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Basic theory on a class of initial value problem of some fractional differential equation involving
Riemann-Liouville differential operators is discussed by employing the classical approach from
the work of Lakshmikantham and A. S. Vatsala (2008). The theory of inequalities, local existence,
extremal solutions, comparison result and global existence of solutions are considered. Our work
employed recent literature from the work of (Lakshmikantham and A. S. Vatsala, (2008)).

1. Introduction

Differential equations of fractional order have recently proven to be valuable tools in the
modeling of many phenomena in various fields of science and engineering. Indeed, we
can find numerous applications in viscoelasticity, electrochemistry, control, porous media,
electromagnetism, and so forth [1–5]. There has been a significant development in the study
of fractional differential equations and inclusions in recent years; see the monographs of
Kilbas et al. [6], Lakshmikantham et al. [7], Podlubny [4], and the survey by Agarwal et al.
[8]. For some recent contributions on fractional differential equations, see [9–20] and the
references therein. Very recently in [10, 11, 21, 22], the author and other researchers studied
the existence and uniqueness of solutions of some classes of fractional differential equations
with delay. For more details on the geometric and physical interpretation for fractional
derivatives of both the Caputo types see [5, 23]. Băleanu and Mustafa [16] allowed for
immediate applications of a general comparison-type result from the recent literature [24].
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Lakshmikantham and Vatsal have discussed basic theory of fractional differential equations
for initial value problem fractional differential equations type [24]

Dαx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, T]. (1.1)

This paper deals with the basic theory of initial value problem (IVP) for a generalized class
of fractional order differential equation of the form

L(D)[x(t) − x0] = f(t, x(t)), x(0) = x0, t ∈ [0, T], (1.2)

where L(D) = Dα
0 − tnD

β

0 , f ∈ C([0, T],R) and 0 < β ≤ α < 1. Recall that C([0, T],R) is the
Banach space of continuous functions from the interval [0, T] into R endowed with uniform
norm.

We begin in this section with the recall of some definitions and results for fractional
calculus which are used throughout this paper [4, 19, 20].

The left-sided Riemann-Liouville fractional integral of a function x of order α > 0 is
defined as

Iα0x(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds, t > 0, (1.3)

and the left sided Riemann-Liouville fractional derivative operator of order 0 < α < 1 is
defined by

Dα
0x(t) =

d

dt

{
I1−α0 x(t)

}
, (1.4)

where Γ(α) =
∫+∞
0 e−ttα−1dt. We denote Dα

0+x(t) by Dα
0x(t) and Iα0+x(t) by Iα0x(t). Also Dαx(t)

and Iαx(t) refer to Dα
0+x(t) and Iα0+x(t), respectively.

Assume that 0 < β < 1, β ≤ α, if the fractional derivative Dβ

0x(t) is integrable, then [4,
page 72]

Iα0

(
D

β

0x(t)
)
= I

α−β
0 x(t) −

[
I
1−β
0 x(t)

]
t=0

tα−1

Γ(α)
. (1.5)

If x(t) is continuous on [0, T] thenD
β

0x(t) is integrable, I
1−βx(t)|t=0 = 0 [25], and (1.5) reduces

to

Iα0

(
D

β

0x(t)
)
= I

α−β
0 x(t), 0 < β < 1, β ≤ α. (1.6)

Proposition 1.1. Let x ∈ C([0, T],R) and 0 < β < 1, β ≤ α. Then
∑n

k=0

(i) Iα(tnx(t)) =
∑n

k=0
( −α

k

)
[Dktn][Iα+kx(t)] =

∑n
k=0

( −α
k

)
(n!tn−k/(n − k)!)Iα+kx(t),

(ii) Iα(tnDβx(t)) =
∑n

k=0
( −α

k

)
(n!tn−k/(n − k)!)Iα−β+kx(t),
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where n is a nonnegative integer, and

(−α
k

)
= (−1)k Γ(α + k)

k! Γ(α)
. (1.7)

Proof. (i) can be found in [19, page 53] and (ii) is an immediate consequence of (1.6) and
(i).

2. Strict and Nonstrict Inequalities

Since f is assumed to be continuous, the initial value problem (1.2) is equivalent to the
following Volterra fractional integral [10, 25]:

x(t) = x(0) +
n∑

k=0

(−α
k

)
n!tn−k

(n − k)!
Iα−β+k{x(t) − x(0)} + Iαf(t, x(t))

= x(0) +
n∑

k=0

(−α
k

)
n!tn−k

(n − k)! Γ
(
α − β + k

)
∫ t

0
(t − s)α−β+k−1x(s)ds

+
1

Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds, 0 ≤ t ≤ T.

