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The present study introduces a new version of homotopy perturbation method for the solution
of system of fractional-order differential equations. In this approach, the solution is considered as
a Taylor series expansion that converges rapidly to the nonlinear problem. The systems include
fractional-order stiff system, the fractional-order Genesio system, and the fractional-order matrix
Riccati-type differential equation. The new approximate analytical procedure depends only on two
components. Comparing the methodology with some known techniques shows that the present
method is relatively easy, less computational, and highly accurate.

1. Introduction

Fractional differential equations have received considerable interest in recent years and
have been extensively investigated and applied for many real problems which are modeled
in different areas. One possible explanation of such unpopularity could be that there are
multiple nonequivalent definitions of fractional derivatives [1]. Another difficulty is that
fractional derivatives have no evident geometrical interpretation because of their nonlocal
character. However, during the last 12 years fractional calculus starts to attract much more
attention of scientists. It was found that various, especially interdisciplinary, applications [2–
6] can be elegantly modeled with the help of the fractional derivatives.

The homotopy perturbation method is a powerful devise for solving nonlinear
problems. This method was introduced by He [7–9] in the year 1998. In this method,
the solution is considered as the summation of an infinite series that converges rapidly.
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This technique is used for solving nonlinear chemical engineering equations [10], time-
fractional Swift-Hohenberg (S-H) equation [11], viscous fluid flow equation [12], Fourth-
Order Integro-Differential equations [13], nonlinear dispersive K(m,n, 1) equations [14],
Long Porous Slider equation [15], and Navier-Stokes equations [16]. It can be said that He’s
homotopy perturbation method is a universal one, which is able to solve various kinds of
nonlinear equations. The new homotopy perturbation method (NHPM) was applied to linear
and nonlinear ODEs [17].

In this paper, we construct the solution of system of fractional-order differential
equations by extending the idea of [17, 18]. This method leads to computable and efficient
solutions to linear and nonlinear operator equations. The corresponding solutions of the
integer-order equations are found to follow as special cases of those of fractional-order
equations.

We consider the system of fractional-order equations of the form

Dαiyi(t) + Fi

(
t, y1, y2, y3, . . . , yn

)
= fi(t), yi(t0) = ci, 0 < αi ≤ 1, i = 1, 2, . . . , n. (1.1)

2. Basic Definitions

We give some basic definitions, notations, and properties of the fractional calculus theory
used in this work.

Definition 2.1. The Riemann-Liouville fractional integral operator Jμ of order μ on the usual
Lebesgue space L1[a, b] is given by

Jμf(x) =
1

Γ
(
μ
)
∫x

0
(x − t)μ−1f(t)dt, μ > 0,

J0f(x) = f(x).

(2.1)

It has the following properties:

(i) Jμ exists for any x ∈ [a, b],

(ii) JμJβ = Jμ+β,

(iii) JμJβ = JβJμ,

(iv) JαJβf(x) = JβJαf(x),

(v) Jμ(x − a)γ = (Γ(γ + 1)/Γ(α + γ + 1))(x − a)μ+γ ,

where f ∈ L1[a, b], μ, β ≥ 0 and γ > −1.

Definition 2.2. The Caputo definition of fractal derivative operator is given by

Dμf(x) = Jm−μDnf(x) =
1

Γ
(
m − μ

)
∫ t

0
(x − τ)m−μ−1f (m)(τ)dτ, (2.2)
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where (m − 1 < μ ≤ m, m ∈ N, x > 0). It has the following two basic properties for m − 1 <
μ ≤ m and f ∈ L1[a, b]:

DμJμf(x) = f(x),

JμDμf(x) = f(x) −
m−1∑

k=0

f (k)(0+)
(x − a)k

k!
, x > 0.

