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We investigate the zeros distributions of difference polynomials of meromorphic functions, which
can be viewed as the Hayman conjecture as introduced by (Hayman 1967) for difference. And we
also study the uniqueness of difference polynomials of meromorphic functions sharing a common
value, and obtain uniqueness theorems for difference.

1. Introduction

Ameromorphic functionmeansmeromorphic in thewhole complex plane. Given ameromor-
phic function f , recall that α/≡ 0, ∞ is a small function with respect to f , if T(r, α) = S(r, f),
where S(r, f) is used to denote any quantity satisfying S(r, f) = o(T(r, f)), as r → ∞
outside a possible exceptional set of finite logarithmic measure. We use notations ρ(f),
λ(1/f) to denote the order of growth of f and the exponent of convergence of the poles
of f , respectively. We say that meromorphic functions f and g share a finite value a IM
(ignoring multiplicities) when f − a and g − a have the same zeros. If f − a and g − a have
the same zeros with the same multiplicities, then we say that f and g share the value a CM
(counting multiplicities). We assume that the reader is familiar with standard notations and
fundamental results of Nevanlinna Theory [1–3].

As we all know that a finite value a is called the Picard exception value of f , if f − a
has no zeros. The Picard theorem shows that a transcendental entire function has at most
one Picard exception value, a transcendental meromorphic function has at most two Picard
exception values. The Hayman conjecture [4], is that if f is a transcendental meromorphic
function and n ∈ �, then fnf ′ takes every finite nonzero value infinitely often. This conjecture
has been solved by Hayman [5] for n ≥ 3, byMues [6] for n = 2, by Bergweiler and Eremenko
[7] for n = 1. From above, it is showed that the Picard exception value of fnf ′ may only
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be zero. Recently, for an analog of Hayman conjecture for difference, Laine and Yang [8,
Theorem 2] proved the following.

Theorem A. Let f be a transcendental entire function with finite order and c be a nonzero complex
constant. Then for n ≥ 2, f(z)nf(z + c) assumes every nonzero value a ∈ � infinitely often.

Remark 1.1. Theorem A implies that the Picard exception value of f(z)nf(z + c) cannot be
nonzero constant. However, Theorem A does not remain valid for meromorphic functions.
For example, f(z) = (ez − 1)/(ez + 1), n = 2, 3, c = iπ . Thus, we get that f(z)2f(z + c) =
(ez − 1)/(ez + 1) never takes the value −1, and f(z)3f(z+ c) = ((ez − 1)/(ez + 1))2 never takes
the value 1.

As the improvement of Theorem A to the case of meromorphic functions, we first
obtain the following theorem. In the following, we assume that α(z) and β(z) are small
functions with respect of f , unless otherwise specified.

Theorem 1.2. Let f be a transcendental meromorphic function with finite order and c be a nonzero
complex constant. If n ≥ 6, then the difference polynomial f(z)nf(z + c) − α(z) has infinitely many
zeros.

Remark 1.3. The restriction of finite order in Theorem 1.2 cannot be deleted. This can be seen
by taking f(z) = 1/P(z)ee

z
, ec = −n (n ≥ 6), P(z) is a nonconstant polynomial, and R(z) is a

nonzero rational function. Then f(z) is of infinite order and has finitely many poles, while

f(z)nf(z + c) − R(z) =
1 − P(z)nP(z + c)R(z)

P(z)nP(z + c)
(1.1)

has finitely many zeros. We have given the example when n = 2, 3 in Remark 1.1 to show that
f(z)nf(z + c) − α(z) may have finitely many zeros. But we have not succeed in reducing the
condition n ≥ 6 to n ≥ 4 in Theorem 1.2.

In the following, we will consider the zeros of other difference polynomials. Using the
similar method of the proof of Theorem 1.2 below, we also can obtain the following results.

Theorem 1.4. Let f be a transcendental meromorphic function with finite order and c be a nonzero
complex constant. If n ≥ 7, then the difference polynomial f(z)n[f(z+c)−f(z)]−α(z) has infinitely
many zeros.

Theorem 1.5. Let f be a transcendental meromorphic function with finite order and c be a nonzero
complex constant. If n ≥ 6,m,n ∈ �, then the difference polynomial f(z)n(f(z)m −a)f(z+ c)−α(z)
has infinitely many zeros.

