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We investigate the asymptotic behavior of solutions of the following higher-order dynamic
equation xΔn

(t) + f(t, x(t), xΔ(t), . . . , xΔn−1
(t)) = 0, on an arbitrary time scale T, where the

function f is defined on T × Rn. We give sufficient conditions under which every solution x of
this equation satisfies one of the following conditions: (1) limt→∞xΔn−1

(t) = 0; (2) there exist
constants ai (0 ≤ i ≤ n − 1) with a0 /= 0, such that limt→∞x(t)/

∑n−1
i=0 aihn−i−1(t, t0) = 1, where

hi(t, t0) (0 ≤ i ≤ n − 1) are as in Main Results.

1. Introduction

In this paper, we investigate the asymptotic behavior of solutions of the following higher-
order dynamic equation

xΔn

(t) + f
(
t, x(t), xΔ(t), . . . , xΔn−1

(t)
)
= 0, (1.1)

on an arbitrary time scale T, where the function f is defined on T × Rn.
Since we are interested in the asymptotic and oscillatory behavior of solutions near

infinity, we assume that supT = ∞, and define the time scale interval [t0,∞)T = {t ∈ T :
t ≥ t0}, where t0 ∈ T. By a solution of (1.1), we mean a nontrivial real-valued function
x ∈ Crd([Tx,∞)T,R), Tx ≥ t0, which has the property that xΔn

(t) ∈ Crd([Tx,∞)T,R) and
satisfies (1.1) on [Tx,∞)T, where Crd is the space of rd-continuous functions. The solutions
vanishing in some neighborhood of infinity will be excluded from our consideration.
A solution x of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is called nonoscillatory.
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The theory of time scales, which has recently received a lot of attention, was introduced
by Hilger’s landmark paper [1] in order to create a theory that can unify continuous
and discrete analysis. The cases when a time scale is equal to the real numbers or to the
integers represent the classical theories of differential and of difference equations. Many other
interesting time scales exist, and they give rise to many applications (see [2]). Not only the
new theory of the so-called “dynamic equations” unifies the theories of differential equations
and difference equations but also extends these classical cases to cases “in between,” for
example, to the so-called q-difference equations when T = qN0 , which has important
applications in quantum theory (see [3]).

On a time scale T, the forward jump operator, the backward jump operator, and the
graininess function are defined as

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t, (1.2)

respectively. We refer the reader to [2, 4] for further results on time scale calculus. Let p ∈
Crd(T,R) with 1 + μ(t)p(t)/= 0, for all t ∈ T, then the delta exponential function ep(t, t0) is
defined as the unique solution of the initial value problem

yΔ = p(t)y,

y(t0) = 1.
(1.3)

In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of various equations on time scales, and we refer the reader to
[5–18].

Recently, Erbe et al. [19–21] considered the asymptotic behavior of solutions of the
third-order dynamic equations

(

a(t)
[
r(t)xΔ(t)

]Δ
)Δ

+ p(t)f(x(t)) = 0,

xΔΔΔ(t) + p(t)x(t) = 0,
(

a(t)
{[

r(t)xΔ(t)
]Δ
}γ)Δ

+ f(t, x(t)) = 0,

(1.4)

respectively, and established some sufficient conditions for oscillation.
Karpuz [22] studied the asymptotic nature of all bounded solutions of the following

higher-order nonlinear forced neutral dynamic equation

[x(t) +A(t)x(α(t))]Δ
n

+ f
(
t, x
(
β(t)
)
, x
(
γ(t)
))

= ϕ(t). (1.5)

Chen [23] derived some sufficient conditions for the oscillation and asymptotic
behavior of the nth-order nonlinear neutral delay dynamic equations

{

a(t)Ψ(x(t))
[∣
∣
∣
(
x(t) + p(t)x(τ(t))

