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The paper is devoted to the study of an approximation process of time optimal control for fractional
evolution systems in Banach spaces. We firstly convert time optimal control problem into Meyer
problem. By virtue of the properties of the family of solution operators given by us, the existence
of optimal controls for Meyer problem is proved. Secondly, we construct a sequence of Meyer
problems to successive approximation of the original time optimal control problem. Finally, a new
approximation process is established to find the solution of time optimal control problem. Our
method is different from the standard method.

1. Introduction

It has been shown that the accurate modelling in dynamics of many engineering, physics,
and economy systems can be obtained by using fractional differential equations. Numerous
applications can be found in viscoelasticity, electrochemistry, control, porous media,
electromagnetic, and so forth. There has been a great deal of interest in the solutions
of fractional differential equations in analytical and numerical sense. One can see the
monographs of Kilbas et al. [1], Miller and Ross [2], Podlubny [3], and Lakshmikantham et al.
[4]. The fractional evolution equations in infinite dimensional spaces attract many authors
including us (see, for instance, [5–21] and the references therein).

When the fractional differential equations describe the performance index and
system dynamics, a classical optimal control problem reduces to a fractional optimal
control problem. The optimal control of a fractional dynamics system is a fractional
optimal control with system dynamics defined with partial fractional differential equations.
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There has been very little work in the area of fractional optimal control problems [18, 22],
especially the time optimal control for fractional evolution equations [19]. Recalling that the
research on time optimal control problems dates back to the 1960s, many problems such as
existence and necessary conditions for optimality and controllability have been discussed, for
example, see [23] for the finite dimensional case and [7, 24–37] for the infinite dimensional
case. Since the cost functional for a time optimal control problem is the infimum of a number
set, it is different with the Lagrange problem, the Bolza problem and the Meyer problem,
which arise some new difficulties. As a result, we regard the time optimal control as another
problem which is not the same as the above three problems.

Motivated by our previous work in [18–21, 38], we consider the time optimal control
problem (P) of a fractional evolution system governed by

CD
q
t z(t) = Az(t) + f(t, z(t), B(t)v(t)), t ∈ (0, τ), q ∈ (0, 1),

z(0) = z0 ∈ X, v ∈ Vad,
(1.1)

where CD
q
t is the Caputo fractional derivative of order q, A : D(A) → X is the infinitesimal

generator of a strongly continuous semigroup {T(t), t ≥ 0}, Vad is the admissible control set
and f : Iτ := [0, τ] ×X ×X → X will be specified latter.

Let us mention, we do not study the time optimal control problem (P) of the above
system by standard method used in our earlier work [19]. In the present paper, we will
construct a sequences of Meyer problems (Pεn) to successive approximation time optimal
control problem (P). Therefore, we need introduce the following new fractional evolution
system

CD
q
sx(s) = kqAx(s) + kqf(ks, x(s), B(ks)u(s)), s ∈ (0, 1],

x(0) = z0 ∈ X, w = (u, k) ∈ W,
(1.2)

whose controls are taken from a product spaceW will be specified latter.
By applying the family of solution operators Tk and Sk (see Lemma 3.7) associated

with the family of C0-semigroups with parameters and some probability density functions,
the existence of optimal controls for Meyer problems (Pε) is proved. Then, we show that
there exists a subsequence ofMeyer problems (Pεn)whose corresponding sequence of optimal
controls {wεn} ∈ W converges to a time optimal control of problem (P) in some sense. In other
words, in a limiting process, the sequence {wεn} ∈ W can be used to find the solution of time
optimal control problem (P). The existence of time optimal controls for problem (P) is proved
by this constructive approachwhich provides a newmethod to solve the time optimal control.

The rest of the paper is organized as follows. In Section 2, some notations and
preparation results are given. In Section 3, we formulate the time optimal control problem (P)
and Meyer problem (Pε). In Section 4, the existence of optimal controls for Meyer problems
(Pε) is proved. Finally, we display the Meyer approximation process of time optimal control
and derive the main result of this paper.
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2. Preliminaries

Throughout this paper, we denote by X a Banach space with the norm ‖ · ‖. For each τ <
+∞, let Iτ ≡ [0, τ] and C(Iτ , X) be the Banach space of continuous functions from Iτ to X
with the usual supremum norm. Let A : D(A) → X be the infinitesimal generator of a
strongly continuous semigroup {T(t), t ≥ 0}. This means that there exists M > 0 such that
supt∈Iτ‖T(t)‖ ≤ M. We will also use ‖f‖Lp(Iτ ,R+) to denote the Lp(Iτ , R+) norm of f whenever
f ∈ Lp(Iτ , R+) for some p with 1 < p < ∞.