Remark 1.6. The above two theorems also are not true when f is of infinite order, which can
be seen by function f(z) = ee

z
/z, ec = −n, where α(z) = 1/zn(z + c) in Theorem 1.4 and

α(z) = −a/zn(z + c) in Theorem 1.5.

Theorem 1.7. Let f be a transcendental meromorphic function with finite order and c be a
nonzero complex constant. If n ≥ 4m + 4, m,n ∈ �, then the difference polynomial f(z)n +
β(z)[f(z + c) − f(z)]m − α(z) has infinitely many zeros.



Advances in Difference Equations 3

Corollary 1.8. There is no transcendental finite order meromorphic solution of the nonlinear differ-
ence equation

f(z)n +H(z)
[
f(z + c) − f(z)

]m = R(z), (1.2)

where n ≥ 4m + 4 andH(z), R(z) are rational functions.

Remark 1.9. Some results about the zeros distributions of difference polynomials of entire
functions or meromorphic functions with the condition λ(1/f) < ρ(f) can be found in [9–
12]. Theorem 1.7 is a partial improvement of [11, Theorem 1.1] for f is an entire function and
is also an improvement of [13, Theorem 1.1] for the case of m = 1.

The uniqueness problem of differential polynomials of meromorphic functions has
been considered by many authors, such as Fang and Hua [14], Qiu and Fang [15], Xu and
Yi [16], Yang and Hua [17], and Lahiri and Rupa [18]. The uniqueness results for difference
polynomials of entire functions was considered in a recent paper [15], which can be stated as
follows.

Theorem B (see [19, Theorem 1.1]). Let f and g be transcendental entire functions with finite
order, and c be a nonzero complex constant. If n ≥ 6, f(z)nf(z + c) and g(z)ng(z + c) share z CM,
then f = t1g for a constant t1 that satisfies tn+11 = 1.

Theorem C (see [19, Theorem 1.2]). Let f and g be transcendental entire functions with finite
order, and c be a nonzero complex constant. If n ≥ 6, f(z)nf(z + c) and g(z)ng(z + c) share 1CM,
then fg = t2 or f = t3g for some constants t2 and t3 that satisfy tn+12 = 1 and tn+13 = 1.

In this paper, we improve Theorems B and C to meromorphic functions and obtain the
following results.

Theorem 1.10. Let f and g be transcendental meromorphic functions with finite order. Suppose that
c is a nonzero constant and n ∈ �. If n ≥ 14, f(z)nf(z + c) and g(z)ng(z + c) share 1 CM, then
f = tg or fg = t, where tn+1 = 1.

Theorem 1.11. Under the conditions of Theorem 1.10, if n ≥ 26, f(z)nf(z + c) and g(z)ng(z + c)
share 1 IM, then f = tg or fg = t, where tn+1 = 1.

Remark 1.12. Let f(z) = (ez − 1)/(ez + 1) and g(z) = (ez + 1)/(ez − 1), c = iπ . Thus, f(z)nf(z+
c) = ((ez − 1)/(ez + 1))n−1 and g(z)ng(z + c) = ((ez + 1)/(ez − 1))n−1 share the value 1CM.
From above, the case fg = t, where tn+1 = 1 may occur in Theorems 1.10 and 1.11.

From the proof of Theorem 1.11 and (2.7) below, we obtain easily the next result.

Corollary 1.13. Let f and g be transcendental entire functions with finite order, and c be a nonzero
complex constant. If n ≥ 12, f(z)nf(z + c) and g(z)ng(z + c) share 1 IM, then f = tg or fg = t,
where tn+1 = 1.

2. Some Lemmas

The difference logarithmic derivative lemma of functions with finite order, given by Chiang
and Feng [20, Corollary 2.5], Halburd and Korhonen [21, Theorem 2.1], plays an important
part in considering the difference Nevanlinna theory. Here, we state the following version.
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Lemma 2.1 (see [22, Theorem 5.6]). Let f be a transcendental meromorphic function of finite order,
and let c ∈ � . Then

m

(
r,
f(z + c)
f(z)

)
= S

(
r, f

)
, (2.1)

for all r outside of a set of finite logarithmic measure.

Lemma 2.2 (see [20, Theorem 2.1]). Let f(z) be a transcendental meromorphic function of finite
order. Then,

T
(
r, f(z + c)

)
= T

(
r, f

)
+ S

(
r, f

)
. (2.2)

For the proof of Theorem 1.4, we need the following lemma.