)Δn−1∣∣
∣
α−1

(x(t) + p(t)x(τ(t)))Δ
n−1
]γ}Δ

+ λF(t, x(δ(t))) = 0,

(1.6)
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on an arbitrary time scale T. Motivated by the above studies, in this paper, we study (1.1) and
give sufficient conditions under which every solution x of (1.1) satisfies one of the following
conditions: (1) limt→∞xΔn−1

(t) = 0; (2) there exist constants ai (0 ≤ i ≤ n − 1)with a0 /= 0, such
that limt→∞x(t)/

∑n−1
i=0 aihn−i−1(t, t0) = 1, where hi(t, t0) (0 ≤ i ≤ n − 1) are as in Section 2.

2. Main Results

Let k be a nonnegative integer and s, t ∈ T, then we define a sequence of functions hk(t, s) as
follows:

hk(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if k = 0,
∫ t

s

hk−1(τ, s)Δτ if k ≥ 1.
(2.1)

To obtain our main results, we need the following lemmas.

Lemma 2.1. Let n be a positive integer, then there exists Tn > t0, such that

hk+1(t, t0) − hk(t, t0) ≥ 1 for t ≥ Tn, 0 ≤ k ≤ n − 1. (2.2)

Proof. We will prove the above by induction. First, if k = 0, then we take T1 ≥ t0 + 2. Thus,

h1(t, t0) − h0(t, t0) = t − t0 − 1 ≥ 1 for t ≥ T1. (2.3)

Next, we assume that there exists Tm > t0, such that hk+1(t, t0) − hk(t, t0) ≥ 1 for t ≥ Tm and
0 ≤ k ≤ m with 0 ≤ m < n − 1, then

hm+1(t, t0) − hm(t, t0) =
∫ t

t0

(hm(τ, t0) − hm−1(τ, t0))Δτ

=
∫Tm

t0

(hm(τ, t0) − hm−1(τ, t0))Δτ +
∫ t

Tm

(hm(τ, t0) − hm−1(τ, t0))Δτ

≥
∫Tm

t0

(hm(τ, t0) − hm−1(τ, t0))Δτ +
∫ t

Tm

Δτ

=
∫Tm

t0

(hm(τ, t0) − hm−1(τ, t0))Δτ + t − Tm,

(2.4)

fromwhich it follows that there exists Tm+1 > Tm, such that hk+1(t, t0)−hk(t, t0) ≥ 1 for t ≥ Tm+1

and 0 ≤ k ≤ m + 1. The proof is completed.
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Lemma 2.2 (see [24]). Let p ∈ Crd(T, [0,∞)), then

1 +
∫ t

t0

p(s)Δs ≤ ep(t, t0) ≤ e
∫ t
t0
p(s)Δs

. (2.5)

Lemma 2.3 (see [2]). Let y, p ∈ Crd(T, [0,∞)) and A ∈ [0,∞), then

y(t) ≤ A +
∫ t

t0

y(τ)p(τ)Δτ, ∀t ∈ T (2.6)

implies

y(t) ≤ Aep(t, t0), ∀t ∈ T. (2.7)

Lemma 2.4 (see [2]). Let n be a positive integer. Suppose that x is n times differentiable on T. Let
α ∈ Tκn−1

and t ∈ T, then

x(t) =
n−1∑

k=0

hk(t, α)xΔk

(α) +
∫ρn−1(t)

α

hn−1(t, σ(τ))xΔn

(τ)Δτ. (2.8)

Lemma 2.5 (see [2]). Assume that f and g are differentiable on T with limt→∞g(t) = ∞. If there
exists T > t0, such that

g(t) > 0, gΔ(t) > 0, ∀t ≥ T, (2.9)

then

lim
t→∞

fΔ(t)
gΔ(t)

= r (or ∞) implies lim
t→∞

f(t)
g(t)

= r (or ∞). (2.10)

Lemma 2.6 (see [23]). Let x be defined on [t0,∞)T, and x(t) > 0 with xΔn
(t) ≤ 0 for t ≥ t0 and not

eventually zero. If x is bounded, then

(1) limt→∞xΔi
(t) = 0 for 1 ≤ i ≤ n − 1,

(2) (−1)i+1xΔn−i
(t) > 0 for all t ≥ t0 and 1 ≤ i ≤ n − 1.