Let us recall the following definitions in [1].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a function f is
defined as

Iγf(t) =
1

Γ
(
γ
)
∫ t

0

f(s)

(t − s)1−γ
ds, t > 0, γ > 0, (2.1)

provided the right side is pointwise defined on [0,∞), where Γ(·) is the gamma function.

Definition 2.2. Riemann-Liouville derivative of order γ with the lower limit zero for a function
f : [0,∞) → R can be written as

LDγf(t) =
1

Γ
(
n − γ

)
dn

dtn

∫ t

0

f(s)

(t − s)γ+1−n
ds, t > 0, n − 1 < γ < n. (2.2)

Definition 2.3. The Caputo derivative of order γ for a function f : [0,∞) → R can be written
as

CDγf(t) = LDγ

(

f(t) −
n−1∑

k=0

tk

k!
f (k)(0)

)

, t > 0, n − 1 < γ < n. (2.3)

Remark 2.4. (i) If f(t) ∈ Cn[0,∞), then

CDγf(t) =
1

Γ
(
n − γ

)
∫ t

0

f (n)(s)

(t − s)γ+1−n
ds = In−γ f (n)(t), t > 0, n − 1 < γ < n. (2.4)

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X, then integrals which appear in

Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Lemma 2.5 (see [38, Lemma 3.1]). If the assumption [A] holds, then

(1) for given k ∈ [0, T̂], kA is the infinitesimal generator of C0-semigroup {Tk(t), t ≥ 0} onX,

(2) there exist constants C ≥ 1 and ω ∈ (−∞,+∞) such that

‖Tk(t)‖ ≤ Ceωkt, ∀t ≥ 0, (2.5)
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(3) if kn → kε in [0, T̂] as n → ∞, then for arbitrary x ∈ X and t ≥ 0,

Tkn(t)
s−→ Tkε(t), as n −→ ∞ (2.6)

uniformly in t on some closed interval of [0, T̂] in the strong operator topology sense.

3. System Description and Problem Formulation

Consider the following fractional nonlinear controlled system

CD
q
t z(t) = Az(t) + f(t, z(t), B(t)v(t)), t ∈ (0, τ),

z(0) = z0 ∈ X, v ∈ Vad.
(3.1)

We make the following assumptions.

[A] : A is the infinitesimal generator of a C0-semigroup {T(t), t ≥ 0} on X with domain
D(A).

[F] : f : Iτ × X × X → X is measurable in t on Iτ and for each ρ > 0, there exists a
constant L(ρ) > 0 such that for almost all t ∈ Iτ and all z1, z2, y1, y2 ∈ X, satisfying
‖z1‖, ‖z2‖, ‖y1‖, ‖y2‖ ≤ ρ, we have

∥∥f
(
t, z1, y1

)
− f

(
t, z2, y2

)∥∥ ≤ L
(
ρ
)(
‖z1 − z2‖ +

∥∥y1 − y2
∥∥). (3.2)

For arbitrary (t, z, y) ∈ Iτ ×X ×X, there exists a positive constant M > 0 such that

∥∥f
(
t, z, y

)∥∥ ≤ M
(
1 + ‖z‖ +

∥∥y
∥∥). (3.3)

[B] : Let E be a separable reflexive Banach space, B ∈ L∞(Iτ , L(E,X)), ‖B‖∞ stands
for the norm of operator B on Banach space L∞(Iτ , L(E,X)). B : Lp(Iτ , E) →
Lp(Iτ , X)(1 < p < +∞) is strongly continuous.

[U] : Multivalued maps V(·) : Iτ → 2E \ {Ø} has closed, convex and bounded values.
V(·) is graph measurable and V(·) ⊆ Ωwhere Ω is a bounded set of E.

Set

Vad = {v(·) | Iτ −→ E measurable, v(t) ∈ V(t) a.e.}. (3.4)

Obviously, Vad /=Ø (see [39, Theorem 2.1]) and Vad ⊂ Lp(Iτ , E) (1 < p < +∞) is bounded,
closed and convex.