(2.1)

Note. Let us consider the notation of (Ix)(t) for second term in (2.1) which is used in
throughout of text and so that

(Ix)(t) =
n∑

k=0

(−α
k

)
n!tn−k

(n − k)!
Iα−β+k{x(t) − x(0)}

=
n∑

k=0

(−α
k

)
n!tn−k

(n − k)! Γ
(
α − β + k

)
∫ t

0
(t − s)α−β+k−1x(s)ds.

(2.2)

We now first discuss a fundamental result relative to the fractional inequalities.

Theorem 2.1. Let v,w ∈ C([0, T],R), f ∈ C([0, T] × R,R), and

(i) v(t) ≤ v(0) + (Iv)(t) + 1/Γ(α)
∫ t
0 (t − s)α−1f(s, v(s))ds,

(ii) w(t) ≥ w(0) + (Iw)(t) + 1/Γ(α)
∫ t
0 (t − s)α−1f(s,w(s))ds,

one of the foregoing inequalities being strict. Moreover, if f(t, x) is nondecreasing in x for each t and
v(0) < w(0), then one has v(t) < w(t), t ∈ [0, T].

Proof. Suppose that for each t ∈ [0, T], the conclusion v(t) < w(t) is not true. Then, because of
the continuity of the functions involved and v(0) < w(0) it follows that there exists a t1 such
that 0 < t1 ≤ T and

v(t1) = w(t1), v(t) < w(t), 0 < t ≤ t1. (2.3)
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Let us suppose that the inequality (ii) is strict. Then using the nondecreasing nature of f and
(2.3) we get

w(t1) > w(0) + (Iw)(t1) +
1

Γ(α)

∫ t1

0
(t − s)α−1f(s,w(s))ds

≥ v(0) + (Iv)(t1) + 1
Γ(α)

∫ t1

0
(t − s)α−1f(s, v(s))ds ≥ v(t1),

(2.4)

which is a contradiction in view of (2.3). Hence the conclusion of this theorem holds and the
proof is complete.

The next result is for nonstrict inequalities, which require a one-sided Lipschitz type
condition.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold with nonstrict inequalities (i) and (ii).
Suppose further that

f(t, x) − f
(
t, y

) ≤ L

1 + t2
(
x − y

)
, (2.5)

whenever x ≥ y and L > 0. Then, v(0) ≤ w(0), and L < Γ(α + 1) implies

v(t) ≤ w(t), 0 ≤ t ≤ T. (2.6)

Proof. Set wε(t) = w(t) + ε(1 + tα), for small ε > 0 so that we have,

wε(0) = w(0) + ε > w(0), wε(t) > w(t), 0 ≤ t ≤ T. (2.7)

Now,

wε(t) ≥ w(0) +
n∑

k=0

(−α
k

)
n!tn−k

(n − k)!
Iα−β+k{wε(t) −ω(0)}

+
1

Γ(α)

∫ t

0
(t − s)α−1f(s,w(s))ds + ε(1 + tα).

(2.8)

In view of (2.7), using one-sided Lipschitz condition (2.5) we see that

wε(t) ≥ wε(0) + (Iwε)(t) +
1

Γ(α)

∫ t

0
(t − s)α−1

(
f(s,wε(s)) − ε

L(1 + sα)
(1 + sα)

)
ds + εtα

= wε(0) + (Iwε)(t) +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, wε(s))ds − εL

Γ(α)

∫ t

0
(t − s)α−1ds + εtα.

(2.9)
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Now, since
∫ t
0 (t − s)α−1ds = tα

∫1
0 (1 − τ)α−1dτ = (Γ(α)/Γ(α + 1))tα, we arrive at

wε(t) > wε(0) + (Iwε)(t) +
1

Γ(α)

∫ t

0
(t − s)α−1f(s,wε(s))ds, (2.10)

in view of the condition L < Γ(α + 1). We now apply Theorem 2.1 to the inequalities (i), (2.9),
and (2.10) to get v(t) < wε(t), t ∈ [0, T]. Since ε > 0 is arbitrary, we conclude that (2.6) is true,
and we are done.

3. Local Existence and Extremal Conditions

In this section, we will consider the local existence and the existence of extremal solutions for
the IVP (1.2). We now first discuss Peano’s type existence result.