Now, one states and proves the main results.

Theorem 2.7. Assume that there exists t1 > t0, such that the function f(t, u0, . . . , un−1) satisfies

∣
∣f(t, u0, . . . , un−1)

∣
∣ ≤

n−1∑

i=0

pi(t)|ui|, ∀(t, u0, . . . , un−1) ∈ [t1,∞)T × Rn, (2.11)
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where pi(t) (0 ≤ i ≤ n − 1) are nonnegative functions on [t1,∞)T and

lim
t→∞

eq(t, t1) < ∞, (2.12)

with q(t) =
∑n−1

i=0 pi(t)hn−i−1(t, t0) (t ≥ t1), then every solution x of (1.1) satisfies one of the following
conditions:

(1) limt→∞xΔn−1
(t) = 0,

(2) there exist constants ai (0 ≤ i ≤ n − 1) with a0 /= 0, such that

lim
t→∞

x(t)
∑n−1

i=0 aihn−i−1(t, t0)
= 1. (2.13)

Proof. Let x be a solution of (1.1), then it follows from Lemma 2.4 that for 0 ≤ m ≤ n − 1,

xΔm

(t) =
n−m−1∑

k=0

hk(t, t1)xΔk+m
(t1) +

∫ρn−m−1(t)

t1

hn−m−1(t, σ(τ))xΔn

(τ)Δτ for t ≥ t1. (2.14)

By (2.11) and Lemma 2.1, we see that there exists T > t1, such that for t ≥ T and 0 ≤ m ≤ n− 1,

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)

[
n−m−1∑

k=0

∣
∣
∣xΔk+m

(t1)
∣
∣
∣ +
∫ t

t1

n−1∑

i=0

pi(τ)
∣
∣
∣xΔi

(τ)
∣
∣
∣Δτ

]

. (2.15)

Then we obtain

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)F(t) for t ≥ T, 0 ≤ m ≤ n − 1, (2.16)

where

F(t) = A +
∫ t

T

n−1∑

i=0

pi(τ)
∣
∣
∣xΔi

(τ)
∣
∣
∣Δτ, (2.17)

with

A = max
0≤m≤n−1

{
n−m−1∑

k=0

∣
∣
∣xΔk+m

(t1)
∣
∣
∣

}

+
∫T

t1

n−1∑

i=0

pi(τ)
∣
∣
∣xΔi

(τ)
∣
∣
∣Δτ. (2.18)

Using (2.16) and (2.17), it follows that

F(t) ≤ A +
∫ t

T

n−1∑

i=0

pi(τ)hn−i−1(τ, t0)F(τ)Δτ for t ≥ T. (2.19)
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By Lemma 2.3, we have

F(t) ≤ Aeq(t, T) ∀t ≥ T, (2.20)

with q(t) =
∑n−1

i=0 pi(t)hn−i−1(t, t0). Hence from (2.12), there exists a finite constant c > 0, such
that F(t) ≤ c for t ≥ T . Thus, inequality (2.20) implies that

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)c for t ≥ T, 0 ≤ m ≤ n − 1. (2.21)

By (1.1), we see that if t ≥ T , then

xΔn−1
(t) = xΔn−1

(T) −
∫ t

T

f
(
τ, x(τ), xΔ(τ), . . . , xΔn−1

(τ)
)
Δτ. (2.22)

Since condition (2.12) and Lemma 2.2 implies that

lim
t→∞

∫ t

T

n−1∑

i=0

pi(τ)hn−i−1(τ, t0)Δτ < ∞, (2.23)

we find from (2.11) and (2.21) that the sum in (2.22) converges as t → ∞. Therefore,
limt→∞xΔn−1

(t) exists and is a finite number. Let limt→∞xΔn−1
(t) = a0. If a0 /= 0, then it follows

from Lemma 2.5 that

lim
t→∞

x(t)
hn−1(t, t0)

= lim
t→∞

xΔn−1
(t) = a0, (2.24)

and x has the desired asymptotic property. The proof is completed.