Based on our previous work [21, Lemma 3.1 and Definition 3.1], we use the following
definition of mild solutions for our problem.
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Definition 3.1. By the mild solution of system (3.1), we mean that the function x ∈ C(Iτ , X)
which satisfies

z(t) = T(t)z0 +
∫ t

0
(t − θ)q−1S(t − θ)f(θ, z(θ), B(θ)v(θ))dθ, t ∈ Iτ , (3.5)

where

T(t) =
∫∞

0
ξq(θ)T(tqθ)dθ, S(t) = q

∫∞

0
θξq(θ)T(tqθ)dθ,

ξq(θ) =
1
q
θ−1−1/q	q

(
θ−1/q

)
≥ 0,

	q(θ) =
1
π

∞∑

n=1

(−1)n−1θ−qn−1
Γ
(
nq + 1

)

n!
sin

(
nπq

)
, θ ∈ (0,∞),

(3.6)

ξq is a probability density function defined on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞),
∫∞

0
ξq(θ)dθ = 1. (3.7)

Remark 3.2. (i) It is not difficult to verify that for v ∈ [0, 1]

∫∞

0
θvξq(θ)dθ =

∫∞

0
θ−qv	q(θ)dθ =

Γ(1 + v)
Γ
(
1 + qv

) . (3.8)

(ii) For another suitable definition of mild solutions for fractional differential
equations, the reader can refer to [13].

Lemma 3.3 (see [21, Lemmas 3.2-3.3]). The operators T and S have the following properties.

(i) For any fixed t ≥ 0, T(t) and S(t) are linear and bounded operators; that is, for any x ∈ X,

‖T(t)x‖ ≤ M‖x‖, ‖S(t)x‖ ≤
qM

Γ
(
1 + q

)‖x‖. (3.9)

(ii) {T(t), t ≥ 0} and {S(t), t ≥ 0} are strongly continuous.

We present the following existence and uniqueness of mild solutions for system (3.1).

Theorem 3.4. Under the assumptions [A], [B], [F] and [U], for every v ∈ Vad and pq > 1, system
(3.1) has a unique mild solution z ∈ C(Iτ , X) which satisfies the following integral equation

z(t) = T(t)z0 +
∫ t

0
(t − θ)q−1S(t − θ)f(θ, z(θ), B(θ)v(θ))dθ. (3.10)
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Proof. Consider the ball given by B = {x ∈ C([0, T1], X) | ‖x(t) − x0‖ ≤ 1, 0 ≤ t ≤ T1}, where
T1 would be chosen, and ‖x(t)‖ ≤ 1 + ‖x0‖ = ρ, 0 ≤ t ≤ T1, B ⊆ C([0, T1], X) is a closed convex
set. Define a map H on B given by

(Hz)(t) = T(t)z0 +
∫ t

0
(t − θ)q−1S(t − θ)f(θ, z(θ), B(θ)v(θ))dθ. (3.11)

Note that by the properties of T and S, assumptions [A], [F], [B], and [U], by standard
process (see [19, Theorem 3.2]), one can verify that H is a contraction map on B with T1 > 0.
This means that system (3.1) has a unique mild solution on [0, T1]. Again, using the singular
version Gronwall inequality, we can obtain the a prior estimate of the mild solutions of system
(3.1) and present the global existence of the mild solutions.

Definition 3.5 (admissible trajectory). Take two points z0, z1 in the state space X. Let z0 be the
initial state and let z1 be the desired terminal state with z0 /= z1, denote z(v) ≡ {z(t, v) ∈ X |
t ≥ 0} be the state trajectory corresponding to the control v ∈ Vad. A trajectory z(v) is said to
be admissible if z(0, v) = z0 and z(t, v) = z1 for some finite t > 0.

Set V0 = {v ∈ Vad | z(v) is an admissible trajectory} ⊂ Vad. For given z0, z1 ∈ X and
z0 /= z1, if V0 /=Ø (i.e., there exists at least one control from the admissible class that takes the
system from the given initial state z0 to the desired target state z1 in the finite time.), we say
the system (3.1) can be controlled.

Let τ(v) ≡ inf{t ≥ 0 | z(t, v) = z1} denote the transition time corresponding to the
control v ∈ V0 /=Ø and define τ∗ = inf{τ(v) ≥ 0 | v ∈ V0}.

Then, the time optimal control problem can be stated as follows.

