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We investigate the mild solutions of a nonlocal Cauchy problem for nonautonomous fractional
evolution equations du(t) /dt? = —A(Hu(t) + f(t, (Kiu)(t), (Kau)(t),..., (K,u)(t)), t € I =[0,T],
u(0) = A71(0)g(u) + uo, in Banach spaces, where T > 0, 0 < g < 1. New results are obtained by
using Sadovskii’s fixed point theorem and the Banach contraction mapping principle. An example
is also given.

1. Introduction

During the past decades, the fractional differential equations have been proved to be valuable
tools in the investigation of many phenomena in engineering and physics; they attracted
many researchers (cf., e.g., [1-9]). On the other hand, the autonomous and nonautonomous
evolution equations and related topics were studied in, for example, [6, 7, 10-20], and the
nonlocal Cauchy problem was considered in, for example, (2, 5, 18, 21-26].

In this paper, we consider the following nonlocal Cauchy problem for nonautonomous
fractional evolution equations

d%t) = —A@u(t) + f(t, K) (), Kauw)(®),...., (Ku) (1)), t€I=1[0,T],

(1.1)
u(0) = A7 (0)g (1) + uo,

in Banach spaces, where 0 < g < 1, g : C(I;X) — X. The terms (K;u)(t),i = 1,...,n are
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defined by
t
(Kiju)(t) = f ki(t,s)u(s)ds, (1.2)
0

the positive functions k;(t, s) are continuous on D = {(t,s) € R>: 0< s <t < T} and

t
K: = sup | ki(t,s)ds < oo. (1.3)
te[0,T]J0

Let us assume that u € L([0, T]; X) and A(t) is a family linear closed operator defined
in a Banach space X. The fractional order integral of the function u is understood here in the
Riemann-Liouville sense, that is,

1 1
ITu(t) = @ fo (t —s)Tu(s)ds. (1.4)

In this paper, we denote that C is a positive constant and assume that a family of closed
linear {A(t) : t € [0, T]} satisfying

(Al) the domain D(A) of {A(t) : t € [0,T]} is dense in the Banach space X and in-
dependent of ¢,

(A2) the operator [A(t) + 1]71 exists in L(X) for any A with Re A <0 and

C
[A+1]

||[A(t) + A]‘1|| < te[0,T]. (1.5)

(A3) There exists constant y € (0,1] and C such that

1At - A)1A7 (s)| < Clti -1, 12,5 € [0,T). (1.6)

Under condition (A2), each operator —A(s), s € [0,T] generates an analytic semigroup
exp(—tA(s)), t > 0, and there exists a constant C such that

4" exp(-tAG) | < . (17)

wheren=0,1,t>0,s € [0,T] ([11]).

We study the existence of mild solution of (1.1) and obtain the existence theorem
based on the measures of noncompactness. An example is given to show an application of
the abstract results.
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2. Preliminaries

Throughout this work, we set I = [0,T]. We denote by X a Banach space, L(X) the space
of all linear and bounded operators on X, and C(I, X) the space of all X-valued continuous
functions on I.

Lemma 2.1 (see [9]). (1) I1: L[0,T] — L'[0,T].
(2) For g € L'[0,T], we have

t n t
L fo (t-n)"" (n-s)""g(s)ds dn = B(q,y) fo (t—s)"7 " g(s)ds, (2.1)

where B(q, y) is a Beta function.

Definition 2.2. Let B be a bounded set of seminormed linear space Y. The Kuratowski’s
measure of noncompactness (for brevity, a-measure) of B is defined as

a(B) =inf{d > 0: B has a finite cover by sets of diameter < d}. (2.2)

From the definition, we can get some properties of a-measure immediately, see ([27]).
Lemma 2.3 (see [27]). Let A and B be bounded sets of X. Then

(1) a(A) <a(B),if ACB.

(2) a(A) = a(AY), where A% denotes the closure of A.

(3) a(A) =0 ifand only if A is precompact.

(4) a(rA) = [Ma(A), L e R

(5) (AU B) = max{a(A), a(B)}.

(6) a(A+B) <a(A) +a(B), where A+ B={x+y:x€A,yc B}
(7) a(A + xg) = a(A), for any xo € X.