Theorem 2.8. Assume that there exist functions pi : [t0,∞)T → (0,∞) (0 ≤ i ≤ n), and
nondecreasing continuous functions gi : (0,∞) → (0,∞) (0 ≤ i ≤ n − 1), and t1 > t0 such that

∣
∣f(t, u0, . . . , un−1)

∣
∣ ≤

n−1∑

i=0

pi(t)gi
( |ui|
hn−i−1(t, t0)

)

+ pn(t) for t ≥ t1, (2.25)

with

∫∞

t1

pi(t)Δt = Pi < ∞ for 0 ≤ i ≤ n,

∫∞

ε

ds
∑n−1

i=0 gi(s)
= ∞ for any ε > 0,

(2.26)
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then every solution x of (1.1) satisfies one of the following conditions:

(1) limt→∞xΔn−1
(t) = 0,

(2) there exist constants ai (0 ≤ i ≤ n − 1) with a0 /= 0 such that

lim
t→∞

x(t)
∑n−1

i=0 aihn−i−1(t, t0)
= 1. (2.27)

Proof. Let x be a solution of (1.1), then it follows from Lemma 2.4 that for 0 ≤ m ≤ n − 1,

xΔm

(t) =
n−m−1∑

k=0

hk(t, t1)xΔk+m
(t1) +

∫ρn−m−1(t)

t1

hn−m−1(t, σ(τ))xΔn

(τ)Δτ for t ≥ t1. (2.28)

By Lemma 2.1 and (2.25), we see that there exists T > t1, such that for t ≥ T and 0 ≤ m ≤ n− 1,

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)

⎡

⎣
n−m−1∑

k=0

∣
∣
∣xΔk+m

(t1)
∣
∣
∣ +
∫ t

t1

⎡

⎣
n−1∑

i=0

pi(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠ + pn(τ)

⎤

⎦Δτ

⎤

⎦.

(2.29)

Then, we obtain

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)F(t), for t ≥ T, 0 ≤ m ≤ n − 1, (2.30)

where

F(t) = A +
∫ t

T

n−1∑

i=0

pi(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠Δτ, (2.31)

with

A = max
0≤m≤n−1

{
n−m−1∑

k=0

∣
∣
∣xΔk+m

(t1)
∣
∣
∣

}

+
∫T

t1

n−1∑

i=0

pi(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠Δτ + Pn. (2.32)

Using (2.30) and (2.31), it follows that

F(t) ≤ A +
∫ t

T

n−1∑

i=0

pi(τ)gi(F(τ))Δτ for t ≥ T. (2.33)
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Write

u(t) = A +
∫ t

T

n−1∑

i=0

pi(τ)gi(F(τ))Δτ for t ≥ T, (2.34)

G
(
y
)
=
∫y

A

ds
∑n−1

i=0 gi(s)
, (2.35)

then

[G(u(t))]Δ = uΔ(t)
∫1

0
G′(hu(t) + (1 − h)uσ(t))dh

=

(
n−1∑

i=0

pi(t)gi(F(t))

)∫1

0

dh
∑n−1

i=0 gi(hu(t) + (1 − h)uσ(t))

≤
∑n−1

i=0 pi(t)gi(u(t))
∑n−1

i=0 gi(u(t))

≤
n−1∑

i=0

pi(t),

(2.36)

from which it follows that

G(u(t)) ≤ G(u(T)) +
∫ t

T

n−1∑

i=0

pi(τ)Δτ ≤ G(u(T)) +
n−1∑

i=0

Pi. (2.37)