(2.3)

3. Analysis of New Homotopy Perturbation Method

Let us consider the system of nonlinear differential equations

Ai

(
yi

)
= fi(t), t ∈ Ω, (3.1)

where Ai are the operators, fi are known functions and yi are sought functions. Assume that
operators Ai can be written as

Ai

(
yi

)
= Li

(
yi

)
+Ni

(
yi

)
, (3.2)

where Li are the linear operators and Ni are the nonlinear operators. Hence, (3.1) can be
rewritten as follows:

Li

(
yi

)
+Ni

(
yi

)
= fi(t), t ∈ Ω. (3.3)

We define the operators Hi as

Hi

(
Yi; p

)
≡
(
1 − p

)(
Li(Yi) − Li

(
yi,0

))
+ p

(
Ai(Y) − fi

)
, (3.4)

where p ∈ [0, 1] is an embedding or homotopy parameter, Yi(t; p) : Ω × [0, 1] → � and yi,0

are the initial approximation of solution of the problem in (3.3) can be written as

Hi

(
Yi; p

)
≡ Li(Yi) − Li

(
yi,0

)
+ pLi

(
yi,0

)
+ p

(
Ni(Yi) − fi

)
. (3.5)

Clearly, the operator equations Hi(v, 0) = 0 and Hi(v, 1) = 0 are equivalent to the equations
Li(Yi) − L(yi,0) = 0 and Ai(Y) − fi(t) = 0, respectively. Thus, a monotonous change of
parameter p from zero to one corresponds to a continuous change of the trivial problem
Li(Yi) − Li(yi,0) = 0 to the original problem. Operator Hi(Yi, p) is called a homotopy map.
Next, we assume that the solution of equation Hi(Yi, p) can be written as a power series in
embedding parameter p, as follows:

Yi = Yi,0 + pYi,1, i = 1, 2, 3, . . . , n. (3.6)

Now, let us write (3.5) in the following form:

Li(Yi) = yi,0(t) + p
(
fi −Ni(Yi) − yi,0(t)

)
. (3.7)



4 Advances in Difference Equations

By applying the inverse operator, L−1
i to both sides of (3.7), we have

Yi = L−1
i yi,0(t) + p

(
L−1

i f − L−1
i Ni(Yi) − L−1

i yi,0(t)
)
. (3.8)

Suppose that the initial approximation of (3.3) has the form

yi,0(t) =
∞∑

n=0

ai,nPn(t), i = 1, 2, 3, . . . , n, (3.9)

where ai,n, n = 0, 1, 2, . . . are unknown coefficients and Pn(t), n = 0, 1, 2, . . . are specific
functions on the problem. By substituting (3.6) and (3.9) into (3.8), we get

Yi,0 + pYi,1 = L−1
i

(
∞∑

n=0

ai,nPn(t)

)

+ p

(

L−1
i fi − L−1

i Ni

(
Yi,0 + pYi,1

)
− L−1

i

(
∞∑

n=0

ai,nPn(t)

))

.

(3.10)

Equating the coefficients of like powers of p, we get the following set of equations:

coefficient of p0 : Y0 = L−1

(
∞∑

n=0

ai,nPn(t)

)

,

coefficient of p1 : Y1 = L−1
i

(
fi
)
+L−1

i (Yi,1) − L−1
i Ni(Yi,0).

(3.11)

Now, we solve these equations in such a way that Yi,1(t) = 0. Therefore, the approximate
solution may be obtained as

yi(t) = Yi,0(t) = L−1

(
∞∑

n=0

ai,nPn(t)

)

. (3.12)

4. Applications

Application 1

Consider the following linear fractional-order 2-by-2 stiff system:

Dα
t u(t) = k(−1 − ε)u(t) + k(1 − ε)v(t),

Dα
t v(t) = k(1 − ε)u(t) + k(−1 − ε)v(t)

(4.1)

with the initial conditions

u(0) = 1, v(0) = 3, (4.2)
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where k and ε are constants. To obtain the solution of (4.1) by NHPM, we construct the
following homotopy:

(
1 − p

)(
Dα

t U(t) − u0(t)
)
+ p

(
Dα

t U(t) − k(−1 − ε)U(t) − k(1 − ε)V (t)
)
= 0,

(
1 − p

)(
Dα

t V (t) − v0(t)
)
+ p

(
Dα

t V (t) − k(1 − ε)U(t) − k(−1 − ε)V (t)
)
= 0.