For H c C(I, X) we define

t t
f H(s)ds = {J. u(s)ds:u € H}, (2.3)
0

0

fort eI, where H(s) = {u(s) e X :ue€ H}.
The following lemma will be needed.

Lemma 2.4 (see [27]). If H c C(I, X) is a bounded, equicontinuous set, then
(1) a(H) = sup,;a(H(t)).
(2) a(fy H(s)ds) < [; a(H(s))ds, for t € I.
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Lemma 2.5 (see [28]). If {un}i2y C L'(I, X) and there exists a m(-) € L'(I, R") such that

|[un(B)|| <m(t), aetel, (2.4)

then a({u,(t)};.,) is integrable and

t * t
a<{f un(s)ds} > SZJ‘ a({un(s)};q)ds. (2.5)
0 -1 0

n

We need to use the following Sadovskii’s fixed point theorem.

Definition 2.6 (see [29]). Let P be an operator in Banach space X. If P is continuous and takes
bounded, sets into bounded sets, and a(P(H)) < a(H) for every bounded set H of X with
a(H) > 0, then P is said to be a condensing operator on X.

Lemma 2.7 (Sadovskii’s fixed point theorem [29]). Let P be a condensing operator on Banach
space X. If P(B) C B for a convex, closed, and bounded set B of X, then P has a fixed point in B.

According to [4], a mild solution of (1.1) can be defined as follows.

Definition 2.8. A function u € C(I, X) satisfying the equation

() = A7 g + w0+ [ (b=, DU AO[A7 Og00) + o]y

[ =) (1, 0100 (), (K)o, () (1))l

(2.6)
ten
+ fo fo w(t—n,n)e(1,s)f(s, (Kiu)(s), (Kau)(s),..., (Kyu)(s))ds dn,
is called a mild solution of (1.1), where
w(ts)=q fw 0t171¢,(0) exp(~t10A(s))do, (2.7)
0

and ¢, is a probability density function defined on [0, o) such that its Laplace transform is
given by

~ —ox _ % (_x)j
fo e "¢, (o)do = j:zoir(l )’ g€ (0,1], x>0,

(2.8)

o(t,7) = D gk(t, T),
k=1
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where

pi(t,7) = [A(t) - A(D)]g(t -7, 7),

i1 (t,T) = f p(t,s)pi(s,T)ds, k=1,2..., 2.9)
t

U =-A@)A(0) - f o(t,s)A(s)A™(0)ds.
0

To our purpose, the following conclusions will be needed. For the proofs refer to [4].

Lemma 2.9 (see [4]). The operator-valued functions g (t — 1, 1) and A(t)g(t — 1, 1) are continuous
in uniform topology in the variables t, 1, where 0 <1 <t —¢,0<t < T, forany € > 0. Clearly,

lo(t-nm)| <C(t-n)"". (2.10)
Moreover, we have
ot )|l < C(t=n)"". (2.11)

Remark 2.10. From the proof of Theorem 2.5 in [4], we can see

M) U@l <C+Cer.
(2) Fortel, f(t) @ (t —n,n)U(n)dn is uniformly continuous in the norm of L(X) and

< Cth<f11 +1B(q,y + 1)) = M(b). (2.12)

Hﬂw(f—n/n)u(n)dn

3. Existence of Solution
Assume that

(Bl) f: IxXxXx---xX — X satisfies f(-,v1,v2,...,v,) : I — X is measurable for all
vieX, i=12,...,nand f(t-,-...,-) : XxX x---xX — X is continuous for
a.e t € I, and there exist a positive function yu(-) € LP(I,R*) (p > 1/g > 1) and a
continuous nondecreasing function w : [0, 00) — [0, o0) such that

n
lf (t 01,00, ..., 00)] < ‘u(t)w<2||vi||>, (t,v1,v2,...,00) EIxXxXx---xX, (3.1)
i=1

and set T, ; = max{T7°"/7, T1}.
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(B2) For any bounded sets D, D1, D»,...,D, C X,and0<7<s<t<T,
a(g(D)) < f(t)a(D),
a(p(t—s,8)f(s,D1,D,,...,Dy))
< Pit, s)a(Da) + fa(t, s)a(Dz) + - - - + Pu(t, s)a(Dy), (3.2)
a(y(t—s,8)¢(s,7)f(t,D1,Dy,...,Dy))

