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The model of pricing American-style convertible bond is formulated as a zero-sum Dynkin game,
which can be transformed into a parabolic variational inequality (PVI). The fundamental variable
in this model is the stock price of the firm which issued the bond, and the differential operator in
PVI is linear. The optimal call and conversion strategies correspond to the free boundaries of PVI.
Some properties of the free boundaries are studied in this paper. We show that the bondholder
should convert the bond if and only if the price of the stock is equal to a fixed value, and the firm
should call the bond back if and only if the price is equal to a strictly decreasing function of time.
Moreover, we prove that the free boundaries are smooth and bounded. Eventually we give some
numerical results.

1. Introduction

Firms raise capital by issuing debt (bonds) and equity (shares of stock). The convertible bond
is intermediate between these two instruments, which entitles its owner to receive coupons
plus the return of principle at maturity. However, prior to maturity, the holder may convert
the bond into the stock of the firm, surrendering it for a preset number of shares of stock. On
the other hand, prior to maturity, the firm may call the bond forcing the bondholder to either
surrender it to the firm for a previously agreed price or convert it into stock as before.

After issuing a convertible bond, the bondholder will find a proper time to exercise
the conversion option in order to maximize the value of the bond, and the firm will choose
its optimal time to exercise its call option to maximize the value of shareholder’s equity. This
situation was called “two-person” game (see [1, 2]). Because the firm must pay coupons to
the bondholder, it may call the bond if it can subsequently reissue a bondwith a lower coupon
rate. This happens as the firm’s fortunes improve, then the risk of default has diminished and
investors will accept a lower coupon rate on the firm’s bonds.
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In [2] the authors assume that a firm’s value is comprised of one equity and one
convertible bond, the value of the issuing firm has constant volatility, the bond continuously
pays coupons at a fixed rate, and the firm continuously pays dividends at a rate that is a fixed
fraction of equity. Default occurs if the coupon payments cause the firm’s value to fall to zero,
in which case the bond has zero value. In their model, both the bond price and the stock price
are functions of the underlying of the firm value. Because the stock price is the difference
between firm value and bond price and dividends are paid proportionally to the stock price,
a nonlinear differential equation was established for describing the bond price as a function
of the firm value and time.

As we know, it is difficult to obtain the value of the firm. However, it is easier to get its
stock price. So we choose the bond price V (S, t) as a function of the stock price S of the firm
and time t (see Chapter 36 in [3] or [4–7]).

In Section 2, we formulate the model and deduce that V (S, t) = γS in the domain
{S ≥ K/γ} and V (S, t) is governed by the following variational inequality in the domain
{0 ≤ S ≤ K/γ}:

−∂tV − L0V = c, if V < K, (S, t) ∈ DT
Δ=
(
0,

K

γ

)
× [0, T),

−∂tV − L0V ≤ c, if V = K, (S, t) ∈ DT,

V

(
K

γ
, t

)
= K, 0 ≤ t ≤ T,

V (S, T) = max
{
L, γS

}
, 0 ≤ S ≤ K

γ
,

(1.1)

where c, γ , K, and L are positive constants. c is the coupon rate, γ is the conversion ratio for
converting the bond into the stock of the firm,K is the call price of the firm, L is the face value
of the bond with 0 < L ≤ K, and L0 is just B-S operator (see [8]),

L0V =
σ2

2
S2∂SSV +

(
r − q

)
S∂SV − rV, (1.2)

where r, σ, and q are positive constants and represent the risk-free interest rate, the volatility,
and the dividend rate of the firm stock, respectively. In this paper, we suppose that c > rK
and r ≥ q. From a financial point of view, the assumption provides a possibility of calling
the bond back from the firm (see Section 2 or [2]). Furthermore, we suppose that L ≤ K.
Otherwise, the firm should call the bond back before maturity and the value L makes no
sense (see Section 2). It is clear that V = K is the unique solution if L = K. So we only
consider the problem in the case of L < K.

Since (1.1) is a degenerate backward problem, we transform it into a familiar forward
nondegenerate parabolic variational inequality problem; so letting

u(x, t) = V (S, T − t), x = lnS − lnK + ln γ, (1.3)
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we have that

∂tu − Lu = c, if u < K, (x, t) ∈ ΩT
Δ= (−∞, 0) × (0, T],

∂tu − Lu ≤ c, if u = K, (x, t) ∈ ΩT ,

u(0, t) = K, 0 ≤ t ≤ T,

u(x, 0) = max{L,Kex}, x ≤ 0,

(1.4)

where

Lu =
σ2

2
∂xxu +

(
r − q − σ2

2

)
∂xu − ru. (1.5)

There are many papers on the convertible bond, such as [1, 2, 9]. But as we know, there
are seldom results on the properties of the free boundaries—the optimal call and conversion
strategies in the existing literature. The main aim of this paper is to analyze some properties
of the free boundaries.

The pricing model of the convertible bond without call is considered in [9], where
there exist two domains: the continuation domain CT and the conversion domain CV. The
free boundary S(t) between CT and CV means the optimal conversion strategy, which is
dependent on the time t and more than K/γ .