(4.3)

Applying the inverse operator, Jαt of Dα
t both sides of the above equation, we obtain

U(t) = U(0) + Jαt u0(t) − pJαt (u0(t) − k(−1 − ε)U(t) − k(1 − ε)V (t)),

V (t) = V (0) + Jαt v0(t) − pJαt (v0(t) − k(1 − ε)U(t) − k(−1 − ε)V (t)).
(4.4)

The solution of (4.1) to has the following form:

U(t) = U0(t) + pU1(t), V (t) = V0(t) + pV1(t). (4.5)

Substituting (4.5) in (4.4) and equating the coefficients of like powers of p, we get the
following set of equations:

U0(t) = U(0) + Jαt u0(t), V0(t) = V (0) + Jαt v0(t),

U1(t) = Jαt (−u0(t) + k(−1 − ε)U0(t) + k(1 − ε)V0(t)),

V1(t) = Jαt (−v0(t) + k(1 − ε)U0(t) + k(−1 − ε)V0(t)).

(4.6)

Assuming u0(t) =
∑20

n=0 anPn, v0(t) =
∑20

n=0 bnPn, Pk = tk, U(0) = u(0), and V (0) = v(0) and
solving the above equation for U1(t) and V1(t) lead to the result

U1(t) =
(2k − 4εk − a0)tα

Γ(α + 1)
− a1tα+1

Γ(α + 2)
− 2a2tα+2

Γ(α + 3)
− 6a3tα+3

Γ(α + 4)
− 24a4t2α

Γ(α + 5)
+ · · · ,

V1(t) =
(−2k − 4εk − b0)tα

Γ(α + 1)
− b1tα+1

Γ(α + 2)
− 2b2tα+2

Γ(α + 3)
− 6b3tα+3

Γ(α + 4)
− 24b4t2α

Γ(α + 5)
+ · · · .

(4.7)

Vanishing U1(t) and V1(t) lets the coefficients ai, bi, i = 0, 1, 2, . . .by taking α = 1 the following
values:

a0 = 2k(1 − 2ε), a1 = −4k2
(

1 − 2ε2
)
, a2 = 4k3

(
1 − 2ε3

)
,

a3 =
−8k4(1 − 2ε4)

3
, a4 =

4k5(1 − 2ε5)

3
, a5 =

−8k6(1 − 2ε6)

15
,

a6 =
8k7(1 − 2ε7)

45
, a7 =

−16k8(1 − 2ε8)

315
, a8 =

4k9(1 − 2ε9)

315
,

a9 =
−8k10(1 − 2ε10)

2835
, a10 =

8k11(1 − 2ε11)

14175
, a11 =

−16k12(1 − 2ε12)

155925
,
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a12 =
8k13(1 − 2ε13)

467775
, a13 =

−16k14(1 − 2ε14)

6081075
, a14 =

16k15(1 − 2ε15)

42567525
,

a15 =
−16k16(1 − 2ε16)

155925
, a16 =

4k17(1 − 2ε17)

638512875
, a17 =

−8k18(1 − 2ε18)

10854718875
,

a18 =
8k19(1 − 2ε19)

97692469875
, a19 =

−16k20(1 − 2ε20)

1856156927625
, a20 =

8k21(1 − 2ε21)

9280784638125
,

b0 = −2k(1 + 2ε), b1 = 4k2
(

1 + 2ε2
)
, b2 = −4k3

(
1 + 2ε3

)
,

b3 =
8k4(1 + 2ε4)

3
, b4 =

−4k5(1 + 2ε5)

3
, b5 =

8k6(1 + 2ε6)

15
,

b6 =
−8k7(1 + 2ε7)

45
, b7 =

16k8(1 + 2ε8)

315
, b8 =

−4k9(1 + 2ε9)

315
,

b9 =
8k10(1 + 2ε10)

2835
, b10 =

−8k11(1 + 2ε11)

14175
, b11 =

16k12(1 + 2ε12)

155925
,

b12 =
−8k13(1 + 2ε13)

467775
, b13 =

16k14(1 + 2ε14)

6081075
, b14 =

−16k15(1 + 2ε15)

42567525
,

b15 =
16k16(1 + 2ε16)

155925
, b16 =

−4k17(1 + 2ε17)

638512875
, b17 =

8k18(1 + 2ε18)

10854718875
,

b18 =
−8k19(1 + 2ε19)

97692469875
, b19 =

16k20(1 + 2ε20)

1856156927625
, b20 =

−8k21(1 + 2ε21)

9280784638125
.