< ¢i(t, s, T)a(D1) + Ga(t, s, T)a(Dy) + - - - + &u(t, 5, T)a(Dy),

where f(t) is a nonnegative function, and sup, ;f(t) := p < oo,

t
sup | Pi(t,s)ds:=pi<oo, i=12,...,n,
0

tel
(3.3)
t ps
supJ. J. Git,s,T)drds :=(j<oo, j=1,2,...,n
tel JoJo
(B3) g: C(I; X) — X is continuous and there exists
N 71
0O<a < (C+M(T)) ., >0 (3.4)
such that
g < arllull + az. (3.5)
(B4) The functions p and w satisfy the following condition:
C(1+CB(q,7))Thy Qg <ZK;> el lim inf 2 <1 g, (c+M@D), (36
‘= T— 00

where Q,, = ((p—-1)/(pq - 1)P /7 and Tg,q = max{Ty,q, Tpqiy)-

Theorem 3.1. Suppose that (B1)—(B4) are satisfied, and if (C + m)ﬁ +4(21, (B +26)KT) < 1,
then (1.1) has a mild solution on [0, T].
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Proof. Define the operator F : C(I; X) — C(I; X) by

t
Fu)(t) = A™(0)g(u) + uo + fo g (t =1, MU (1) AQ) A (0)3(1) + o]y

t
[ =) £ () ), (B (1) .., () ()
toen
o[ [ e t-nmem s K, K., (Gue)dsdn, tel
(3.7)
Then we proceed in five steps.
Step 1. We show that F is continuous.
Let u; be a sequence that u; — uasi — oo. Since f satisfies (B1), we have
Ut (Kau) (8), (Kag) (1), .., (Koag) (8)) — F (¢, (Kyu)(8), (Kaw) (1), .., (Kou) (1)), as i — oo.
(3.8)
Then
|| (ui) (£) = F (u) (£) |
<||a O |llg@) - gl + fouqr(t = nmU(n)| [l gGw) - g(w)|dn
t
+f [l (¢ = m,m) [ (n, (Kaws) (), (Kaws) (1), -, (Kowai) (1) )
0 (3.9)
=f (n, (Kaw) (1), (Kaw) (1), - ., (Koa) (1)) ] ||
t e
+ fo fo llos(t = m,m)p(n, s)[f (s, (Kiui)(s), (Kaui)(s), ..., (Knui)(s))
—f (s, (Kyu)(s), (Kau)(s), ..., (Kyu)(s))]||ds dn.
According to the condition (A2), (2.12), and the continuity of g, we have
||A-1(0)|| lg(ui) - g@w)|| — 0, asi— oo;
(3.10)

t
[[lle G- nmullge - glidn —o, asi— oo
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Noting that u; — u in C(I, X), there exists ¢ > 0 such that ||u; — u|| < ¢ for i sufficiently large.
Therefore, we have

| LF (t, (Kaws) (8), (Kawg) (), - .., (Kuui) (£) = £ (£, (Kyu) (), (Kau) (8), . .., (Ku) (1)] ||

< u(t) w<z||<1<]-ui><t>||> +wz||<r<]-u><t>||]
|\t j=1

<u() w(ZK;fcnuu + s>> + w(ZK;fuun)] .
|\t j=1

Using (2.10) and by means of the Lebesgue dominated convergence theorem, we obtain

(3.11)

t
[ =) o, K (), (8o ), (B )
—f (n, (Kyu) (1), (Kow) (1), .., (Kt) (1)) ] |
t o (3.12)
< =™ o W ), (Kot ()., (Bt (1)
—f(n, (Kau) (1), (Kaw) (1), - -, (Kyw) (m)) ] ||,
— 0, asi— oo.
Similarly, by (2.10) and (2.11), we have
t o
f f lo(t=nm)e(n,s)
070
x [f (s, (Kaui) (1), (Kaui) (F), - ..., (Kuui) (1))
~f(s, (Kiu)(s), (Kau)(s), ..., (Kau)(s))] || ds dn
En . . (3.13)
C2 _ q-1 _ &\ 1
< [ -0 -9
x| £ (s, (Kuwi) (t), (Kau) (1), .., (Kot (8))
—f (s, (Kqu)(s), (Kau)(s), ..., (Kyu)(s))||ds dn

— 0, asi— oo.