Since limy→∞G(y) = ∞ and G(y) is strictly increasing, there exists a constant c > 0, such that
u(t) ≤ c for t ≥ T . By (2.30), (2.33), and (2.34), we have

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)c for t ≥ T, 0 ≤ m ≤ n − 1. (2.38)

It follows from (1.1) that if t ≥ T , then

xΔn−1
(t) = xΔn−1

(T) −
∫ t

T

f
(
τ, x(τ), xΔ(τ), . . . , xΔn−1

(τ)
)
Δτ. (2.39)
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Since (2.38) and condition (2.25) implies that

∫ t

T

∣
∣
∣f
(
τ, x(τ), xΔ(τ), . . . , xΔn−1

(τ)
)∣
∣
∣Δτ

≤
∫ t

T

⎡

⎣
n−1∑

i=0

pi(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠ + pn(τ)

⎤

⎦Δτ

≤
n−1∑

i=0

Pigi(c) + Pn

= M < ∞,

(2.40)

we see that the sum in (2.39) converges as t → ∞. Therefore, limt→∞xΔn−1
(t) exists and is a

finite number. Let limt→∞xΔn−1
(t) = a0. If a0 /= 0, then it follows from Lemma 2.5 that

lim
t→∞

x(t)
hn−1(t, t0)

= lim
t→∞

xΔn−1
(t) = a0, (2.41)

and x has the desired asymptotic property. The proof is completed.

Theorem 2.9. Assume that there exist positive functions p : [t0,∞)T → (0,∞), and nondecreasing
continuous functions gi : (0,∞) → (0,∞) (0 ≤ i ≤ n − 1), and t1 > t0, such that

∣
∣f(t, u0, . . . , un−1)

∣
∣ ≤ p(t)

n−1∏

i=0

gi

( |ui|
hn−i−1(t, t0)

)

for t ≥ t1, (2.42)

with

∫∞

t1

p(t)Δt = P < ∞,

∫∞

ε

ds
∏n−1

i=0 gi(s)
= ∞, for any ε > 0,

(2.43)

then every solution x of (1.1) satisfies one of the following conditions:

(1) limt→∞xΔn−1
(t) = 0,

(2) there exist constants ai (0 ≤ i ≤ n − 1) with a0 /= 0, such that

lim
t→∞

x(t)
∑n−1

i=0 aihn−i−1(t, t0)
= 1. (2.44)
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Proof. Arguing as in the proof of Theorem 2.8, we see that there exists T > t1, such that for
t ≥ T and 0 ≤ m ≤ n − 1,

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)

⎡

⎣
n−m−1∑

k=0

∣
∣
∣xΔk+m

(t1)
∣
∣
∣ +
∫ t

t1

n−1∏

i=0

p(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠Δτ

⎤

⎦, (2.45)

from which we obtain

∣
∣
∣xΔm

(t)
∣
∣
∣ ≤ hn−m−1(t, t0)F(t) for t ≥ T, 0 ≤ m ≤ n − 1, (2.46)

where

F(t) = A +
∫ t

T

n−1∏

i=0

p(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠, (2.47)

A = max
0≤m≤n−1

{
n−m−1∑

k=0

∣
∣
∣xΔk+m

(t0)
∣
∣
∣

}

+
∫T

t1

n−1∏

i=0

p(τ)gi

⎛

⎝

∣
∣
∣xΔi

(τ)
∣
∣
∣

hn−i−1(τ, t0)

⎞

⎠. (2.48)

Using (2.46) and (2.47), it follows that

F(t) ≤ A +
∫ t

T

n−1∏

i=0

p(τ)gi(F(τ))Δτ for t ≥ T. (2.49)

Write

u(t) = A +
∫ t

T

n−1∏

i=0

p(τ)gi(F(τ))Δτ for t ≥ T, (2.50)

