically, in almost all literature related to fractional differential
equations. The readers who are unfamiliar with this area can consult for example [1–6] for
details.

Definition 1.1 (see [4]). The integral

Iα0+f(x) =
1

Γ(α)

∫x

0

f(t)

(x − t)1−α
dt, x > 0, (1.6)

where α > 0 is called Riemann-Liouville fractional integral of order α.

Definition 1.2 (see [4]). For a function f(x) given in the interval [0, 1), the expression

Dα
0+f(x) =

1
Γ(n − α)

(
d

dx

)n ∫x

0

f(t)

(x − t)α−n+1
dt, (1.7)

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α.

Lemma 1.3 (see [13]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to u ∈ C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, (1.8)

for some Ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer greater than or equal to α.

2. Expression and Properties of Green’s Function

In this section, we present the expression and properties of Green’s function associated with
boundary value problem (1.5).

Lemma 2.1. Assume that
∫1
0 h(t)t

α−1dt /=α − 1. Then for any y ∈ C[0, 1], the unique solution of
boundary value problem

Dα
0+x(t) + y(t) = 0, 0 < t < 1,

x(0) = 0, x′(1) =
∫1

0
h(t)x(t)dt,

(2.1)
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is given by

x(t) =
∫1

0
G(t, s)y(s)ds, (2.2)

where

G(t, s) = G1(t, s) +G2(t, s), (2.3)

G1(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tα−1(1 − s)α−2 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−2

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

(2.4)

G2(t, s) =
tα−1

α − 1 − ∫1
0 h(t)t

α−1dt

∫1

0
h(t)G1(t, s)dt. (2.5)

Proof. By Lemma 1.3, we can reduce the equation of problem (2.1) to an equivalent integral
equation

x(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1t

α−1 + c2t
α−2. (2.6)

By x(0) = 0, there is c2 = 0, and

x′(t) = −α − 1
Γ(α)

∫ t

0
(t − s)α−2y(s)ds + c1(α − 1)tα−2. (2.7)

By (2.7) and x′(1) =
∫1
0 h(t)x(t)dt, we have

∫1

0
h(t)x(t)dt = −α − 1

Γ(α)

∫1

0
(1 − s)α−2y(s)ds + c1(α − 1), (2.8)

which yields that

c1 =
1

α − 1

∫1

0
h(t)x(t)dt +

1
Γ(α)

∫1

0
(1 − s)α−2y(s)ds. (2.9)
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Therefore, the unique solution of BVP (2.1) is

x(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + tα−1

{
1

α − 1

∫1

0
h(t)x(t)dt +

1
Γ(α)

∫1

0
(1 − s)α−2y(s)ds

}

=
∫1

0
G1(t, s)y(s)ds +

tα−1

α − 1

∫1

0
h(t)x(t)dt,

(2.10)

where G1(t, s) is defined by (2.4).
Multiplying (2.10)with h(t) and integrating it, we can see

∫1

0
h(t)x(t)dt =

∫1

0
h(t)

∫1

0
G1(t, s)y(s)dsdt +

∫1
0 h(t)t

α−1dt

α − 1

∫1

0
h(t)x(t)dt. (2.11)

Therefore,

∫1

0
h(t)x(t)dt =

1

1 − ∫1
0 h(t)t

α−1dt/(α − 1)

∫1

0
h(t)

∫1

0
G1(t, s)y(s)dsdt. (2.12)

Substituting (2.12) into (2.10), we obtain

x(t) =
∫1

0
G1(t, s)y(s)ds +

tα−1

α − 1

∫1

0
h(t)x(t)dt

=
∫1

0
G1(t, s)y(s)ds +

tα−1

α − 1
1

1 − ∫1
0 h(t)t

α−1dt/(α − 1)

∫1

0
h(t)

∫1

0
G1(t, s)y(s)dsdt

=
∫1

0
G1(t, s)y(s)ds +

∫1

0
G2(t, s)y(s)ds

=
∫1

0
G(t, s)y(s)ds,

(2.13)

whereG(t, s),G1(t, s), andG2(t, s) are defined by (2.3), (2.4), and (2.5), respectively. The proof
is complete.