But in this model, their exist three domains: the continuation domain CT, the
callable domain CL, and the conversion domain CV = {x ≥ 0}. The boundary between CV
and CT ∪ CL is x = 0, which means the call strategy. The free boundary h(t) is the curve
between CT and CL (see Figure 1), which means the optimal call strategy. And there exist
t0, T0 such that

0 < t0 < T0
Δ=
1
r
ln

c − rL

c − rK
, h(t) ∈ C[t0, T0) ∩ C∞[t0, T0), lim

t→T−
0

h(t) = −∞, (1.6)

and h(t) is strictly decreasing in [t0, T0).
It means that the bondholder should convert the bond if and only if the stock price

S of the firm is no less than K/γ , whereas, in the model without call, the bondholder may
not convert the bond even if S > K/γ . More precisely, the optimal conversion strategy S(t)
without call is more than that K/γ in this paper (see [9] or Section 2). When the time to
the expiry date is more than T0, the firm should call the bond back if S < K/γ . Neither the
bondholder nor the firm should exercise their option if the time to the expiry date is less than
t0 and S < Keh(t). Moreover, when the time to the maturity lies in (t0, T0), the bondholder
should call the bond back ifKeh(t) ≤ S < K/γ .

In Section 2, we formulate and simplify the model. In Section 3, we will prove the
existence and uniqueness of the strong solution of the parabolic variational inequality (1.4)
and establish some estimations, which are important to analyze the property of the free
boundary.

In Section 4, we show some behaviors of the free boundary h(t), such as its starting
point and monotonicity. Particularly, we obtain the regularity of the free boundary h(t) ∈
C0,1[t0, T0) ∩ C∞[t0, T0). As we know, the proof of the smoothness is trivial by the method
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Figure 1: The free boundary h(t).

in [10] if the difference between u and the upper obstacle K is decreasing with respect to t.
But the proof is difficult if the condition is false (see [11–14]). In this problem, ∂t(u −K) ≥ 0,
which does not match the condition. Moreover, ∂xxu(lnL − lnK, 0) = +∞, and the starting
point (0, t0) of the free boundary h(t) is not on the initial boundary, but the side boundary in
this problem. Those make the proof of h(t) ∈ C∞[t0, T0) more complicated. The key idea is to
construct cone locally containing the local free boundary and prove h(t) ∈ C0,1[t0, T0); then
the proof of C∞[t0, T0) is trivial. Moreover, we show that there is a lower bound h∗(t) of h(t)
and h(t) converges to −∞ as t converges to T−

0 in Theorem 4.4.
In the last section, we provide numerical result applying the binomial method.

2. Formulation of the Model

In this section, we derive the mathematical model of pricing the convertible bond.
The firm issues the convertible bond, and the bondholder buys the bond. The firm has

an obligation to continuously serve the coupon payment to the bondholder at the rate of c. In
the life time of the bond, the bondholder has the right to convert it into the firm’s stock with
the conversion factor γ and obtains γS from the firm after converting, and the firm can call
it back at a preset price of K. The bondholder’s right is superior to the firm’s, which means
that the bondholder has the right to convert the bond, but the firm has no right to call it if
both sides hope to exercise their rights at the same time. If neither the bondholder nor the
firm exercises their right before maturity, the bondholder must sell the bond to the firm at a
preset value L or convert it into the firm’s stock at expiry date. So, the bondholder receives
max{L, γS} from the firm at maturity. It is reasonable that both of them wish to maximize the
values of their respective holdings.

Suppose that under the risk neutral probability space (Ω,F,�); the stock price of the
firm Ss follows

St,S
s = S +

∫ s

t

(
r − q

)
St,S
u du +

∫ s

t

σSt,S
u dWu, S ∈ [0,+∞), s ∈ [t, T], t ∈ [0, T], (2.1)

where r, q, and σ are positive constants, representing risk free interest rate, the dividend rate,
and volatility of the stock, respectively. Wt is a standard Brown motion on the probability
space (Ω,F,�). Usually, the dividend rate q is smaller than the risk free interest rate r. So, we
suppose that q ≤ r.
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Denote by Ft the natural filtration generated by Wt and augmented by all the �-null
sets in F. Let Ut,T be the set of all Ft-stopping times taking values in [t, T].

Themodel can be expressed as a zero-sumDynkin game. The payoff of the bondholder
is

R(S, t; τ, θ) =
∫ τ∧θ

t

cert−rudu + ert−rτKI{τ<θ} + ert−rθγSt,S
θ I{θ≤τ, θ<T}

+ ert−rT max
{
L, γSt,S

T

}
I{τ∧θ=T},

(2.2)

where τ, θ ∈ Ut,T . The stopping time τ is the firm’s strategy, and θ is the bondholder’s strategy.
The bondholder chooses his strategy θ to maximize R(S, t; τ, θ); meanwhile, the firm

chooses its strategy τ to minimize R(S, t; τ, θ).
Denote the upper value V and the lower value V as

V (S, t) Δ= ess sup
θ∈Ut,T

ess inf
τ∈Ut,T

�[R(S, t; τ, θ) | Ft],

V (S, t) Δ= ess inf
τ∈Ut,T

ess sup
θ∈Ut,T

�[R(S, t; τ, θ) | Ft].
(2.3)

If V (S, t) = V (S, t), then it is called the value of the Dynkin game and denoted as V (S, t).
As we know, if the Dynkin game has a saddlepoint (τ∗, θ∗) ∈ Ut,T × Ut,T , that is,