Therefore, we deduce that

lim ||F (;) — F(u)]| = 0. (3.14)
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Step 2. We show that F maps bounded sets of C(I, X) into bounded sets in C(I, X).
For any r > 0, we set B, = {u € C(I,X) : |lu|]| < r}. Now, for u € B, by (B1), we can see

£t (Kuw) (1), (Kau) 8), ..., (Ku) (1)) | < p(t)eo ( ZK;r> . (3.15)
j=1

Based on (2.12), we denote that S(f) := [y ¢s(t — 1, 1)U (17)dn, we have
IS A©Oul < cth(j7 +0B(q,y + 1>> IAQ] = MBIAOWI.  (3.16)
Then for any u € B,, by (A2), (2.10), (2.11), and Lemma 2.1, we have
IFw) 1)) < A7 g + luoll + |S® g + 1S!) A©)uoll
+ ﬂllw(f —n,1) f (1, (Kiw) (), (Kau) (1), ..., (Kta) (17)) || g

E o
+ fo fo st = ), 8) £ (5, (Kau) (5), (Ko (s), ..., (Kote)(5))| s

< (C+M®) g0l +lluoll + MEIAOuol
t 1 n
+Cf (t=m)" u(nw ZK}‘r>dn
0 j=1

+C? ft J.n (t=1)"" (n-5)" " u(s)w <iK;‘r> dsdn
0Jo =1
<ar(C+ M(®)) ull + a2 (C+ M(®) + lluoll + MO A©)uoll

M, [c f: (t-n)"" u(n)dn + C*B(q,y) f: (t- n)””lu(n)dn]/

(3.17)
where M, = ‘U(Z?:l Kzr).
By means of the Holder inequality, we have
t B )
fo (t=m)" u(n)dn = tP7DP My [l pll 1 < Ty gQpallill 1
(3.18)

t
-1
fo (t=m)"™ " () dn < Ty gy Qp gy | ]| -
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Thus

I(F) (O] < a1 (C + M(T) )r + > (C + M(T) ) + o]+ MD| AQ)uo
(3.19)
# M1 T3[C+ B, )] lull, =7

This means F(B,) C B;.

Step 3. We show that there exists m € N such that F(B,,) C B,.
Suppose the contrary, that for every m € N, there exists u,, € B, and t,, € I, such that
[|(Fum) (tn)|| > m. However, on the other hand

17 ¢, (Kattm) (8), (Kattn) #), ..., (Kutt) (D) ]| < p(t)w < ZK;m>, (3.20)
j=1

we have

m < || (Fit) (b < 01 (C + M(T) ) | + 2 (C + M(T)) + |

o b b
+ MDIAOuo] + My [C [ ) =@y [ (- ﬂ)q”_lﬂ(n)dﬂ]
< a1<C+m>|lum|| +a2<C+m> T [l
+ M(D)|AQ)uol| + Mi2,4T}4[C + CB(q, )] 11l
<ar (C+ M(D)m +aa(C + M(T)) + o]

+ M(D)[[A©uoll + M1 2,454 [C + CB (g, )] [l -
(3.21)

Dividing both sides by m and taking the lower limit as m — oo, we obtain

w(m)

C(1+CB(q,1))Tq g 2 K; [l liminf >1-a(C+M(T)) (3.22)

=1

which contradicts (B4).

Step 4. Denote

t
F(u)(t) = A™(0)g(u) + uo + fo g (t =1, MU AQ) [A™(0)8(w) + uo|dn + G (1), (3.23)
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where
G(u)(t) = fo g (t = m,m) f (n, (Kaw) (1), (Kaw) (1), -, (Kt) (1) )l
(3.24)
t o
+ fo fo w(t—mn,1m)(1, s)f(s, (Kiu)(s), (Kau)(s),..., (Kyu)(s))ds dn.
We show that G(u)(:) is equicontinuous.
LetO<t, <t; <Tand u € B,,. Then
||(Gu)(t1) - (Gu) (tz)” ShLh+L+13+ 14 (325)