From (2.3), (2.4), and (2.5), we can prove that G(t, s), G1(t, s), and G2(t, s) have the
following properties.
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Proposition 2.2. The function G1(t, s) defined by (2.4) satisfies the following.

(i) G1(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G1(t, s) > 0, for all t, s ∈ (0, 1);

(ii) G1(t, s) ≤ G1(s, s) = sα−1(1 − s)α−2/Γ(α), for all t ∈ [0, 1], s ∈ (0, 1).

Proof. (i) It is obvious that G1(t, s) is continuous on [0, 1] × [0, 1]. For 0 ≤ s < t ≤ 1,

tα−1(1 − s)α−2 − (t − s)α−1 = (1 − s)α−1
[
tα−1

1 − s
−
(
t − s

1 − s

)α−1]

≥ 0. (2.14)

So, by (2.4), we have

G1(t, s) ≥ 0, ∀t, s ∈ [0, 1]. (2.15)

Similarly, for t, s ∈ (0, 1), we have G1(t, s) > 0.
(ii) Since α ≤ 2, for given s ∈ (0, 1), s < t ≤ 1, we have

t ≥ t − s

1 − s
, (2.16)

tα−2 ≤
(
t − s

1 − s

)α−2
. (2.17)

Therefore, from (2.17) and the definition of G1(t, s), for given s ∈ (0, 1), s < t ≤ 1, we have

∂G1(t, s)
∂t

=
α − 1
Γ(α)

{
tα−2(1 − s)α−2 − (t − s)α−2

}

=
α − 1
Γ(α)

(1 − s)α−2
{

tα−2 −
(
t − s

1 − s

)α−2}

≤ 0.

(2.18)

On the other hand, it is clear that

∂G1(t, s)
∂t

=
(α − 1)tα−2(1 − s)α−2

Γ(α)
≥ 0, ∀0 ≤ t ≤ s ≤ 1. (2.19)

Therefore, we have

max
t∈[0,1]

G1(t, s) = G1(s, s) =
sα−1(1 − s)α−2

Γ(α)
, s ∈ (0, 1). (2.20)

Let

μ =
∫1

0
h(t)tα−1dt. (2.21)
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Proposition 2.3. If μ ∈ [0, α − 1), then one has

(i) G2(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G2(t, s) > 0, for all t, s ∈ (0, 1);

(ii) G2(t, s) ≤ (1/(α − 1 − μ))
∫1
0 h(t)G1(t, s)dt, for all t ∈ [0, 1], s ∈ (0, 1).

Proof. From the properties of G1(t, s), and the definition of G2(t, s), we can prove that the
results of Proposition 2.3 hold.

Theorem 2.4. If μ ∈ [0, α − 1), the function G(t, s) defined by (2.3) satisfies the following.

(i) G(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G(t, s) > 0, for all t, s ∈ (0, 1);

(ii) G(t, s) ≤ Λsα−1(1 − s)α−2, for all t, s ∈ [0, 1], where

Λ =
α − 1 − μ − ∫1

0 h(t)dt

Γ(α)
(
α − 1 − μ

) . (2.22)

Proof. (i) From Propositions 2.2 and 2.3, we obtain that G(t, s) ≥ 0 is continuous for all t, s ∈
[0, 1], G(t, s) > 0, for all t, s ∈ (0, 1).

(ii) From Proposition 2.2 and (2.3), we have

G(t, s) = G1(t, s) +G2(t, s)

≤ G1(s, s) +
tα−1

α − 1 − μ

∫1

0
h(t)G1(s, s)dt

≤ G1(s, s)

(

1 +
1

α − 1 − μ

∫1

0
h(t)dt

)

≤ G1(s, s)
α − 1 − μ +

∫1
0 h(t)dt

α − 1 − μ

≤ sα−1(1 − s)α−2

Γ(α)
α − 1 − μ − ∫1

0 h(t)dt
α − 1 − μ

= Λsα−1(1 − s)α−2, ∀t, s ∈ [0, 1].