Problem (Problem (P)). Take two points z0, z1 in the state space X. Let z0 be the initial state
and let z1 be the desired terminal state with z0 /= z1. Suppose that there exists at least one
control from the admissible class that takes the system from the given initial state z0 to the
desired target state z1 in the finite time. The time optimal control problem is to find a control
v∗ ∈ V0 such that

τ(v∗) = τ∗ = inf{τ(v) ≥ 0 | v ∈ V0}. (3.12)

For fixed v̂ ∈ Vad, T̂ = τ(v̂) > 0. Now, we introduce the following linear transformation

t = ks, 0 ≤ s ≤ 1, k ∈
[
0, T̂

]
. (3.13)

Through this transformation, system (3.1) can be replaced by

CD
q
sx(s) = kqAx(s) + kqf(ks, x(s), B(ks)u(s)), s ∈ (0, 1],

x(0) = z(0) = z0 ∈ X, w = (u, k) ∈ W,
(3.14)
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where x(·) = z(k·), u(·) = v(k·), and define

W =
{
(u, k) | u(s) = v(ks), 0 ≤ s ≤ 1, v ∈ Vad, k ∈

[
0, T̂

]}
. (3.15)

By Theorem 3.4, one can obtain the following existence result.

Theorem 3.6. Under the assumptions of Theorem 3.4, for every w ∈ W and pq > 1, system (3.14)
has a unique mild solution x ∈ C([0, 1], X) which satisfies the following integral equation

x(s) = Tk(s)z0 +
∫ s

0
(s − θ)q−1Sk(s − θ)kf(kθ, x(θ), B(kθ)u(θ))dθ, (3.16)

where

Tk(s) =
∫∞

0
ξq(θ)Tkq(sqθ)dθ, Sk(s) = q

∫∞

0
θξq(θ)Tkq(sqθ)dθ, (3.17)

and {Tkq(t), t ≥ 0} is a C0-semigroup generated by the infinitesimal generator kqA.

By Lemmas 2.5 and 3.3, it is not difficult to verify the following result.

Lemma 3.7. The family of solution operators Tk and Sk given by (3.17) has the following properties.

(i) For any x ∈ X, t ≥ 0, there exists a constant Ckq > 0 such that

‖Tk(t)x‖ ≤ Ckq‖x‖, ‖Sk(t)x‖ ≤
qCkq

Γ
(
1 + q

)‖x‖. (3.18)

(ii) {Tk(t), t ≥ 0} and {Sk(t), t ≥ 0} are also strongly continuous.

(iii) If kq
n → k

q
ε in [0, T̂] as n → ∞, then for arbitrary x ∈ X and t ≥ 0

Tk
q
n
(t) s−→ Tk

q
ε
(t), as n −→ ∞,

Sk
q
n
(t) s−→ Sk

q
ε
(t), as n −→ ∞

(3.19)

uniformly in t on some closed interval of [0, T̂] in the strong operator topology sense.

For system (3.14), we turn to consider the following Meyer problem.
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Meyer Problem (Pε)

Minimize the cost functional given by

Jε(w) =
1
2ε

‖x(w)(1) − z1‖2 + k (3.20)

over W , where x(w) is the mild solution of (3.14) corresponding to control w, that is, find a
control wε = (uε, kε) such that the cost functional Jε(w) attains its minimum onW at wε.

4. Existence of Optimal Controls for Meyer Problem (Pε)

In this section, we discuss the existence of optimal controls for Meyer problem (Pε).
We show that Meyer problem (Pε) has a solution wε = (uε, kε) for fixed ε > 0.

Theorem 4.1. Under the assumptions of Theorem 3.6. Meyer problem (Pε) has a solution.

Proof. Let ε > 0 be fixed. Since Jε(w) ≥ 0, there exists inf{Jε(w), w ∈ W}. Denote mε ≡
inf{Jε(w), w ∈ W} and choose {wn} ⊆ W such that Jε(wn) → mε where wn = (un, kn) ∈ W =
Vad × [0, T̂]. By assumption [U], there exists a subsequence {un} ⊆ Vad such that un

w→ uε

in Vad as n → ∞, and Vad is closed and convex, thanks to Mazur Lemma, uε ∈ Vad. By
assumption [B], we have

Bun
s−→ Buε, in Lp([0, 1], X), as n −→ ∞. (4.1)