(4.8)

Therefore, we obtain the solutions of (4.1) as

u(t) = 1 +
2k(1 − 2ε)tα

Γ(α + 1)
−

4k2(1 − 2ε2)tα+1

Γ(α + 2)
+

8k3(1 − 2ε3)tα+2

Γ(α + 3)
−

16k4(1 − 2ε4)tα+3

Γ(α + 4)
+ · · · ,

v(t) = 3 − 2k(1 + 2ε)tα

Γ(α + 1)
+

4k2(1 + 2ε2)tα+1

Γ(α + 2)
−

8k3(1 + 2ε3)tα+2

Γ(α + 3)
−

16k4(1 + 2ε4)tα+3

Γ(α + 4)
+ · · · .

(4.9)

Our aim is to study the mathematical behavior of the solution u(t) and v(t) for different
values of α. This goal can be achieved by forming Pade’ approximants, which have the
advantage of manipulating the polynomial approximation into a rational function to gain
more information about u(t) and v(t). It is well known that Pade’ approximants will converge
on the entire real axis, if u(t) and v(t) are free of singularities on the real axis. It is of interest to
note that Pade’ approximants give results with no greater error bounds than approximation
by polynomials. To consider the behavior of solution for different values of α, we will take
advantage of the explicit formula (4.9) available for 0 < α ≤ 1 and consider the following two
special cases.
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Case 1. Setting α = 1, k = 50, ε = 0.01 in (4.9), we obtain the approximate solution in a series
form as

u[10,11](t) =
1 + 148.73t + 1203.65t2 + 51963.1t3 + · · ·

1 + 50.7628t + 1227.89t2 + 18726.5t3 + · · ·
,

v[10,11](t) =
3 + 69.439t + 3823.59t2 + 40311.9t3 + · · ·
1 + 57.1463t + 1550.5t2 + 26447.2t3 + · · ·

.

(4.10)

Case 2. In this case, we will examine the linear fractional stiff equation (4.1). Setting α =
1/2, k = 50, ε = 0.01 in (4.9) gives

u(t) = 1 +
196t1/2

√
π

− 39992t3/2

3
√
π

+
7999984t5/2

15
√
π

− 228571424t7/2

15
√
π

+ · · · ,

v(t) = 3 − 204t1/2

√
π

+
13336t3/2

√
π

− 2666672t5/2

5
√
π

+
533333344t7/2

35
√
π

− · · · .

(4.11)

For simplicity, let t1/2 = z, then

u(z) = 1 +
196z
√
π

− 39992z3

3
√
π

+
7999984z5

15
√
π

− 228571424z7

15
√
π

+ · · · ,

v(z) = 3 − 204z
√
π

+
13336z3

√
π

− 2666672z5

5
√
π

+
533333344z7

35
√
π

− · · · .
(4.12)

Calculating the [10/11] Pade’ approximants and recalling that z = t1/2, we get

u[10,11] =
9.58 × 10−8 + 0.0000126t1/2 + 0.0002357t− 0.0001051t3/2 − · · ·

9.581 × 10−8 + 2.0904 × 10−6t1/2 + 4.56399 × 10−6t + 0.000096t2 + · · ·
,

v[10,11] =
2.66 × 10123 − 1.216 × 10125t1/2 + 8.69947 × 10125t + · · ·

8.88 × 10122 − 6.45605 × 10123t1/2 + 4.22967 × 10124t + · · ·
.