(2.23)

Remark 2.5. From (i) of Theorem 2.4, we obtain that there exists τ > 0 such that

G(t, s) ≥ τ, ∀t, s ∈ [θ, 1 − θ], (2.24)

where θ ∈ (0, 1/2).

3. Preliminaries

In this section, we give some preliminaries for discussing the existence of positive solutions
of boundary value problem (1.5).
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Let J = [0, 1]. The basic space used in this paper is E = C[0, 1]. It is well known that E
is a real Banach space with the norm ‖ · ‖ defined by ‖x‖ = max0≤t≤1|x(t)|. Let

K = {x ∈ E : x(t) ≥ 0, t ∈ J},
Kr = {x ∈ K : ‖x‖ ≤ r}, ∂Kr = {x ∈ K : ‖x‖ = r},

(3.1)

where r > 0.
On the basis of Lemma 3.3 belowwewill establish in Section 4 the existence of positive

solution to the problem (1.5). Here we make the following hypotheses:

(H1) g ∈ C((0, 1), [0,+∞)), g(t)/≡ 0 on any subinterval of (0,1) and
∫1
0 s

α−1(1−s)α−2g(t)dt <
+∞;

(H2) f ∈ C([0, 1] × [0,+∞), [0,+∞)) and f(t, 0) = 0 uniformly with respect to t on [0, 1];

(H3) μ ∈ [0, α − 1), where μ is defined by (2.21).

Define T : K → K by

(Tx)(t) =
∫1

0
G(t, s)g(s)f(s, x(s))ds, (3.2)

where G(t, s) is defined by (2.3).

Lemma 3.1. Let (H1)–(H3) hold. Then boundary value problems (1.5) has a solution x if and only if
x is a fixed point of T .

Proof. From Lemma 2.1, we can prove the results of this Lemma.

Lemma 3.2. Let (H1)–(H3) hold. Then TK ⊂ K and T : K → K is completely continuous.

Proof. For any x ∈ K, by (3.2), we can obtain Tx ≥ 0. Next by similar proof of Lemma 3.1 in
[12] and Ascoli-Arzela theorem one can prove T : K → K is completely continuous. So it is
omitted.

Lemma 3.3 (see [26]). Let Ω1 and Ω2 be two bounded open sets in a real Banach space E, such that
0 ∈ Ω1 and Ω1 ⊂ Ω2. Let operator A : P ∩ (Ω2 \ Ω1) → P be completely continuous, where P is a
cone in E. Suppose that one of the following two conditions is satisfied.

(i) There exists x0 ∈ P \ {θ} such that x −Ax/= tx0, for all x ∈ P ∩ ∂Ω2, t ≥ 0; Ax/=μx, for
all x ∈ P ∩ ∂Ω1, μ ≥ 1.

(ii) There exists x0 ∈ P \ {θ} such that x −Ax/= tx0, for all x ∈ P ∩ ∂Ω1, t ≥ 0; Ax/=μx, for
all x ∈ P ∩ ∂Ω2, μ ≥ 1.

Then, A has at least one fixed point in P ∩ (Ω2 \Ω1).

4. Existence of Positive Solutions

In this section, we apply Lemma 3.3 to establish the existence of positive solutions for
boundary value problems (1.5).
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Theorem 4.1. Suppose (H1)– (H3) and f satisfies the following conditions.

(H4) There exists 0 < δ < 1 such that 0 < lim infx→ 0+mint∈[0,1](f(t, x)/xδ) ≤ +∞;

(H5) There exists 0 < β < 1 such that 0 ≤ lim supx→+∞maxt∈[0,1](f(t, x)/xβ) < +∞.

Then boundary value problems (1.5) has at least one positive solution.