�[R(S, t; τ∗, θ) | Ft] ≤ �[R(S, t; τ∗, θ∗) | Ft] ≤ �[R(S, t; τ, θ∗) | Ft], ∀τ, θ ∈ Ut,T , (2.4)

then the value of the Dynkin game exists and

V (S, t) = �[R(S, t; τ∗, θ∗) | Ft]. (2.5)

If S ≥ K/γ , then we deduce that, for any τ, θ ∈ Ut,T ,

�[R(S, t; τ, t) | Ft] = γSI{t<T} +max
{
L, γS

}
I{t=T} = �[R(S, t; t, t) | Ft],

�[R(S, t; t, θ) | Ft] = �
[
KI{t<θ} + γSI{θ=t} | Ft

]
I{t<T} +max

{
L, γS

}
I{t=T} ≤ �[R(S, t; t, t) | Ft].

(2.6)

So, in this case, (t, t) is a saddlepoint, and the value of the Dynkin game is

V (S, t) = γSI{t<T} +max
{
L, γS

}
I{t=T}, ∀S ≥ K

γ
. (2.7)
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In the case of 0 < S < K/γ , applying the standard method in [15], we see that the
strong solution of the following variational inequality is the value of the Dynkin game:

−∂tV − L0V = c, if γS < V < K, (S, t) ∈ DT,

−∂tV − L0V ≥ c, if V = γS, (S, t) ∈ DT,

−∂tV − L0V ≤ c, if V = K, (S, t) ∈ DT,

V

(
K

γ
, t

)
= K, 0 ≤ t ≤ T,

V (S, T) = max
{
L, γS

}
, 0 ≤ S ≤ K

γ
.

(2.8)

If L > K, then the firm is bound to call the bond back before the maturity because the firm
paysK after calling, but more than Lwithout calling. In this case, the value Lmakes no sense.
So, we suppose that L ≤ K.

If c ≤ rK, then the firm is bound to abandon its call right. From a financial point of
view, the firm would payK to the bondholder at time t after calling the bond, whereas, if the
firm does not call in the time interval [t, t + dt], then he would pay the coupon payment cdt
and at mostK of the face value of the convertible bond at time t+dt. So, the discounted value
of the bond without call is at most K + cdt − rKdt ≤ K. Hence, the firm should not call the
bond back at time t.

From a stochastic point of view, we can denote a stopping time

τ1 = inf
{
t ≤ u ≤ T : γSt,S

u ≥ K
}
. (2.9)

If t < T , 0 < S < K/γ , then �(τ1 > t) = 1, and, for any θ ∈ Ut,T , we have

R(S, t; τ1, θ) =
c

r
+ I{τ1<θ}e

rt−rτ1
(
K − c

r

)
+ I{θ≤τ1,θ<T}e

rt−rθ
(
γSt,S

θ − c

r

)

+ I{τ1∧θ=T}e
rt−rT

(
max

{
L, γSt,S

T

}
− c

r

)

≤ c

r
+ ert−r(τ1∧θ∧T)

(
K − c

r

)
= K ≤ R(S, t; t, θ) a.s. in Ω.

(2.10)

Moreover, �(R(S, t; τ1, θ) < R(S, t; t, θ)) = 1. So, for any τ, θ ∈ Ut,T such that �(τ = t) > 0, it is
clear that in the domain {t < T, 0 < S < K/γ}

�[R(S, t; τ, θ) | Ft] > �
[
R
(
S, t; τI{τ>t} + τ1I{τ=t}, θ

) | Ft

]
, (2.11)

which means that τ is not the optimal call strategy, and the firm should not call in the domain
{t < T, 0 < S < K/γ}.
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From a variational inequality point of view, since

−∂tK − L0K = rK > c, (2.12)

provided that c < rK, which contradicts with the third inequality in (2.8), so, if c < rK, then
V /=K in the domain {t < T, 0 < S < Kγ}.

To remain the call strategy, we suppose that c > rK. We will consider the other case in
another paper because the two problems are fully different.

Since we suppose that c > rK and r ≥ q, then

−∂t
(
γS

) − L0
(
γS

)
= qγS ≤ rK < c. (2.13)

Hence, {V = γS} is empty in problem (2.8). So, problem (2.8) is reduced into problem (1.1).
The model of pricing the bond without call is an optimal stopping problem

U(S, t) Δ= ess sup
θ∈Ut,T

�[Q(S, t; θ) | Ft],

Q(S, t; θ) =
∫θ

t

cert−rudu + ert−rθγSt,S
θ
I{θ<T} + ert−rT max

{
L, γSt,S

T

}
I{θ=T}.

(2.14)

It is clear that

U(S, t) = ess sup
θ∈Ut,T

�[R(S, t; T, θ) | Ft] ≥ V (S, t). (2.15)

Since U,V ≥ γS, then

{
U = γS

} ⊂ {
V = γS

}
, CV∗ ⊂ CV, (2.16)

where CV∗ is the conversion domain in the model without call and CV is that in this paper.