Theorem 3.1. Assume that f ∈ (Ω0,R), where Ω0 = {(t, x) : 0 ≤ t ≤ r and |x − x0| ≤ b}, and let
|f(t, x)| ≤ M on Ω. Then the IVP (1.2) has at least one solution x(t) on [0, λ], where

λ = min

{
r,

[
b Γ(α + 1)
(n + 2) M

]1/α
,

[
b Γ(α − β + k + 1)

(n + 2) ρ b

]1/(α−β+k)
, k = 0, n

}
, (3.1)

so that ρ and ‖x0‖ will be observing in the proof of this theorem.

Proof. Let x0(t) be a continuous function on [−δ, 0], δ > 0 such that x0(0) = x0, |x0(t)−x0| ≤ b.
For ε ≤ δ, we define a function xε(t) = x0(t) on [−δ, 0] and

xε(t) = x0 + (Ixε)(t − ε) + Iαf(t, xε(t − ε)) (3.2)

on [0, λ1], where λ1 = min{λ, ε}. We observe that

|xε(t) − x0| ≤
n∑

k=0

∣∣∣∣∣
(−α

k

)∣∣∣∣∣
n!tn−k

(n − k)!
Iα−β+k|xε(t − ε) − x0| + 1

Γ(α)

∫ t

0
(t − s)α−1f(s, xε(s − ε))ds,

≤ ρ
n∑

k=0

Iα−β+k|xε(t − ε) − x0| +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, xε(s − ε))ds,

(3.3)

where

ρ = max

{∣∣∣∣∣
(−α

k

)∣∣∣∣∣
n!μn−k

1

(n − k)!
,

∣∣∣∣∣
(−α

k

)∣∣∣∣∣
n!

(n − k)!
: k = 0, n

}
. (3.4)
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Note that, 0 < s ≤ t ≤ λ1 ≤ ε, as λ1 = min{λ, ε}. Then −δ ≤ −ε < s − ε ≤ 0, and hence we can
consider xε(s − ε)(t) = x0(s − ε) in the last above inequality. Thus |xε(s − ε) − x0| ≤ b.

|xε(t) − x0| ≤
n∑

k=0

ρb

Γ
(
α − β + k

)
∫ t

0
(t − s)α−β+k−1 +

M

Γ(α)

∫ t

0
(t − s)α−1ds

=
n∑

k=0

ρb

Γ
(
α − β + k + 1

) tα−β+k +
M

Γ(α + 1)
tα

=
n∑

k=0

ρb

Γ
(
α − β + k + 1

)λα−β+k + M

Γ(α + 1)
λα ≤ b,

(3.5)

because of the choice of λ1. If λ1 < λ, we can employ (3.2) to extend as a continuous function
on [−δ, λ2], λ2 = min{λ, 2ε}, such that |xε − x0| ≤ b holds. Continuing this process, we can
define xε(t) over [−δ, λ] so that |xε(t) − x0| ≤ b is satisfied on [−δ, λ]. Furthermore, letting
0 ≤ t1 ≤ t2 ≤ λ we see that

|xε(t1) − xε(t2)| = |(Ixε)(t1) − (Ixε)(t2)|

+
1

Γ(α)

{∫ t1

0

f(s, xε(s − ε))

(t1 − s)1−α
ds −

∫ t2

0

f(s, xε(s − ε))

(t2 − s)1−α
ds

}

= |(Ixε)(t1) − (Ixε)(t2)| + 1
Γ(α)

∫ t1

0

[
(t1 − s)1−α − (t2 − s)1−α

]
f(s, xε(s − ε))ds

+

∣∣∣∣∣
1

Γ(α)

∫ t2

t1

(t2 − s)1−αf(s, xε(s − ε))ds

∣∣∣∣∣
≤ |(Ixε)(t1) − (Ixε)(t2)|

+

∣∣∣∣∣
M

Γ(α)

∫ t1

0

[
(t1 − s)1−α − (t2 − s)1−α

]
ds − M

Γ(α)

∫ t2

t1

(t2 − s)1−αds

∣∣∣∣∣.
(3.6)

Notice that
( −α
2k
)
> 0 and

( −α
2k+1

)
< 0, when 0 < α < 1. Let,

Λ1 := max

{
n!λn−2k

( −α
2k
)