Proof. For applying Lemma 3.3, we construct a function w : [0, 1] → R via

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, t ∈ [θ, 1 − θ],

0, t /∈
[
θ

16
, 1 − 15θ

16

]
,

16
15θ

(
t − θ

16

)
, t ∈

[
θ

16
, θ

]
,

−16
θ

(
t − 1 +

15θ
16

)
, t ∈

[
1 − θ, 1 − 15θ

16

]
.

(4.1)

Obviously, w is a nonnegative continuous function, that is, w ∈ K, and ‖w‖ = 1.
Suppose that there is ε1 > 0 such that

x − Tx /= 0 (∀x ∈ K, 0 < ‖x‖ ≤ ε1), (4.2)

if not, then the conclusion holds. The condition (H4) and f(t, 0) = 0 imply that there exist
σ > 0, ε2 > 0 such that

f(t, x) ≥ σxδ (0 ≤ x ≤ ε2). (4.3)

Let ε3 = min{ε1, ε2, (τσ
∫1−θ
θ g(s)ds)1/(1−δ)}, and choose 0 < r < ε3. We now show that

x − Tx /= ζw (∀x ∈ ∂Kr, ζ ≥ 0). (4.4)

In fact, if there exist x1 ∈ ∂Kr , ζ1 ≥ 0 such that x1 − Tx1 = ζ1w, then (4.4) implies that
ζ1 > 0. On the other hand, x1 = ζ1w +Tx1 ≥ ζ1w. So we can choose ζ∗ = sup{ζ | x1 ≥ tw}, then
ζ1 ≤ ζ∗ < +∞, x1 ≥ ζ∗w. Therefore,

ζ∗ = ζ∗‖w‖ ≤ ‖x1‖ = r < ε3 ≤
(

τσ

∫1−θ

θ

g(s)ds

)1/(1−δ)
. (4.5)
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Consequently, for any t ∈ [θ, 1 − θ], (2.24) and (4.3) imply

x1(t) =
∫1

0
G(t, s)g(s)f(s, x1(s))ds + ζ1w(t)

≥
∫1

0
G(t, s)g(s)σ[x1(s)]δds + ζ1w(t)

≥
∫1−θ

θ

G(t, s)g(s)σ(ζ∗)δ[w(s)]δds + ζ1w(t)

≥ τσ(ζ∗)δ
∫1−θ

θ

g(s)ds + ζ1w(t)

≥ (ζ∗ + ζ1)w(t),

(4.6)

that is, x1(t) ≥ (ζ∗ + ζ1)w(t), t ∈ [θ, 1 − θ]. Noticing the definition of w(t), we have

x1(t) ≥ (ζ∗ + ζ1)w(t), t ∈ [0, 1], (4.7)

which is a contradiction to the definition of ζ∗. Hence, (4.4) holds.
Now turning to (H5), there exist m > 0, ε4 > 0, for t ∈ [0, 1], x ≥ ε4, such that f(t, x) ≤

mxβ. Letting l = max0≤t≤1,0≤x≤ε4f(t, x), then

0 ≤ f(t, x) ≤ mxβ + l, ∀t ∈ [0, 1], x ∈ [0,∞). (4.8)

Choosing R > ε4 such that

lΛM

R
+
mΛM

R1−β < 1, (4.9)

where M =
∫1
0 s

α−1(1 − s)α−2g(s)ds. Now we prove that

Tx /=λx, ∀x ∈ ∂KR, λ ≥ 1. (4.10)

If not, then there exist x0 ∈ ∂KR, λ0 ≥ 1 such that Tx0 = λ0x0. By (4.8) and (ii) of Theorem 2.4,
then for any t ∈ [0, 1], we have

λ0x0(t) =
∫1

0
G(t, s)g(s)f(s, x0(s))ds

≤
(
l +m‖x0‖β

)
Λ
∫1

0
sα−1(1 − s)α−2g(s)ds.

(4.11)
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So R ≤ λ0R = λ0‖x0‖ ≤ (l +m‖x0‖β)Λ
∫1
0 s

α−1(1 − s)α−2g(s)ds, that is,

lΛM

R
+
mΛM

R1−β ≥ 1, (4.12)

which is a contradiction to (4.9). So, (4.10) holds.
By (ii) of Lemma 3.3, (4.4) and (4.10) yield that T has a fixed point x ∈ Kr,R, r ≤ ‖x‖ ≤

R. Thus it follows that boundary value problems (1.5) has at least one positive solution x
with r ≤ ‖x‖ ≤ R. The proof is complete.