(4.13)

Application 2

Consider the following nonlinear fractional-order 2-by-2 stiff system:

Dα
t u(t) = −1002u(t) + 1000v2(t),

Dα
t v(t) = u(t) − v(t) − v2(t)

(4.14)

with the initial conditions

u(0) = 1, v(0) = 1. (4.15)



8 Advances in Difference Equations

To obtain the solution of (4.14) by NHPM, we construct the following homotopy:

(
1 − p

)(
Dα

t U(t) − u0(t)
)
+ p

(
Dα

t U(t) + 1002U(t) − 1000V 2(t)
)
= 0,

(
1 − p

)(
Dα

t V (t) − v0(t)
)
+ p

(
Dα

t V (t) −U(t) + V (t) + V 2(t)
)
= 0.

(4.16)

Applying the inverse operator, Jαt of Dα
t both sides of the above equation, we obtain

U(t) = U(0) + Jαt u0(t) − pJαt

(
u0(t) + 1002U(t) − 1000V 2(t)

)
,

V (t) = V (0) + Jαt v0(t) − pJαt

(
v0(t) −U(t) + V (t) + V 2(t)

)
.

(4.17)

The solution of (4.14) to have the following form:

U(t) = U0(t) + pU1(t), V (t) = V0(t) + pV1(t). (4.18)

Substituting (4.18) in (4.17) and equating the coefficients of like powers of p, we get the
following set of equations:

U0(t) = U(0) + Jαt u0(t), V0(t) = V (0) + Jαt v0(t),

U1(t) = Jαt

(
−u0(t) − 1002U0(t) + 1000V 2

0 (t)
)
,

V1(t) = Jαt

(
−v0(t) +U0(t) − V0(t) − V 2

0 (t)
)
.

(4.19)

Assuming u0(t) =
∑20

n=0 anPn, v0(t) =
∑20

n=0 bnPn, Pk = tk, U(0) = u(0), and V (0) = v(0) and
solving the above equation for U1(t) and V1(t) lead to the result

U1(t) =
−(a0 + 2)tα

Γ(α + 1)
− a1tα+1

Γ(α + 2)
− 2a2tα+2

Γ(α + 3)
− 6a3tα+3

Γ(α + 4)
− 24a4tα+4

Γ(α + 5)
− · · · ,

V1(t) =
−(b0 + 1)tα

Γ(α + 1)
− b1tα+1

Γ(α + 2)
− 2b2tα+2

Γ(α + 3)
− 6b3tα+3

Γ(α + 4)
− 24b4tα+4

Γ(α + 5)
− · · · .

(4.20)

Vanishing U1(t) and V1(t) lets the coefficients ai, bi, i = 0, 1, 2, . . . to take the following values:

a0 = −2, a1 = 4, a2 = −4, a3 =
8
3
, a4 =

−4
3
, . . . , a20 =

−8
9280784638125

,

b0 = −1, b1 = 1, b2 =
−1
2
, b3 =

1
6
, b4 =

−1
24

, . . . , b20 =
−1

2432902008176640000
.

(4.21)
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Therefore, we obtain the solution of (4.14) as

u(t) = 1 − 2tα

Γ(α + 1)
+

4tα+1

Γ(α + 2)
− 8tα+2

Γ(α + 3)
+

16tα+3

Γ(α + 4)
− 32tα+4

Γ(α + 5)
+ · · · ,

v(t) = 1 − tα

Γ(α + 1)
+

tα+1

Γ(α + 2)
− tα+2

Γ(α + 3)
+

tα+3

Γ(α + 4)
− tα+4

Γ(α + 5)
+ · · · .

(4.22)

The exact solution of (4.14) for α = 1 is u(t) = e−2t, v(t) = e−t.

Application 3

Consider the following nonlinear Genesio system with fractional derivative:

Dα
t u(t) = v(t),

Dα
t v(t) = w(t),

Dα
t w(t) = −cu(t) − bv(t) − aw(t) + u2(t)

(4.23)

with the initial conditions

u(0) = 0.2, v(0) = −0.3, w(0) = 0.1, (4.24)

where a, b, and c are constants. To obtain the solution of (4.23) by NHPM, we construct the
following homotopy:

(
1 − p

)(
Dα

t U(t) − u0(t)
)
+ p

(
Dα

t U(t) − V (t)
)
= 0,

(
1 − p

)(
Dα

t V (t) − v0(t)
)
+ p

(
Dα

t V (t) −W(t)
)
= 0,

(
1 − p

)(
Dα

t W(t) −w0(t)
)
+ p

(
Dα

t W(t) + cU(t) + bV (t) + aW(t) −U2(t)
)
= 0.