(n − 2k)! Γ
(
α − β + 2k

) , k = 0, 1, 2, . . . ,
[n
2

]}
> 0

Λ2 := min

{
n!λn−2k−1

( −α
2k+1

)
(n − 2k − 1)! Γ

(
α − β + 2k + 1

) , k = 0, 1, . . . , 1 +
[n
2

]}
< 0,

(3.7)
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firstly we have

(Ixε)(t1) − (Ixε)(t2)

=
n∑

k=0

(−α
k

)
n!tn−k1

(n − k)! Γ
(
α − β + k

)
∫ t1

0
(t1 − s)α−β+k−1{xε(s − ε) − x0}ds

−
n∑

k=0

(−α
k

)
n!t2n−k

(n − k)! Γ
(
α − β + k

)
∫ t2

0
(t2 − s)α−β+k−1{xε(s − ε) − x0}ds

= Λ1

[n/2]∑
k=0

[∫ t1

0

xε(s − ε) − x0

(t1 − s)β−α−2k+1
ds −

∫ t2

0

xε(s − ε) − x0

(t2 − s)β−α−2k+1
ds

]

+ Λ2

[n/2]+1∑
k=0

[∫ t1

0

xε(s − ε) − x0

(t1 − s)β−α−2k
ds −

∫ t2

0

xε(s − ε) − x0

(t2 − s)β−α−2k
ds

]

≤ bΛ1

[n/2]∑
k=0

[∫ t1

0

(
(t1 − s)α−β+2k−1 − (t2 − s)α−β+2k−1

)
ds

]

+ bΛ1

[n/2]∑
k=0

∫ t2

t1

(t2 − s)α−β+2k−1ds

+ bΛ2

[n/2]+1∑
k=0

[∫ t1

0

(
(t1 − s)α−β+2k − (t2 − s)α−β+2k

)
ds

]

+ bΛ2

[n/2]+1∑
k=0

∫ t2

t1

(t2 − s)α−β+2kds

≤ bΛ1

[n/2]∑
k=0

(t2 − t1)α−β+2k

α − β + 2k
+ b|Λ2|

[n/2]+1∑
k=0

(t2 − t1)α−β+2k+1

α − β + 2k + 1
.

(3.8)

We, therefore, set Λ = max{b|Λ1|, b |Λ2|}, and get

(Ixε)(t1) − (Ixε)(t2) ≤ 2Λ

{
[n/2]∑
k=0

(t2 − t1)α−β+2k

α − β + 2k
+

[n/2]+1∑
k=0

(t2 − t1)α−β+2k+1

α − β + 2k + 1

}
. (3.9)
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Finally, inequality (3.6) from inequality (3.9) becomes

|xε(t1) − xε(t2)| ≤
∣∣∣∣ M

Γ(α + 1)
{
2(t2 − t1)α + tα1 − tα2

}∣∣∣∣

+

∣∣∣∣∣2Λ
{

[n/2]∑
k=0

(t2 − t1)α−β+2k

α − β + 2k
+

[n/2]+1∑
k=0

(t2 − t1)α−β+2k+1

α − β + 2k + 1

}∣∣∣∣∣

≤ 2Λ

{
[n/2]∑
k=0

(t2 − t1)α−β+2k

α − β + 2k
+

[n/2]+1∑
k=0

(t2 − t1)α−β+2k+1

α − β + 2k + 1

}

+
2M

Γ(α + 1)
(t2 − t1)α < ε,

(3.10)

provided that

|t2 − t1| < δ0

= min

{(
ε Γ(α + 1)
2(n + 1)M

)1/α

,

(
α − β + 2k
2(n + 1)Λ

)1/(α−β+2k)
,

(
α − β + 2k + 1
2(n + 1)Λ

)1/(α−β+2k+1)}n

k=0

.

(3.11)

It then follows from (3.4) and (3.6) that the family {xε(t)} forms an equicontinuous and
uniformly bounded functions. Ascoli-Arzela theorem implies that the existence of a sequence
{εn} such that ε1 > ε2 > · · · > εm → 0 as m → ∞, and x(t) = limm→∞xεm(t) exists uniformly
on [−δ, λ]. Since f is uniformly continuous, we obtain that f(t, xεn(t−εm)) tends uniformly to
f(t, x(t)) asm → ∞, and, hence, term by term integration of (3.2)with ε = εm, λ1 = λ yields

x(t) = x0 + (Ix)(t) + Iαf(t, x(t)). (3.12)

This proves that x(t) is a solution of the IVP (1.2), and the proof is complete.