where

L= f:ll [t —m,1) =@t = n,m)] f (n, (Kau) (1), (Ko) (1), - -, (Koe) (17)) || A1,

tl Vl
I, - j f lor (b1 = 1, ) (1, 9) £ (5, (Kaw) (5), (Kat) () .., (Kyat) () | ds .
ty 0
(3.26)
It follows from Lemma 2.9, (B1), and (3.20) that I, I3 — 0,as t, — t;.
For I, from (2.10), (3.20), and (B1), we have
t
1= [ Mot =), () ), Kt (), (o) 1)
2
(3.27)
t
< CM; f (t - q)qfllu(q)dq — 0, asty—t.
tr
Similarly, by (2.10), (2.11), (B1), and Lemma 2.1, we have
tl 1'1
o= o =19 £, (K 9), (ot (), ., () 5 s
t
(3.28)

t n
<C?M; f (th - q)qflj‘ (1-5)""u(s)dsdn — 0, ast, — t.
ty 0
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Step 5. We show that a(F(H)) < a(H) for every bounded set H C B,,. For any € > 0, we can
take a sequence {hy}q.; C H such that

a(H) <2a({hy}) +¢, (3.29)
(cf. [30]). So it follows from Lemmas 2.3-2.5, 2.9, (2) in Remark 2.10, and (B2) that
a(F(H)) < Ca(g(H)) + M(T)a(g(H)) + 2a(G{h,}) + ¢
< Ca(g(H)) + M(T)a(g(H))

aswpa( { [t 1010 0, (o (0. o) )|

tel

< Cpa(H) + M(T)pa(H)
sasup( [l 0= 0, (30 (0, ) (0 (o) 1) D)

toen
-8 sup<f0 fo a({9(t - ) p(18) F(5, (Kiho)(5), (Kahto)(5), ..., (Kuho) (5)) })>

tel

+ & < Cpa(H) + M(T)pa(H) + 4sup <ft <i[5i(t, q)K;*> a({hy })dq>
tel 0

i=1

t n
+85up<f f <Zéi(t, TI,S)K;‘> a({hy})ds dq> +e
tel 0/0 i=1

< Cpa(H) + M(T)pa(H) + <4iﬂi1<;“ + 8§]§J<;‘> a({hy)) +e
i=1 i=1

- [(c +M(T))p +4<i(pi +2§i)K§‘>]a(H) e

(3.30)

Since ¢ is arbitrary, we can obtain

a(F(H)) < [(C+ M(T))p +4(ZL (B + 26) K] |a(H) < a( ), (3.31)
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In summary, we have proven that F has a fixed point # € B,,. Consequently, (1.1) has
at least one mild solution. Il

Our next result is based on the Banach’s fixed point theorem.

(G1) There exists a positive function I(-) € L'(I, R*) and a constant u > 0 such that
p H

llg (@) — g)|| < pllu—u*|,

||f(tlvll’(]2/‘ -‘/vn) _f(t/w1/w2/" -/wn)” (332)

n
sz<t><2||v,-—w,-||>, (o w) €X,i=1,2,..n
i=1

(G2) There exists a constant 0 < 6 < 1 such that the function A : I — R* defined by

A = p(C+M(T)) + c<§n:1<;‘>r(q)1q1(t) +C2 <§n:1<;‘>r(q)r(y)1q+¥1(t) <6, tel
i—1 i=1

(3.33)
Theorem 3.2. Assume that (G1), (G2) are satisfied, then (1.1) has a unique mild solution.
Proof. Let F be defined as in Theorem 3.1. For any u, u* € C(I, X), we have
£ (¢, (Kau) (8), (Kau)(2), .., (Kuu) (1) = f (¢, (Kqw*) (2), (Kou") (B), ..., (K" (1)
n
<I(t K; t) — (K; N (t
< ()<§||( u)(t) — ( u)()||> (334)