3. The Existence and Uniqueness of W2,1
p,loc Solution of Problem (1.4)

Since problem (1.4) lies in the unbounded domain ΩT , we need the following problem in the

bounded domain Ωn
T

Δ= (−n, 0) × (0, T] to approximate to problem (1.4):

∂tun − Lun = c, if un < K, (x, t) ∈ Ωn
T ,

∂tun − Lun ≤ c, if un = K, (x, t) ∈ Ωn
T ,

un(−n, t) = L, un(0, t) = K, 0 ≤ t ≤ T,

un(x, 0) = max{L,Kex}, −n ≤ x ≤ 0,

(3.1)

where n ∈ IN+ and n > lnK − lnL.
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Following the idea in [10, 16], we construct a penalty function βε(s) (see Figure 2),
which satisfies

ε > 0 and small enough, βε(s) ∈ C∞(−∞,+∞),

βε(s) = 0, if s ≤ −ε, βε(0) = C0
Δ= c − rK > 0,

βε(s) ≥ 0, β′ε(s) ≥ 0, β′′ε(s) ≥ 0,

lim
ε→ 0

βε(s) =

⎧⎨
⎩
0, s < 0,

+∞, s > 0.

(3.2)

Consider the following penalty problem of (3.1):

∂tuε,n − Luε,n + βε(uε,n −K) = c, in Ωn
T ,

uε,n(−n, t) = L, uε,n(0, t) = K, 0 ≤ t ≤ T,

uε,n(x, 0) = πε(Kex − L) + L, −n ≤ x ≤ 0,

(3.3)

where πε(s) is a smoothing function because the initial value max{L,Kex} is not smooth. It
satisfies (see Figure 3)

πε(s) =

⎧⎨
⎩
s, s ≥ ε,

0, s ≤ −ε,

πε(s) ∈ C∞(IR), πε(s) ≥ s, 0 ≤ π ′
ε(s) ≤ 1, π ′′

ε (s) ≥ 0, lim
ε→ 0+

πε(s) = s+.

(3.4)

Lemma 3.1. For any fixed ε > 0, problem (3.3) has a unique solution uε,n ∈ W2,1
p (Ωn

T ) ∩ C(Ωn
T ) for

any 1 < p < +∞ and

max{L,Kex} ≤ uε,n ≤ K in Ωn
T , (3.5)

∂xuε,n ≥ 0 in Ωn
T . (3.6)

Proof. We apply the Schauder fixed point theorem [17] to prove the existence of nonlinear
problem (3.3).

Denote B = C(Ωn
T ) and D = {w ∈ B : w ≤ c/r}. Then D is a closed convex set in B.

Defining a mapping F by F(w) = uε,n is the solution of the following linear problem:

∂tuε,n − Luε,n + βε(w −K) = c in Ωn
T ,

uε,n(−n, t) = L, uε,n(0, t) = K, 0 ≤ t ≤ T,

uε,n(x, 0) = πε(Kex − L) + L, −n ≤ x ≤ 0.

(3.7)



Advances in Difference Equations 9

ε

C0

s

Figure 2: The function βε.
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Figure 3: The function πε.

Furthermore, we can compute

∂t

(
c

r

)
− L

(
c

r

)
+ βε(w −K) = r

c

r
+ βε(w −K) ≥ c,

c

r
> K ≥ uε,n on ∂pΩn

T ,

(3.8)

where ∂pΩn
T is the parabolic boundary ofΩn

T . Thus c/r is a supersolution of the problem (3.7),
and uε,n ≤ c/r. Hence F(D) ⊂ D. On the other hand,

0 ≤ βε(w −K) ≤ βε

(
c

r
−K

)
, (3.9)

which is bounded for fixed ε > 0. So, it is not difficult to prove that F(D) is compact in B and
F is continuous. Owing to the Schauder fixed point theorem, we know that problem (3.3) has
a solution uε,n ∈ W2,1

p (Ωn
T ). The proof of the uniqueness follows by the comparison principle.

Here, we omit the details.
Now, we prove (3.5). Since

∂tK − LK + βε(K −K) = rK + βε(0) = c,

K ≥ uε,n on ∂pΩn
T .

(3.10)
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Therefore,K is a supersolution of problem (3.3), and uε,n ≤ K in Ωn
T . Moreover,

∂t(Kex) − L(Kex) + βε(Kex −K) = qKex + βε(Kex −K) ≤ qKex + βε(0) = qKex + c − rK ≤ c,

Kex|x=−n = Ke−n ≤ L = uε,n(−n, t), Kex|x=0 = K = uε,n(0, t),

Kex ≤ max{Kex, L} ≤ πε(Kex − L) + L = uε,n(x, 0).
(3.11)

Hence, Kex is a subsolution of problem (3.3). On the other hand,

∂tL − LL + βε(L −K) = rL + βε(L −K) ≤ rL + βε(0) ≤ c,

L = uε,n(−n, t), L < K = uε,n(0, t),

L ≤ max{Kex, L} ≤ πε(Kex − L) + L = uε,n(x, 0).

(3.12)

Thus, L is a subsolution of problem (3.3) as well, and we deduce uε,n ≥ max{Kex, L}.
In the following, we prove (3.6).
Indeed, uε,n ≤ K and uε,n(0, t) = K imply that ∂xuε,n(0, t) ≥ 0. Furthermore, uε,n ≥ L

and uε,n(−n, t) = L that imply ∂xuε,n(−n, t) ≥ 0. Differentiating (3.3) with respect to x and
denoting W = ∂xuε,n, we obtain

∂tW − LW + β′ε(uε,n −K)W = 0 in Ωn
T ,

W(−n, t) ≥ 0, W(0, t) ≥ 0, 0 ≤ t ≤ T,

W(x, 0) = π ′
ε(Kex − L)Kex ≥ 0, −n ≤ x ≤ 0.