Theorem 3.2. Under the hypothesis of Theorem 3.1, there exists extremal solution for the IVP (1.2)
on the interval 0 ≤ t ≤ λ0, provided f(t, x) is nondecreasing in x for each t, where λ0 will be observed
in the proof of this theorem.

Proof. Wewill prove the existence of maximal solution only, since the case of minimal solution
is very similar. Let 0 < ε ≤ b/2 and consider the fractional differential equation with an initial
condition

L(D)[x(t) − x0] = f(t, x(t)) + ε, x(0) = x0 + ε. (3.13)

We observe that fε(t, x) = f(t, x) + ε is defined and continuous on

Ωε =
{
(t, x) : 0 ≤ t ≤ λ, |x − (x0 + ε)| ≤ b

2

}
, (3.14)
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Ωε ⊂ Ω0 and |fε(t, x) ≤ M + b/2 on Ωε. We then deduce from Theorem 3.1 that IVP (3.6) has
a solution x(t, ε) on the interval o ≤ t ≤ λ0. Now for 0 < ε2 < ε1 ≤ ε, we have

x(0, ε2) = x(0) + ε2 < x(0) + ε1 = x(0, ε1),

x(t, ε2) ≤ x(0, ε2) + Ix(t, ε2) + Iαfε2(t, x(t, ε2))

x(t, ε1) ≥ x(0, ε1) + Ix(t, ε1) + Iαfε1(t, x(t, ε1)),

(3.15)

where Ixwas introduced by (2.2). In view of Theorem 2.1 to get x(t, ε2) < x(t, ε1), t ∈ (0, λ0).
Consider the family of functions {x(t, ε)} on 0 ≤ t ≤ λ0. We have

|x(t, ε) − x(0, ε)| = ∣∣Ix(t, ε) + Iαfε(t, x(t, ε))
∣∣

=
∣∣Ix(t, ε2) + Iα

{
f(t, x(t, ε)) + ε

}∣∣

≤
n∑

k=0

ρ(1 + ‖x‖)
Γ
(
α − β + k

)
∫ t

0
(s − t)α−β+k−1

+
1

Γ(α)

∫ t

0
(t − s)α−1

(∣∣f(t, x(t, ε))∣∣ + ε
)
ds

=
n∑

k=0

ρ(1 + ‖x‖)
Γ
(
α − β + k + 1

) tα−β+k + M + ε

Γ(α + 1)
tα

≤
n∑

k=0

ρ(1 + ‖x‖)
Γ
(
α − β + k + 1

)λ0α−β+k + 2M + b

2Γ(α + 1)
λ0

α ≤ b,

(3.16)

where ρ was denoted by (3.4), ‖x‖ = max{|x(t, ε)| : t ∈ [0, λ0], ε ∈ [0, b/2]} and

λ0 = min

{
r,

[
2bΓ(α + 1)

(n + 2)(2M + b)

]1/α
,

[
bΓ(α − β + k + 1)
ρ (‖x‖ + 1)(n + 2)

]1/(α−β+k)
, k = 0, n

}
. (3.17)

Showing that the family {x(t, ε)} is uniformly bounded. Also, if 0 ≤ t1 ≤ t2 ≤ λ0 then there
exists a constant Λ∗ such that

|x(t1, ε) − x(t2, ε)| ≤ 2Λ∗
{

[n/2]∑
k=0

(t2 − t1)α−β+2k

α − β + 2k
+

[n/2]+1∑
k=0

(t2 − t1)α−β+2k+1

α − β + 2k + 1

}
+

2M + b

2Γ(α + 1)
(t2 − t1)α.

(3.18)

Following the computation similar to (3.10)with suitable changes. This proves that the family
{x(t, ε)} is equicontinuous. Hence there exists a sequence {εm} with εm → 0 as m → ∞ and
the uniform limit

μ(t) = lim
m→∞

x(t, εm) (3.19)
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exists on [0, λ0]. Clearly μ(0) = x0. The uniform continuity of f gives argument as before (as
in Theorem 3.1), that μ(t) is a solution of IVP (1.2).

Next, we show that μ(t) is required maximal solution of (1.2), on 0 ≤ t ≤ λ0. Let x(t)
be a any solution of (1.2) on 0 ≤ t ≤ λ0. Then we have

x0 < x0 + ε = x(0, ε)

x(t) < x0 + Ix(t) + 1
Γ(α)

∫ t

0
(t − s)α−1fε(s, x(s))ds,

x(t, ε) ≥ x(0, ε) + Ix(t, ε) + 1
Γ(α)

∫ t

0
(t − s)α−1fε(s, x(s, ε)),

(3.20)

where x(0, ε) = x0 + ε, fε(t, x(t)) = f(t, x(t)) + ε, and fε(t, x(t, ε)) = f(t, x(t, ε)) + ε.
Using Theorem 2.1, we get x(t) < x(t, ε) on [0, λ0] as ε → 0. Therefore, the proof is

complete.