G
(
y
)
=
∫y

A

ds
∏n−1

i=0 gi(s)
, (2.51)

then

[G(u(t))]Δ = uΔ(t)
∫1

0
G′(hu(t) + (1 − h)uσ(t))dh

=

(
n−1∏

i=0

p(t)gi(F(t))

)∫1

0

dh
∏n−1

i=0 gi(hu(t) + (1 − h)uσ(t))

≤
∏n−1

i=0 p(t)gi(u(t))
∏n−1

i=0 gi(u(t))

= p(t),

(2.52)
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from which it follows that

G(u(t)) ≤ G(u(T)) +
∫ t

T

p(τ)Δτ ≤ G(u(T)) + P. (2.53)

The rest of the proof is similar to that of Theorem 2.8, and the details are omitted. The proof
is completed.

Theorem 2.10. Assume that the function f(t, u0, . . . , un−1) satisfies

(1) f(t, u0, . . . , un−1) = p(t)F(u0, . . . , un−1) for all (t, u0, . . . , un−1) ∈ [t0,∞)T × Rn,

(2) p(t) ≥ 0 for t ≥ t0 and
∫∞
t0
hn−1(τ, t0)p(τ)Δτ = ∞,

(3) u0F(u0, . . . , un−1) > 0 for u0 /= 0 and F(u0, . . . , un−1) is continuous at (u0, 0, . . . , 0) with
u0 /= 0,

then (1) if n is even, then every bounded solution of (1.1) is oscillatory; (2) if n is odd, then every
bounded solution x(t) of (1.1) is either oscillatory or tends monotonically to zero together with
xΔi

(t) (1 ≤ i ≤ n − 1).

Proof. Assume that (1.1) has a nonoscillatory solution x on [t0,∞), then, without loss of
generality, there is a t1 ≥ t0, sufficiently large, such that x(t) > 0 for t ≥ t1. It follows from
(1.1) that xΔn

(t) ≤ 0 for t ≥ t1 and not eventually zero. By Lemma 2.6, we have

lim
t→∞

xΔi

(t) = 0, for 1 ≤ i ≤ n − 1,

(−1)i+1xΔn−i
(t) > 0 ∀t ≥ t1, 1 ≤ i ≤ n − 1,

(2.54)

and x(t) is eventually monotone. Also xΔ(t) > 0 for t ≥ t1 if n is even and xΔ(t) < 0 for t ≥ t1
if n is odd. Since x(t) is bounded, we find limt→∞x(t) = c ≥ 0. Furthermore, if n is even, then
c > 0.

We claim that c = 0. If not, then there exists t2 > t1, such that

F
(
x(t), xΔ(t), . . . , xΔn−1

(t)
)
>

F(c, 0, . . . , 0)
2

> 0 for t ≥ t2, (2.55)

since F is continuous at (c, 0, . . . , 0) by the condition (3). From (1.1) and (2.55), we have

xΔn

(t) + p(t)
F(c, 0, . . . , 0)

2
≤ 0, for t ≥ t2. (2.56)

Multiplying the above inequality by hn−1(t, t0), and integrating from t2 to t, we obtain

∫ t

t2

hn−1(τ, t0)xΔn

(τ)Δτ +
∫ t

t2

hn−1(τ, t0)p(τ)
F(c, 0, . . . , 0)

2
Δτ ≤ 0, for t ≥ t2. (2.57)
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Since

∫ t

t2

hn−1(τ, t0)xΔn

(τ)Δτ ≥
n∑

i=1

(−1)i+1hn−i(τ, t0)xΔn−i
(τ)

∣
∣
∣
∣
∣

t

t2

≥
n∑

i=1

(−1)ihn−i(t2, t0)xΔn−i
(t2) + (−1)n+1x(t),

(2.58)

we get

A + (−1)n+1x(t) +
∫ t

t2

hn−1(τ, t0)p(τ)
F(c, 0, . . . , 0)

2
Δτ ≤ 0, for t ≥ t2, (2.59)

whereA =
∑n

i=1(−1)ihn−i(t2, t0)xΔn−i
(t2). Thus,

∫∞
t2
hn−1(τ, t0)p(τ)Δτ < ∞ since x(t) is bounded,

which gives a contradiction to the condition (2). The proof is completed.