(3.13)

Then the comparison principle implies (3.6).

Theorem 3.2. For any fixed n ∈ IN, n > lnK − lnL, problem (3.1) admits a unique solution un ∈
C(Ωn

T ) ∩ W2,1
p (Ωn

T \ Bδ(P0)) for any 1 < p < +∞, 0 < δ < n, where P0 = (− lnK + lnL, 0),
Bδ(P0) = {(x, t) : (x + lnK − lnL)2 + t2 ≤ δ2}. Moreover, if n is large enough, one has that

max{L,Kex} ≤ un ≤ K in Ωn
T , (3.14)

∂xun ≥ 0 in Ωn
T , (3.15)

∂tun ≥ 0 a.e. in Ωn
T . (3.16)

Proof. From (3.5) and the properties of βε(s), we have that

0 ≤ βε(uε,n −K) ≤ βε(0) = c − rK. (3.17)

By W2,1
p and Cα,α/2 (0 < α < 1) estimates of the parabolic problem [18], we conclude that

‖uε,n‖W2,1
p (Ωn

T\Bδ(P0)) + ‖uε,n‖Cα,α/2(Ωn
T )
≤ C, (3.18)
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where C is independent of ε. It implies that there exists a un ∈ W2,1
p (Ωn

T \Bδ(P0))∩C(Ωn
T ) and

a subsequence of {uε,n} (still denoted by {uε,n}), such that as ε → 0+,

uε,n ⇀ un in W2,1
p

(
Ωn

T \ Bδ(P0)
)
weakly, uε,n −→ un in C

(
Ωn

T

)
. (3.19)

Employing the method in [16] or [19], it is not difficult to derive that un is the solution
of problem (3.1). And (3.14), (3.15) are the consequence of (3.5), (3.6) as ε → 0+.

In the following, we will prove (3.16). For any small δ > 0, w(x, t) Δ= un(x, t + δ)
satisfies, by (3.1),

∂tw − Lw = c, if w < K, (x, t) ∈ (−n, 0) × (0, T − δ],

∂tw − Lw ≤ c, if w = K, (x, t) ∈ (−n, 0) × (0, T − δ],

w(−n, t) = L = un(−n, t), w(0, δ) = K = un(0, t), 0 ≤ t ≤ T − δ,

w(x, 0) = un(x, δ) ≥ max{L,Kex} = un(x, 0), −n ≤ x ≤ 0.

(3.20)

Applying the comparison principle with respect to the initial value of the variational
inequality (see [16]), we obtain

un(x, t + δ) = w(x, t) ≥ un(x, t), (x, t) ∈ (−n, 0) × (0, T − δ]. (3.21)

Thus (3.16) follows.
At last, we prove the uniqueness of the solution. Suppose that u1

n and u2
n are two

W2,1
p,loc(Ω

n
T ) ∩C(Ωn

T ) solutions to problem (3.1), and denote

N Δ=
{
(x, t) ∈ Ωn

T : u1
n(x, t) < u2

n(x, t)
}
. (3.22)

Assume that N is not empty, and then, in the domainN,

u1
n(x, t) < u2

n(x, t) ≤ K, ∂tu
1
n − Lu1

n = c, ∂t
(
u1
n − u2

n

)
− L

(
u1
n − u2

n

)
≥ 0. (3.23)

Denoting W = u1
n − u2

n, we have that

∂tW − LW ≥ 0 in N, W = 0 on ∂pN. (3.24)

Applying the A-B-P maximum principle (see [20]), we have that W ≥ 0 in N, which
contradicts the definition of N.
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Theorem 3.3. Problem (1.4) has a unique solution u ∈ C(ΩT)∩W2,1
p (ΩR

T \Bδ(P0)) for any 1 < p <

+∞, R > 0, and δ > 0. And ∂xu ∈ C(ΩT \ Bδ(P0)). Moreover,

max{L,Kex} ≤ u ≤ K in ΩT , (3.25)

∂xu ≥ 0 a.e. in ΩT , (3.26)

∂tu ≥ 0 a.e. in ΩT . (3.27)

Proof. Rewrite Problem (3.1) as follows:

∂tun − Lun = f(x, t), (x, t) ∈ Ωn
T ,

un(−n, t) = L, un(0, t) = K, 0 ≤ t ≤ T,

un(x, 0) = max{L,Kex}, −n ≤ x ≤ 0,

(3.28)

where un ∈ W2,1
p (Ωn

T \ Bδ(P0)) implies that f(x, t) ∈ L
p

loc(Ω
n
T ) and

f(x, t) = cI{un<K} + rKI{un=K}, (3.29)

where IA denotes the indicator function of the set A.
Hence, for any fixed R > δ > 0, if n > R, combining (3.14), we have the following W2,1

p

and Cα,α/2 uniform estimates [18]:

‖un‖W2,1
p (ΩR

T \Bδ(P0)) ≤ CR,δ, ‖un‖Cα,α/2(Ω
R

T )
≤ CR, (3.30)

here CR,δ depends on R and δ, CR depends on R, but they are independent of n. Then, we
have that there is a u ∈ W2,1

p,loc(ΩT )∩C(Ω)T and a subsequence of {un} (still denoted by {un}),
such that for any R > δ > 0, p > 1,

un ⇀ u in W2,1
p

(
ΩR

T \ Bδ(P0)
)
weakly as n −→ +∞. (3.31)