(4.25)

Applying the inverse operator, Jαt of Dα
t both sides of the above equation, we obtain

U(t) = U(0) + Jαt u0(t) − pJαt (u0(t) − V (t)),

V (t) = V (0) + Jαt v0(t) − pJαt (v0(t) −W(t)),

W(t) = W(t) + Jαt w0(t) − pJαt

(
w0(t) + cU(t) + bV (t) + aW(t) −U2(t)

)
.

(4.26)

The solution of (4.23) to have the following form:

U(t) = U0(t) + pU1(t), V (t) = V0(t) + pV1(t), W(t) = W0(t) + pW1(t). (4.27)
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Substituting (4.27) in (4.26) and equating the coefficients of like powers of p, we get the
following set of equations:

U0(t) = U(0) + Jαt u0(t), V0(t) = V (0) + Jαt v0(t), W0(t) = W(0) + Jαt w0(t),

U1(t) = Jαt (−u0(t) + V0(t)),

V1(t) = Jαt (−v0(t) +W0(t)),

W1(t) = Jαt

(
−w0(t) − cU0(t) − bV0(t) − aV0(t) +W2

0 (t)
)
.

(4.28)

Assuming u0(t) =
∑20

n=0 anPn, v0(t) =
∑20

n=0 bnPn, w0(t) =
∑20

n=0 cnPn, Pk = tk, U(0) = u(0),
V (0) = v(0), W(0) = w(0), a = 1.2, b = 2.92, and c = 6, and solving the above equation for
U1(t), V1(t) and W1(t) lead to the result

U1(t) =
−(a0 + (3/10))tα

Γ(α + 1)
− a1tα+1

Γ(α + 2)
− 2a2tα+2

Γ(α + 3)
− 6a3tα+3

Γ(α + 4)
− 24a4tα+4

Γ(α + 5)
− · · · ,

V1(t) =
(b0 − (1/10))tα

Γ(α + 1)
− b1t

α+1

Γ(α + 2)
− 2b2t

α+2

Γ(α + 3)
− 6b3t

α+3

Γ(α + 4)
− 24b4t

α+4

Γ(α + 5)
− · · · ,

W1(t) =
−(c0 + (101/250))tα

Γ(α + 1)
− c1tα+1

Γ(α + 2)
− 2c2tα+2

Γ(α + 3)
− 6c3tα+3

Γ(α + 4)
− 24c4tα+4

Γ(α + 5)
− · · · .

(4.29)

Vanishing U1(t), V1(t), and W1(t) lets the coefficients ai, bi, ci, i = 0, 1, 2, . . . to take the
following values:

a0 =
−3
10

, a1 =
1

10
, a2 =

−101
500

, a3 =
2341
7500

, a4 =
−377
6250

, . . . ,

a20 =
−64170831419403533391899

1160098079765625000000000000000000
,

b0 =
1
10

, b1 =
−101
250

, b2 =
2341
2500

, b3 =
−754
3125

, b4 =
−5153
75000

, . . . ,

b20 =
33855543777297749556491

89238313828125000000000000000000
,

c0 =
−101
250

, c1 =
23411
1250

, c2 =
−2262
3125

, c3 =
−5153
75000

, c4 =
−508141
3750000

, . . . ,

c20 =
5838803330656480870609733

19334967996093750000000000000000000
.