Since kn(k
q
n) is bounded and kn(k

q
n) > 0, there also exists a subsequence {kn}({k

q
n}) denoted

by {kn}({k
q
n}) ⊆ [0, T̂] again, such that

kn
(
k
q
n

)
−→ kε

(
k
q
ε

)
, in

[
0, T̂

]
, as n −→ ∞. (4.2)

Let xn and xε be the mild solutions of system (3.14) corresponding to wn = (un, kn) ∈
W and wε = (uε, kε) ∈ W , respectively. Then, we have

xn(s) = Tn(s)z0 +
∫ s

0
(s − θ)q−1Sn(s − θ)kq

nFn(θ)dθ,

xε(s) = Tε(s)z0 +
∫ s

0
(s − θ)q−1Sε(s − θ)kq

εFε(θ)dθ,

(4.3)
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where

Tn(·) ≡
∫∞

0
ξq(θ)Tkq

n
(·qθ)dθ,

Sn(·) ≡ q

∫∞

0
θξq(θ)Tkq

n
(·qθ)dθ,

Fn(·) ≡ f(kn·, xn(·), B(kn·)un(·)),

Tε(·) ≡
∫∞

0
ξq(θ)Tkq

ε
(·qθ)dθ,

Sε(·) ≡ q

∫∞

0
θξq(θ)Tkq

ε
(·qθ)dθ,

Fε(·) ≡ f(kε·, xε(·), B(kε·)uε(·)).

(4.4)

By Lemma 3.7, assumptions [F], [B], [U], and singular version Gronwall Lemma, it is easy to
verify that there exists a constant ρ > 0 such that

‖xε‖C([0,1],X) ≤ ρ, ‖xn‖C([0,1],X) ≤ ρ. (4.5)

Further, there exists a constant Mε > 0 such that

‖Fε‖C([0,1],X) ≤ Mε

(
1 + ρ + ‖B‖∞max

t∈[0,1]
{‖u(t)‖}

)
. (4.6)

Denote

R1 = ‖Tn(s)z0 − Tε(s)z0‖,

R2 =
∥∥
∥∥

∫ s

0
(s − θ)q−1Sn(s − θ)kq

nFn(θ)dθ −
∫ s

0
(s − θ)q−1Sn(s − θ)kq

nF
ε
n(θ)dθ

∥∥
∥∥,

R3 =
∥
∥∥∥

∫ s

0
(s − θ)q−1Sn(s − θ)kq

nF
ε
n(θ)dθ −

∫ s

0
(s − θ)q−1Sε(s − θ)kq

εFε(θ)dθ
∥
∥∥∥,

(4.7)

where

Fε
n(θ) ≡ f(knθ, xε(θ), B(kεθ)uε(θ)). (4.8)
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By assumption [F],

R2 ≤
qCk

q
n
k
q
n

Γ
(
1 + q

)
∫ s

0
(s − θ)q−1‖Fn(θ) − Fε

n(θ)‖dθ

≤
qCk

q
n
k
q
nL

(
ρ
)

Γ
(
1 + q

)
∫ s

0
(s − θ)q−1‖xn(θ) − xε(θ)‖dθ

+
qCk

q
n
k
q
nL

(
ρ
)

Γ
(
1 + q

)
∫ s

0
(s − θ)q−1‖B(knθ)un(θ) − B(kεθ)uε(θ)‖dθ

≤ R21 + R22 + R23,

(4.9)

where

Mk
q
n
≡
qCk

q
n
k
q
nL

(
ρ
)

Γ
(
1 + q

) ,

R21 ≡ Mk
q
n

∫ s

0
(s − θ)q−1‖xn(θ) − xε(θ)‖dθ,

R22 ≡ Mk
q
n

∫ s

0
(s − θ)q−1‖B(knθ)uε(θ) − B(kεθ)uε(θ)‖dθ,

R23 ≡ Mk
q
n

∫ s

0
(s − θ)q−1‖B(knθ)un(θ) − B(knθ)uε(θ)‖dθ,

R3 ≤
∫ s

0
(s − θ)q−1

∥∥
∥k

q
nSn(s − θ)Fε

n(θ) − k
q
εSn(s − θ)Fε(θ)

∥∥
∥dθ

+ k
q
ε

∫ s

0
(s − θ)q−1‖Sn(s − θ)Fε(θ) − Sε(s − θ)Fε(θ)‖dθ

≤ R31 + R32 + R33,

(4.10)

where

R31 ≡ Mk
q
n
k
q
n

∫ s

0
(s − θ)q−1‖Fε

n(θ) − Fε(θ)‖dθ,

R32 ≡ Mk
q
n

∫ s

0
(s − θ)q−1

∣
∣∣k

q
n − k

q
ε

∣
∣∣‖Fε(θ)‖dθ,

R33 ≡ k
q
εMε

(
1 + ρ

)
∫ s

0
(s − θ)q−1‖Sn(s − θ) − Sε(s − θ)‖dθ.