4. Global Existence

We need the following comparison result before we proceed further.

Theorem 4.1. Assume that h : [0, T] → R+, g : [0, T] × R+ → R+ are continuous, and g(t, u) is
nondecreasing with respect to the second argument such that

h(t) ≤ h(0) + Ih(t) + 1
Γ(α)

∫ t

0
(t − s)α−1g(s, h(s))ds, t ∈ [0, T], (4.1)

where I is defined by (3.5). Let m(t) be the maximal solution of

L(D)[u(t) − u(0)] = g(t, u), u(0) = u0 ≥ 0, (4.2)

existing on [0, T) such that h(0) ≤ u(0). Then we have

h(t) ≤ m(t), t ∈ [0, T]. (4.3)

Proof. In view of the definition of themaximal solutionm(t), it is enough to prove, to conclude
(4.3), that

h(t) < u(t, ε), t ∈ [0, T], (4.4)

where u(t, ε) is any solution of

L(D)[u(t) − u(0)] = g(t, u) + ε, u(0) = u0 + ε, ε > 0. (4.5)
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Now, it follows from (4.4) that

u(t, ε) > u(0, ε) + Iu(t, ε) + 1
Γ(α)

∫ t

0
(t − s)α−1fε(s, u(s, ε))ds, (4.6)

where u(0, ε) = u0 + ε. Then applying Theorem 2.1, we get immediately (4.1) and since
limε→ 0u(t, ε) = m(t) uniformly on each t ∈ [0, T0], T0 < T , the proof is complete.

We are now in position to prove global existence result.

Theorem 4.2. Assume that f : [0,∞) × R → R continuous. Let there exists function g : [0,∞) ×
R

+ → R
+ continuous and nondecreasing with respect to the second argument such that

∣∣f(t, x)∣∣ ≤ g(t, |x|) ∀t ≥ 0, x ∈ R. (4.7)

If the maximal solution of the initial value problem

L(D)[u(t) − u(0)] = g(t, u(t)), u(0) = u0, t > 0 (4.8)

exists in [0,∞) then all solutions of the initial value problem

L(D)[x(t) − x(0)] = f(t, x(t)), x(0) = x0 (4.9)

with |x0| ≤ u0 exist in [0,∞).

Proof. Let x(t, x0) be any solution of IVP (4.8) such that |x0| ≤ u0, which exists on [0, γ) for
γ ∈ (0,∞), and the value of γ cannot be increased further. Set h(t) = |x(t, x0)| for 0 ≤ t < γ .
Then using the assumption (4.4), we get

h(t) ≤ |x0| + Ih(t) + 1
Γ(α)

∫ t

0
(t − s)α−1g(s, h(s))ds. (4.10)

Applying the comparison Theorem 4.1, we obtain

h(t) = |x(t, x0)| ≤ m(t), 0 ≤ t < γ. (4.11)

Since m(t) is assumed to exist on [0,∞), it follows that

∣∣g(t,m(t))
∣∣ ≤ M, 0 ≤ t ≤ γ. (4.12)
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Now, let 0 ≤ t1 ≤ t2 < γ . Then employing the arguments similar to estimating (3.19) and using
(4.7) and the bounded M of g we arrive at

|x(t2, x0) − x(t1, x0)| ≤ 2M
Γ(α + 1)

(t2 − t1)α

+ 2Λ

{
[n/2]∑
k=0

(t2 − t1)α−β+2k

α − β + 2k
+

[n/2]+1∑
k=0

(t2 − t1)α−β+2k+1

α − β + 2k + 1

}
.

(4.13)

Letting t1, t2 → γ− and using Cauchy criterion, it follows that limt→ γ−x(t, x0) exists. We define
x(γ, x0) = limt→ γ−x(t, x0) and consider the new IVP

L(D)[x(t) − x(0)] = f(t, x(t)), x
(
γ
)
= x

(
γ, x0

)
. (4.14)

By the assumed local existence, we find that x(t, x0) can be continued beyond γ , contradicting
our assumption. Hence, every solution x(t, x0) of (4.9) exists on [0,∞), and the proof is
complete.
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