Moreover, (3.30) and imbedding theorem imply that

un −→ u in C

(
Ω

R

T

)
, ∂xun −→ ∂xu in C

(
Ω

R

T \ Bδ(P0)
)

as n −→ +∞. (3.32)

It is not difficult to deduce that u is the solution of problem (1.4). Furthermore, (3.32) implies
that ∂xu ∈ C(ΩT \ Bδ(P0)). And (3.25)–(3.27) are the consequence of (3.14)–(3.16). The proof
of the uniqueness is similar to the proof in Theorem 3.2.
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4. Behaviors of the Free Boundary

Denote

CT = {(x, t) : u(x, t) < K} (
continuation region

)
,

CL = {(x, t) : u(x, t) = K} (
callable region

)
.

(4.1)

Thanks to (3.26), we can define the free boundary h(t) of problem (1.4), at which it is
optimal for the firm to call the bond, where

h(t) = inf{x ≤ 0 : u(x, t) = K}, 0 < t ≤ T (4.2)

(see Figure 1). It is clear that

CT = {x < h(t)}, CL = {h(t) ≤ x < 0}. (4.3)

Theorem 4.1. Denote T0 = (1/r) ln((c − rL)/(c − rK)). If t ≥ T0, then u(x, t) ≡ K, which means
that

CT ⊂ {0 < t < T0, x < 0}, CL ⊃ {t ≥ T0, x < 0}, h(t) = −∞ for any t ≥ T0. (4.4)

Proof. Define

w(x, t) =

⎧⎪⎨
⎪⎩

c

r
−
(
c

r
− L

)
e−rt, 0 ≤ t ≤ T0,

K, T0 ≤ t ≤ T.
(4.5)

We claim that w(x, t) possess the following four properties.

(i) w ∈ W2,1
p,loc(ΩT ) ∩ C(ΩT ),

(ii) w ≤ K, for all (x, t) ∈ ΩT ,

(iii) w(x, 0) = L ≤ max{L,Kex} = u(x, 0), for all x ∈ (−∞, 0],

(iv) ∂tw − Lw ≤ c, a.e. in ΩT .

In fact, from the definition of T0, we have that

w(x, T0) =
c

r
−
(
c

r
− L

)
exp

{
−r 1

r
ln

c − rL

c − rK

}
= K, (4.6)

then property (i) is obvious.
Moreover, if 0 < t ≤ T0, then we deduce

∂tw(x, t) = r

(
c

r
− L

)
e−rt ≥ 0. (4.7)
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Combining w(x, T0) = K, we have property (ii). It is easy to check property (iii) from
the definition of w. Next, we manifest property (iv) according to the following two cases. In
the case of 0 < t ≤ T0,

∂tw − Lw = r

(
c

r
− L

)
e−rt + r

[
c

r
−
(
c

r
− L

)
e−rt

]
= c. (4.8)

In the other case of T0 < t ≤ T ,

∂tw − Lw = rK < c. (4.9)

So, we testify properties (i)–(iv). In the following, we utilize the properties to provew ≤ u.
Otherwise, N = {w > u} is nonempty; then we have that

u(x, t) < w(x, t) ≤ K, ∂tu − Lu = c, ∂t(u −w) − L(u −w) ≥ 0, in N. (4.10)

Moreover, u − w ≥ 0 on the parabolic boundary of N. According to the A-B-P maximum
principle (see [20]), we have that

u −w ≥ 0 in N, (4.11)

which contradicts the definition ofN. So, we achieve that w ≤ u.
Combining w(x, t) = K for any t ≥ T0, it is clear that

K = w(x, t) ≤ u(x, t) ≤ K, for any t ≥ T0, (4.12)

which means that CT ⊂ {0 < t < T0, x < 0}, CL ⊃ {t ≥ T0, x < 0}, and h(t) = −∞ for any
t ≥ T0

Theorem 4.2. The free boundary h(t) is decreasing in the interval (0, T0). Moreover, h(0) Δ=
limt→ 0+h(t) = 0. And h(t) ∈ C[0, T0).

Proof. (3.26) and (3.27) imply that

∂x(u −K) ≥ 0, ∂t(u −K) ≥ 0 a.e. in ΩT . (4.13)

Hence, for any unit vector n = (n1, n2) satisfying n1, n2 > 0, the directional derivative
of function u −K along n admits

∂n(u −K) ≥ 0 a.e. in ΩT , (4.14)

that is, u −K is increasing along the director n. Combining the condition u −K ≤ 0 in ΩT , we
know that x = h(t) is monotonically decreasing. Hence, limt→ 0+h(t) exists, and we can define

h(0) = lim
t→ 0+

h(t). (4.15)
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Since u(0, t) = K, so h(0) ≤ 0. On the other hand, if h(0) < 0, then

u(x, t) = K, ∀(x, t) ∈ (h(0), 0) × (0, T], u(x, 0) = max{L,Kex} < K, ∀x ∈ (h(0), 0).
(4.16)