(4.11)
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Note that Lemma 3.7 and (4.1), combining Hölder inequality with Lebesgue domi-
nated convergence theorem, one can verify R1 → 0, R23 → 0, R31 → 0 and R33 → 0
as n → ∞ immediately. Since kn(k

q
n) → kε(k

q
ε ) as n → ∞, ‖Fε‖C([0,1],X) and ‖uε(t)‖E are

bounded, R22 → 0, R32 → 0 as n → ∞.
Then, we obtain that

‖xn(s) − xε(s)‖ ≤ R1 + R2 + R3

≤ σε +Mk
q
n

∫ s

0
(s − θ)q−1‖xn(θ) − xε(θ)‖dθ,

(4.12)

where

σε = R1 + R22 + R23 + R31 + R32 −→ 0, as n −→ ∞. (4.13)

By singular version Gronwall Lemma again, we obtain

xn
s−→ xε, in C([0, 1], X), as n −→ ∞. (4.14)

Thus, there exists a unique control wε = (uε, kε) ∈ W such that

mε = lim
n→∞

Jε(wn) = Jε(wε) ≥ mε. (4.15)

This shows that Jε(w) attains its minimum atwε ∈ W , and hence xε is the solution of system
(3.14) corresponding to control wε.

5. Meyer Approximation Process of Time Optimal Control

In this section, we display the Meyer approximation process of the time optimal control
problem (P).

For the sake of convenience, we subdivide the approximation process into several
steps.

Step 1. By Theorem 4.1, there exists a wε = (uε, kε) ∈ W such that Jε(w) attains its minimum
at wε ∈ W , that is,

Jε(wε) =
1
2ε

‖x(wε)(1) − z1‖2 + kε = inf
w∈W

Jε(w). (5.1)

By controllability of problem (P), V0 /=Ø. Take ṽ ∈ V0 and let τ(ṽ) = τ̃ < +∞ then
z(ṽ)(τ̃) = z1. Define ũ(s) = ṽ(τ̃s), 0 ≤ s ≤ 1 and w̃ = (ũ, τ̃) ∈ W . Then x̃(·) = z(ṽ)(τ̃ ·) is the
mild solution of system (3.14) corresponding to control w̃ = (ũ, τ̃) ∈ W . Of course, we have
x̃(1) = z1.
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For any ε > 0, submitting w̃ to Jε, we have

Jε(w̃) = τ̃ ≥ Jε(wε) =
1
2ε

‖x(wε)(1) − z1‖2 + kε. (5.2)

This inequality implies that

0 ≤ kε ≤ τ̃ ,

‖x(wε)(1) − z1‖2 ≤ 2ετ̃, hold for all ε > 0.
(5.3)

We can choose a subsequence {εn} such that εn → 0 as n → ∞ and

k
q
εn −→ (kq)0, in

[
0, T̂

]
,

kεn −→ k0, in
[
0, T̂

]
,

x(wεn)(1) ≡ xεn(1) −→ z1, in X, as n −→ ∞,

uεn
w−→ u0, in Vad, wεn = (uεn , kεn) ∈ W.

(5.4)

Since Vad is closed and convex, thanks to Mazur Lemma again, u0 ∈ Vad.
Further, by assumption [B], we obtain

k
q
εn −→ (kq)0, in

[
0, T̂

]
,

kεn −→ k0, in
[
0, T̂

]
,

x(wεn)(1) ≡ xεn(1) −→ z1, in X, as n −→ ∞,

Buεn
s−→ Bu0, in Lp([0, 1], X).