(4.30)
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Therefore, we obtain the solutions of (4.23) as

u(t) =
1
5
− 3tα

10Γ(α + 1)
+

tα+1

10Γ(α + 2)
− 101tα+2

250Γ(α + 3)
+

2341tα+3

1250Γ(α + 4)
− 4524tα+4

3125Γ(α + 5)
+ · · · ,

v(t) =
−3
10

+
tα

10Γ(α + 1)
− 101tα+1

250Γ(α + 2)
+

2341tα+2

1250Γ(α + 3)
− 4524tα+3

3125Γ(α + 4)
− 5153tα+4

3125Γ(α + 5)
+ · · · ,

w(t) =
1

10
− 101tα

250Γ(α + 1)
+

2341tα+1

1250Γ(α + 2)
− 4524tα+2

3125Γ(α + 3)
− 5153tα+3

3125Γ(α + 4)
− 508141tα+4

156250Γ(α + 5)
+· · · .

(4.31)

Application 4

Finally, we consider the following nonlinear matrix Riccati differential equation with
fractional derivative:

Dα
t Y(t) = −Y 2(t) +Q, Y(0) = 0, (4.32)

where Q = (1/2)
[

1 −1
1 1

][
1 0
0 100

][
1 1
−1 1

]
. To find the solution of this equation by NHPM, we will

treat the matrix equation as a system of fractional-order differential equations

Dα
t u(t) = −u2(t) − v(t)z(t) +

101
2

,

Dα
t v(t) = −u(t)v(t) − v(t)w(t) − 99

2
,

Dα
t z(t) = −u(t)v(t) − v(t)w(t) −

99
2
,

Dα
t w(t) = −u2(t) − v(t)z(t) +

101
2

,

(4.33)

with the initial conditions

u(0) = 0, v(0) = 0, z(0) = 0, w(0) = 0. (4.34)

Therefore, we obtain the solution of (4.33) as

u(t) = w(t) =
1
5
− 3tα

10Γ(α + 1)
+

tα+1

10Γ(α + 2)
− 101tα+2

250Γ(α + 3)
+

2341tα+3

1250Γ(α + 4)
− 4524tα+4

3125Γ(α + 5)
+· · · ,

v(t)=z(t)=
−3
10

+
tα

10Γ(α + 1)
− 101tα+1

250Γ(α + 2)
+

2341tα+2

1250Γ(α + 3)
− 4524tα+3

3125Γ(α + 4)
− 5153tα+4

3125Γ(α + 5)
+· · · .

(4.35)
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Figure 1: Solutions of linear stiff system for k = 50, ε = 0.01, α = 1, (a) Exact, (b) Numerical, (c) NHPM-
Pade [10/11], (d) NHPM-Pade [10/11], k = 50, ε = 0.01, α = 0.5 (color figure can be viewed in the online
issue).

5. Concluding Remarks

The NHPM for solving system of fractional-order differential equations are based on two
component procedure and polynomial initial condition. The NHPM applied on fractional-
order Stiff equation, fractional Genesio equation, and the matrix Riccati-type differential
equation. The Applications in problems 1–4 are plotted in Figures 1, 2, 3, and 4, which
show the accuracy of NHPM. The computations associated with the applications discussed
above, were performed by MATHEMATICA. The NHPM is very simple in application
and is less computational more accurate in comparison with other mentioned methods.
By using this method, the solution can be obtained in bigger interval. Unlike the ADM
[19], the NHPM is free from the need to use Adomian polynomials. In this method,
we do not need the Lagrange multiplier, correction functional, stationary conditions,
and calculating integrals, which eliminate the complications that exist in the VIM [20].
In contrast to the HPM and HAM, in this method, it is not required to solve the
functional equations in each iteration. The efficiency of HAM is very much depended on
choosing auxiliary parameter �. All the applications are taken from [20] with fractional
derivatives.
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Figure 2: Solutions of nonlinear stiff system for α = 1, (a) Exact, (b) Numerical, (c) NHPM, and (c) NHPM,
α = 0.9, 1/3 (color figure can be viewed in the online issue).
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Figure 3: Solutions of nonlinear Genesio system for (a) Numerical, (b) NHPM α = 1, (c) NHPM, α = 0.5,
(d) NHPM, α = 0.75 (color figure can be viewed in the online issue).
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Figure 4: Solutions of matrix Riccati equations u = w, v = z for α = 1 (a) Numerical, (b) NHPM-Pade
[9/11], (c) NHPM-Pade [9/11], α = 0.5 (color figure can be viewed in the online issue).
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