3. Examples

Example 3.1. Consider the following higher-order dynamic equation:

xΔn

(t) +
n−1∑

i=0

1
tβi

xΔi
(t)

hn−i−1(t, t0)
= 0, (3.1)

where t ≥ t1 > t0 > 0 and βi > 1 (0 ≤ i ≤ n− 1). Let pi(t) = 1/[tβihn−i−1(t, t0)] (0 ≤ i ≤ n− 1) and

f(t, u0, . . . , un−1) =
n−1∑

i=0

1
tβi

ui

hn−i−1(t, t0)
, (3.2)

then we have

∣
∣f(t, u0, . . . , un−1)

∣
∣ ≤

n−1∑

i=0

pi(t)|ui|, ∀(t, u0, . . . , un−1) ∈ [t1,∞)T × Rn,

e∑n−1
i=0 pi(t)hn−i−1(t, t1) = e∑n−1

i=0 1/tβi (t, t1) ≤ e
∫ t
t1

∑n−1
i=0 1/τβiΔτ

< ∞,

(3.3)

by Example 5.60 in [4]. Thus, it follows from Theorem 2.7 that if x is a solution of (3.1)
with limt→∞xΔn−1

(t)/= 0, then there exist constants ai (0 ≤ i ≤ n − 1) with a0 /= 0, such that
limt→∞x(t)/

∑n−1
i=0 aihn−i−1(t, t0) = 1.

Example 3.2. Consider the following higher-order dynamic equation:

xΔn

(t) +
n−1∑

i=0

1
tβi

(
xΔi

(t)
hn−i−1(t, t0)

)αi

+
1
tβn

= 0, (3.4)
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where t > t0 > 0, αi ∈ (0, 1) (0 ≤ i ≤ n− 1), and βi > 1 (0 ≤ i ≤ n). Let gi(u) = uαi (0 ≤ i ≤ n− 1),
pi(t) = 1/tβi (0 ≤ i ≤ n), and

f(t, u0, . . . , un−1) =
n−1∑

i=0

1
tβi

(
ui

hn−i−1(t, t0)

)αi

+
1
tβn

. (3.5)

It is easy to verify that f(t, u0, . . . , un−1) satisfies the conditions of Theorem 2.8. Thus, it follows
that if x is a solution of (3.4) with limt→∞xΔn−1

(t)/= 0, then there exist constants ai (0 ≤ i ≤
n − 1) with a0 /= 0, such that limt→∞x(t)/

∑n−1
i=0 aihn−i−1(t, t0) = 1.

Example 3.3. Consider the following higher-order dynamic equation:

xΔn

(t) +
1
tβ

n−1∏

i=0

(
xΔi

(t)
hn−i−1(t, t0)

)αi

= 0, (3.6)

where t > t0 > 0, αi ∈ (0, 1) (0 ≤ i ≤ n − 1)with 0 <
∑n−1

i=0 αi < 1 and β > 1. Let gi(u) = uαi (0 ≤
i ≤ n − 1), p(t) = 1/tβ, and

f(t, u0, . . . , un−1) =
n−1∏

i=0

1
tβ

(
ui

hn−i−1(t, t0)

)αi

. (3.7)

It is easy to verify that f(t, u0, . . . , un−1) satisfies the conditions of Theorem 2.9. Thus, it follows
that if x is a solution of (3.6) with limt→∞xΔn−1

(t)/= 0, then there exist constants ai (0 ≤ i ≤
n − 1) with a0 /= 0, such that limt→∞x(t)/

∑n−1
i=0 aihn−i−1(t, t0) = 1.
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