(5.5)

Step 2. Let xεn and x0 be the mild solutions of system (3.14) corresponding towεn = (uεn , kεn) ∈
W and w0 = (u0, k0) ∈ W , respectively. Then, we have

xεn(s) = Tεn(s)z0 +
∫ s

0
(s − θ)q−1Sεn(s − θ)kq

εnFεn(θ)dθ,

x0(s) = T0(s)z0 +
∫ s

0
(s − θ)q−1S0(s − θ)(kq)0F0(θ)dθ,

(5.6)
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where

Tεn(·) ≡
∫∞

0
ξq(θ)Tkq

εn
(·qθ)dθ,

Sεn(·) ≡ q

∫∞

0
θξq(θ)Tkq

εn
(·qθ)dθ,

Fεn(·) ≡ f(kεn ·, xεn(·), B(kεn ·)uεn(·)),

T0(·) ≡
∫∞

0
ξq(θ)T(k0)q(·qθ)dθ,

S0(·) ≡ q

∫∞

0
θξq(θ)T(k0)q(·qθ)dθ,

F0(·) ≡ f
(
k0·, x0(·), B

(
k0·

)
u0(·)

)
.

(5.7)

Recalling (5.5) and the process in Theorem 4.1, after some calculation, using the singular
version Gronwall Lemma again, we also obtain

xεn
s−→ x0, in C([0, 1], X), as n −→ ∞. (5.8)

Step 3. It follows from Steps 1 and 2,

‖xεn(1) − z1‖ ≤
√
2εnτ̃ −→ 0, as n −→ ∞,

∥
∥∥xεn(1) − x0(1)

∥
∥∥ −→ 0, as n −→ ∞,

∥∥
∥x0(1) − z1

∥∥
∥ ≤ ‖xεn(1) − z1‖ +

∥∥
∥xεn(1) − x0(1)

∥∥
∥ −→ 0, as n −→ ∞,

(5.9)

that x0(1) = z1. It is very clear that k0 /= 0 unless z0 = z1. This implies that k0 > 0.

Define v0(·) = u0(·/k0). In fact, z0(·) = x0(·/k0) is the mild solution of system (3.1)
corresponding to control v0 ∈ V0, then z0(k0) = x0(1) = z1 and τ(v0) = k0 > 0. By the
definition of τ∗ = inf{τ(v) ≥ 0 | v ∈ V0}, we have k0 ≥ τ∗.

For any v ∈ V0,

τ(v) ≥ Jε(wε) =
1
2ε

‖x(wε)(1) − z1‖2 + kε. (5.10)

Thus, τ(v) ≥ kε. Further, τ(v) ≥ kεn for all εn > 0.
Since k0 is the limit of kεn as n → ∞, τ(v) ≥ τ(v0) = k0 for all v ∈ V0. Hence, k0 ≤ τ∗.

Thus, 0 < τ(v0) = k0 = τ∗. This implies that v0 is an optimal control of Problem (P) and k0 > 0
is just optimal time.



14 Advances in Difference Equations

Remark 5.1. Under the above assumptions, there exists a sequence of Meyer problems (Pεn)
whose corresponding sequence of optimal controls {wεn} ∈ W can successive approximation
the time optimal control problem (P) in some sense. In other words, by limiting process, the
sequence of the optimal controls {wεn} ∈ W can be used to find the solution of time optimal
control problem (P).

As a result, we obtain the existence result of time optimal control for system (3.1)
directly.

Theorem 5.2. Under the assumptions of Theorem 4.1. The time optimal control problem (P) has a
solution, that is, there exists an optimal control v∗ ∈ V0 ⊂ Vad such that

τ(v∗) = τ∗ = inf{τ(v) ≥ 0 | v ∈ V0}. (5.11)
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[17] G. M. Mophou and G. M. N’Guérékata, “Existence of mild solutions of some semilinear neutral
fractional functional evolution equations with infinite delay,” Applied Mathematics and Computation,
vol. 216, no. 1, pp. 61–69, 2010.

[18] J. Wang and Y. Zhou, “A class of fractional evolution equations and optimal controls,” Nonlinear
Analysis: Real World Applications, vol. 12, no. 1, pp. 262–272, 2011.

[19] J. Wang and Y. Zhou, “Time optimal control problem of a class of fractional distributed systems,”
International Journal of Dynamics and Differential Equations., vol. 3, no. 4, pp. 363–382, 2010.

[20] Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,”Nonlinear Analysis,
vol. 11, no. 5, pp. 4465–4475, 2010.

[21] Y. Zhou and F. Jiao, “Existence ofmild solutions for fractional neutral evolution equations,”Computers
& Mathematics with Applications, vol. 59, no. 3, pp. 1063–1077, 2010.
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