It is impossible because u is continuous on ΩT .
In the following, we prove that h(t) is continuous in (0, T0). If it is false, then there

exists x1 < x2 < 0, 0 < t1 < T0 such that (see Figure 4)

lim
t→ t−1

h(t) = x1, lim
t→ t+1

h(t) = x2. (4.17)

Moreover,

∂tu − Lu = c in M Δ= {(x, t) : x2 < x < h(t), 0 < t ≤ t1}. (4.18)

Differentiating (4.18) with respect to x, then

∂t(∂xu) − L(∂xu) = 0 in M. (4.19)

On the other hand, ∂xu(x, t1) = 0 for any x ∈ (x1, x2) in this case, and we know that ∂xu ≥ 0
by (3.26). Applying the strong maximum principle to (4.19), we obtain

∂xu(x, t) = 0, in M. (4.20)

So, we can define u(x, t) = g(t) in M. Considering u(h(t), t) = K and u ∈ C(ΩT ), we see
that u(x, t) ≡ K in M, which contradicts that u(x, t) < K for any x < h(t). Therefore h(t) ∈
C[0, T0).

Theorem 4.3. There exists some t0 ∈ (0, T0) such that h(t) = 0 for any t ∈ [0, t0] and h(t) is strictly
decreasing on [t0, T0).

Proof. Define t0 = sup{t : t ≥ 0, h(t) = 0}. In the first, we prove that t0 > 0. Otherwise, h(0) = 0
and h(t) < 0 for t > 0.

Recalling the initial value, we see that

∂xu(x, 0) = Kex for any x ∈ (lnL − lnK, 0], lim
x→ 0−

∂xu(x, 0) = K. (4.21)

Meanwhile, u(x, t) = K in the domain {(x, t) : h(t) < x < 0, 0 < t < T0} implies that ∂xu(0, t) =
0 for any t > 0 (see Figure 4); then ∂xu is not continuous at the point (0, 0), which contradicts
∂xu ∈ C(ΩT \ Bδ(P0)).

In the second, we prove that t0 < T0. In fact, according to Lemma 3.1, h(t) = −∞ for
any t ≥ T0, hence, t0 ≤ T0. If t0 = T0, then the free boundary includes a horizontal line t =
T0, x ∈ (−∞, 0). Repeating the method in the proof of Theorem 4.2, then we can obtain a
contradiction. So, t0 < T0.
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t

x
x1x2

t1

T0

CT h(t)
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Figure 4: Discontinuous free boundary h(t).

At last, we prove that h(t) is strictly decreasing on [t0, T0). Otherwise, x = h(t) has
a vertical part. Suppose that the vertical line is x = x1, t ∈ [t1, t2], then u(x, t) = K for any
(x, t) ∈ (−∞, x1]× [t1, t2]. Since ∂xu is continuous across the free boundary, then ∂xu(x1, t) = 0
for any t ∈ [t1, t2]. In this case, we infer that

∂tu(x1, t) = 0, ∂t(∂xu)(x1, t) = 0 for any t ∈ [t1, t2]. (4.22)

On the other hand, in the domain N = (−∞, x1) × (t1, t2), u and ∂tu satisfy, respectively,

∂tu − Lu = c in N, u(x1, t) = K for any t ∈ (t1, t2),

∂t(∂tu) − L(∂tu) = 0, ∂tu ≥ 0, in N,

∂tu(x1, t) = 0 for any t ∈ (t1, t2).

(4.23)

Then the strong maximum principle implies that ∂x(∂tu)(x1, t) < 0, which contradicts the
second equality in (4.22).

Theorem 4.4. h(t) > h∗(t) for any t ∈ [0, T0) with limt→ T−
0
h(t) = −∞ (see Figure 1), where

h∗(t) = ln
L

K
+
1
α
ln

(c − rL)e−rt − (c − rK)
rK

, 0 ≤ t < T0, (4.24)

where α is the positive characteristic root of Lw = 0, that is, the positive root of the algebraic equation

σ2

2
α2 +

(
r − q − σ2

2

)
α − r = 0. (4.25)

Proof. Define

W(x, t) =
c

r
−
(
c

r
− L

)
e−rt +

Kα+1

Lα
eαx, (x, t) ∈ ΩT0 . (4.26)
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We claim that W(x, t) ∈ C2(ΩT0) and possess the following three properties.

(i) W(x, 0) ≥ u(x, 0) for −∞ < x < 0 and W(0, t) ≥ K for 0 < t ≤ T0,

(ii) ∂tW − LW = c in ΩT0 ,

(iii) W(x, t) < K in {(x, t) : x < h∗(t), 0 ≤ t < T0}.

In fact, if we notice that α > 0, then we have that

W(x, 0) = L +
Kα+1

Lα
eαx ≥

⎧⎪⎪⎨
⎪⎪⎩
L = max{L,Kex} = u(x, 0) if x ≤ lnL − lnK,

L +
Kα+1

Lα

(
L

K

)α

≥ K ≥ u(x, 0) if lnL − lnK ≤ x ≤ 0.
(4.27)

It is obvious that W(0, t) ≥ K. So, we obtain property (i).
Moreover, we compute

∂tW − LW = r

(
c

r
− L

)
e−rt + r

[
c

r
−
(
c

r
− L

)
e−rt

]
= c. (4.28)

Hence, we have property (ii).
It is not difficult to check that, for any t ∈ [0, T0),

W(h∗(t), t) = K, ∂xW =
αKα+1

Lα
eαx > 0. (4.29)

Then we show property (iii).
Repeating the method in the proof of Theorem 3.2, we can derive that u ≤ W in ΩT0

from properties (i)-(ii). And property (iii) implies that u < K in the domain {(x, t) : x <
h∗(t), 0 ≤ t < T0}, which means that h(t) ≥ h∗(t) for any t ∈ [0, T0).