5. Discussion

In this section, we offer some interesting discussion associatedwith boundary value problems
(1.5).

Since the proof of the main theorem (Theorem 4.1) in this paper is independent of the
expression form of G(t, s) and only dependent on its continuity and nonnegativity, there are
similar conclusions by analogous methods for boundary value problems (1.5) subject to other
boundary value conditions, respectively, the following.

(i) We have

x(0) = 0, x′(1) =
∫1

0
h(t)x′(t)dt, (5.1)

then

G(t, s) = G1(t, s) +G∗
2(t, s), (5.2)

where

G∗
2(t, s) =

tα−1

(α − 1)
(
1 − ∫1

0 h(t)t
α−2dt

)
∫1

0
h(t)G′

1t(t, s)dt,

G′
1t(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)tα−2(1 − s)α−2 − (α − 1)(t − s)α−2

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(α − 1)tα−2(1 − s)α−2

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(5.3)

Obviously G(t, s) is continuous on [0, 1] × [0, 1], and it is easy to see that G(t, s) ≥
0, t, s ∈ [0, 1] by μ∗ ∈ [0, 1), where

μ∗ =
∫1

0
h(t)tα−2dt. (5.4)
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(ii) We have

x(0) = 0, x(1) + x′(1) =
∫1

0
h(t)x(t)dt, (5.5)

then

G(t, s) = G∗
1(t, s) +G∗∗

2 (t, s), (5.6)

where

G∗
1(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tα−1(1 − s)α−1 + (α − 1)(1 − s)α−2 − α(t − s)α−1

αΓ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1 + (α − 1)(1 − s)α−2

αΓ(α)
, 0 ≤ t ≤ s ≤ 1.

G∗∗
2 (t, s) =

tα−1
(
α − ∫1

0 h(t)t
α−1dt

)
∫1

0
h(t)G∗

1(t, s)dt.

(5.7)

Obviously G(t, s) is continuous on [0, 1] × [0, 1], and it is easy to see that G(t, s) ≥ 0,
t, s ∈ [0, 1] by μ ∈ [0, α), where μ is defined by (2.21).

(iii) We have

x(0) = 0, x(1) + x′(1) =
∫1

0
h(t)x′(t)dt, (5.8)

then

G(t, s) = G∗
1(t, s) +G∗∗∗

2 (t, s), (5.9)

where

G∗∗∗
2 (t, s) =

tα−1

(α − 1)
(
α/(α − 1) − ∫1

0 h(t)t
α−2dt

)
∫1

0
h(t)G∗′

1t(t, s)dt,

G∗′
1t(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)tα−2(1 − s)α−1 − (α − 1)α(t − s)α−2

αΓ(α)
, 0 ≤ s ≤ t ≤ 1,

(α − 1)tα−2(1 − s)α−1

αΓ(α)
, 0 ≤ t ≤ s ≤ 1.

(5.10)

Obviously G(t, s) is continuous on [0, 1] × [0, 1], and it is easy to see that G(t, s) ≥
0, t, s ∈ [0, 1] by μ∗ ∈ [0, α/(α − 1)), where μ∗ is defined in (5.4).
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6. Conclusions

In this paper, by using the fixed point theorem of cone, we have investigated the existence
of positive solutions for a class of nonlinear fractional differential equations with integral
boundary conditions and have obtained some easily verifiable sufficient criteria which extend
previous results. It is worth mentioning that there are still many problems that remain open
in this vital field other than the results obtained in this paper: for example, whether or not we
can study the fractional differential equations with integral boundary conditions at resonance
(see, e.g., [27]), and whether or not we can give a unified approach applicable to many BVPs
(see, e.g., [28–31]). More efforts are still needed in the future.
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