<1t Y K lu—u|.
i=1

Thus, from (A2), (2.10), (2.11), Lemma 2.1, we have
|(Fu)(t) — (Fu*) ()l
t
< uClhw =+ (e =) U ) 1=
t
[ o=l @, G w,... (K )
—f (1, (Kau*) (), (Kaw*) (1), - .., (Kua*) (7)) || 1y

t e
+ fo fo llos(t =1, m)p(n, ) [ f (s, (Ku)(s), (Hu) () = f (s, (Ku*)(s), (Hu")(s))||ds dn
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< ||u—u*||[u(C+A7(f>) +C<if<;‘> fo (t=m)""1(n)dn
v <ZK> [ a-n -9 ieas dﬂ]

- [y(cw\?(ﬂ) +C<ﬁ1<:>r<q)m<t> +C? <i1<;“>r<q)r<r)ﬂ”l<t>]||u—u*||

i=1
= Al -],
(3.35)

We get

IF () = F(u")|| < 6llu —u"|l. (3.36)

By the Banach contraction mapping principle, F has a unique fixed point, which is a mild
solution of (1.1). I

4. An Example

To illustrate the usefulness of our main result, we consider the following fractional differential
equation:

t

o1 o

n n ot
68 = bt gt )+ - s+ [ e u s tep)

0

u(t,0) =u(t,1) =0, (4.1)

u(0,2) = —f fybl(o x)sin|u|dxd
7 - 0o 7 /\’ y,

where0<g<1,0<t<1,A>C +m, n € N, b(t, ¢) is continuous function and is uniformly
Holder continuous in ¢, that is, there exist C > 0 and y € (0, 1) such that

[b(t1,8) —b(t2, | < Clta — o], 0<t <t <1 (4.2)
Let X = L2([0,1], R) and define A(t) by

D(A(t)) = H*(0,1) n Hy(0,1) = {HZ(O, 1):z(0) =z(1) = 0},
(4.3)
-A(t)(z) = b(t, &))"

Then —A(s) generates an analytic semigroup exp(—tA(s)).
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Fort e [0,1],¢ € [0,1], we set

u(t) () = u(t,g),

U
g(u) = s1n| \

7

Sy (4.4)
A_l(O)g(u) =- fo fo b™1(0,x) sin| K |dx dy,

£t ()0, (o )@ = (=uts s+ [ e utsps
where

(Kma»@>=La—®u@¢Ma
t
(&mm@=fé“%@ax,
0
t (4.5)
Ki=sup | (t-s)ds < ! < oo,
tel YO 2

1
Ki=sup | e™ds = <co.
tel JO 4

Moreover, we can get

gl < | ul,
(4.6)

a(g(D) < | (D)

for any D C X. Then the above equation (4.1) can be written in the abstract form as (1.1). On
the other hand,

|| £(t, (Ku) (1), (Hu)(5) @) || < ZII(Klu)(flé)ll + [|(Kau) (L, &)l

- . 4.7
< (Kilull + K3 ul) (*.7)

= u(B)w (K llull + K3 [[ul}),
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where u(t) = t", w(z) = z/n satisfying (B1). For any u, u; € X,

llg(t=s,5)f (s, (Kiur)(s), (Kaur)(s)) (&) — ¢s(t — 5, 5) f (s, (K1uz) (s), (Kau2) (5)) (&) |

C
> (t-5) " (I(Kaur) () (6) — (Kaua) (8) @) I] + [|(Kaan) (5) () — (Kauz) (5) (@))-
(4.8)
Therefore, for any bounded sets D, D, C X, we have
a(yp(t—s,s)f(s, Dy, s" (t = )T a(D1) + a(Dy)). (4.9)
Moreover,
c sup (t s)1's"ds = c sup t"1B(g,n+1) = CB(q,n +1) := p1 = fo. (4.10)
M tef0,1] M tef0,1] n
Similarly, we obtain
C? -1 -1
a(pt—s,8)¢(s,7)f(t,D1,D,)) < 7(t -8)1 (s =)' ™" (a(Dy) + a(Dy)),
(4.11)

—sup J.f (t—s)T (s —1)" "des<—B(q, )B(g+y,n+1):=¢1 =

te [0,1]

Suppose further that

(1) (3/4m)C(1 + CB(q, ) ((p ~ 1)/ (pg ~ 1) Pllull, <1~ (C + M(1))/4,
(2) (1/1)(C + M(1)) +3(p +241) < 1.
Then (4.1) has a mild solution by Theorem 3.1.
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