Next, we prove that limt→T−
0
h(t) = −∞. Otherwise, limt→ T−

0
h(t) = x1 > −∞; then the

free boundary includes a horizontal line t = T0, x ∈ (−∞, x1). Repeating the method in the
proof of Theorem 4.2, then we can obtain a contradiction. So, limt→ T−

0
h(t) = −∞.

Theorem 4.5. The free boundary h(t) ∈ C0,1[0, T0) ∩ C∞[t0, T0).

Proof. Fix t1 ∈ (0, t0) and t2 ∈ (t0, T0), and denote X = h∗(t2) − 1. According to Theorem 4.4,

the free boundary h(t) while t ∈ (t0, t2) lies in the domain N Δ= {(x, t) : X < x < 0, t1 < t ≤ t2}
(see Figure 5).

In the first, we prove that there exists anM0 > 0 such that

M0∂xu − ∂tu ≥ 0 in N. (4.30)

In fact, u, ∂tu satisfy the equations

∂tu − Lu = c, ∂t(∂tu) − L(∂tu) = 0, (x, t) ∈ CT, (4.31)
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Γ2

t

x

h(t)
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Figure 5: The free boundary h(t).

then the interior estimate of the parabolic equation implies that there exists a positive constant
C such that

∂tu(x, t) ≤ C on Γ1 ∪ Γ2, (4.32)

here

Γ1
Δ= {x = X, t1 ≤ t ≤ t2}, Γ2

Δ= {X ≤ x ≤ 0, t = t1}. (4.33)

On the other hand, we see that ∂tu ≥ 0 in ΩT from (3.27), and ∂tu(0, t) = 0. Applying
the strong maximum principle to ∂tu(x, t), we deduce that

∂txu(0, t) < 0, t ∈ (0, t0). (4.34)

It means that ∂xu(0, t) is strictly decreasing on [0, t0]. It follows that, by ∂xu(0, t0) = 0,

∂xu(0, t1) > 0. (4.35)

Moreover,

∂xu ≥ 0, ∂t(∂xu) − L(∂xu) = 0, (x, t) ∈ CT. (4.36)

Employing the strong maximum principle, we see that there is a δ > 0, such that

∂xu(x, t) ≥ δ on Γ1 ∪ Γ2, (4.37)

Provided that δ is small enough. Combining (4.32), there exists a positive M0 = (C/δ) + 1
such that

M0∂xu − ∂tu ≥ δ on Γ1 ∪ Γ2. (4.38)
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Figure 6: The free boundary.

Next, we concentrate on problem (1.4) in the domainN. It is clear that u satisfies

∂tu − Lu = c, if u < K, (x, t) ∈ N,

∂tu − Lu ≤ c, if u = K, (x, t) ∈ N,

u(X, t) = u(X, t), u(0, t) = K, t1 ≤ t ≤ t2,

u(x, t1) = u(x, t1), X ≤ x ≤ 0.

(4.39)

And we can use the following problem to approximate the above problem:

∂tuε − Luε + βε(uε −K) = c, in N,

uε(X, t) = u(X, t), uε(0, t) = K, t1 ≤ t ≤ t2,

uε(x, t1) = u(x, t1), X ≤ x ≤ 0.

(4.40)

Recalling (4.38), we see that, if ε is small enough,M0∂xuε−∂tuε ≥ 0 on the parabolic boundary

of N. Moreover,w Δ= M0∂xuε − ∂tuε satisfies

∂tw − Lw + β′ε(uε −K)w = 0. (4.41)
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Applying the comparison principle, we obtain

M0∂xuε − ∂tuε = w ≥ 0 in N. (4.42)

As the method in the proof of Theorem 3.3, we can show that uε weakly converges to u in
W2,1

p (N) and (4.30) is obvious.
On the other hand, we see thatM∂xu + ∂tu ≥ 0 inN for any positive number M from

(3.26) and (3.27). So,

M0∂xu ± ∂tu ≥ 0 in N, (4.43)

which means that there exists a uniform cone such that the free boundary should lies in
the cone. As the method in [9], it is easy to derive that h(t) ∈ C0,1[t1, t2]. Moreover h(t) ∈
C∞[t0, t2] can be deduced by the bootstrapmethod. Since t2 is arbitrary and the free boundary
is a vertical line while t ∈ (0, t0), then h(t) ∈ C0,1[0, T0) ∩ C∞[t0, T0).

5. Numerical Results

Applying the binomial tree method to problem (1.4), we achieve the following numerical
results—Figure 6:

Plot of the optimal exercise boundary h(t) is a function of t. The parameter values used
in the calculations are r = 0.2, q = 0.1, σ = 0.3, L = 1, K = 1.5, c = 0.5, T = 2, and n = 3000.
In this case, the free boundary is increasing with x(0) = 0. The numerical result is coincided
with that of our proof (see Figure 6).
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