Lemma 2.3. Let f(z) be a transcendental meromorphic function of finite order. Then,

T
(
r, f(z)n

[
f(z + c) − f(z)

]) ≥ (n − 1)T
(
r, f

)
+ S

(
r, f

)
. (2.3)

Proof. Assume that G(z) = f(z)n[f(z + c) − f(z)], then

1

f(z)n+1
=

1
G

f(z + c) − f(z)
f(z)

. (2.4)

Using the first and second main theorems of Nevanlinna theory and Lemma 2.1, we get

(n + 1)T
(
r, f

) ≤ T(r, G(z)) + T

(
r,
f(z + c) − f(z)

f(z)

)
+O(1)

≤ T(r, G(z)) +m

(
r,
f(z + c) − f(z)

f(z)

)
+N

(
r,
f(z + c) − f(z)

f(z)

)
+O(1)

≤ T(r, G(z)) +N

(
r,
f(z + c)
f(z)

)
+ S

(
r, f

)

≤ T(r, G(z)) + 2T
(
r, f

)
+ S

(
r, f

)
,

(2.5)

thus, we get the (2.3).

In order to prove Theorem 1.5 and Corollary 1.13, we also need the next result.

Lemma 2.4. Let f(z) be a transcendental meromorphic function with finite order, F = f(z)n(f(z)m−
a)f(z + c). Then

T(r, F) ≥ (n +m − 1)T
(
r, f

)
+ S

(
r, f

)
. (2.6)
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If f is a transcendental entire function with finite order, andm = 0, a/= 1, then

T
(
r, f(z)nf(z + c)

)
= (n + 1)T

(
r, f

)
+ S

(
r, f

)
. (2.7)

Proof. We deduce from Lemma 2.1 and the standard Valiron-Mohon’ko [23] theorem,

(n +m + 1)T
(
r, f

)
= T

(
r, fn+1(fm − a

))

≤ m
(
r, fn+1(fm − a

))
+N

(
r, fn+1(fm − a

))

≤ m

(
r, F(z)

f(z)
f(z + c)

)
+N

(
r, F(z)

f(z)
f(z + c)

)

≤ T(r, F) +m

(
r,

f(z)
f(z + c)

)
+N

(
r,

f(z)
f(z + c)

)
+ S

(
r, f

)

≤ T(r, F) + 2T
(
r, f

)
+ S

(
r, f

)
.

(2.8)

Thus, (2.6) follows from (2.8). If f is entire andm = 0, a/= 1, then from above, we get

T
(
r, f(z)nf(z + c)

) ≥ (n + 1)T
(
r, f

)
+ S

(
r, f

)
. (2.9)

Moreover, T(r, f(z)nf(z + c)) ≤ (n + 1)T(r, f) + S(r, f) follows by Lemma 2.2. Thus (2.7) is
proved.

Lemma 2.5 (see [17, Lemma 3]). Let F andG be two nonconstant meromorphic functions. If F and
G share 1CM, then one of the following three cases holds:

(i) max{T(r, F), T(r, G)} ≤ N2(r, 1/F) + N2(r, F) + N2(r, 1/G) + N2(r, G) + S(r, F) +
S(r, G),

(ii) F = G,

(iii) F ·G = 1,

whereN2(r, 1/F) denotes the counting function of zeros of F such that simple zeros are counted once
and multiple zeros are counted twice.

For the proof of Theorem 1.11, we need the following lemma.

Lemma 2.6 (see [16, Lemma 2.3]). Let F and G be two nonconstant meromorphic functions, and
F and G share 1 IM. Let

H =
F ′′

F ′ − 2
F ′

F − 1
− G′′

G′ + 2
G′

G − 1
. (2.10)
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If H /≡ 0, then

T(r, F) + T(r, G) ≤ 2
(
N2

(
r,

1
F

)
+N2(r, F) +N2

(
r,

1
G

)
+N2(r, G)

)

+ 3
(
N(r, F) +N(r, G) +N

(
r,

1
F

)
+N

(
r,

1
G

))
+ S(r, F) + S(r, G).

(2.11)

3. Proof of the Theorems

Proof of Theorem 1.2. Since f is a transcendental meromorphic function, assume that G(z) =
f(z)nf(z + c) − α(z), then we can get

T(r, G(z)) ≥ T
(
r, f(z)nf(z + c)

)
+ S

(
r, f

)

≥ T
(
r, f(z)n

) − T
(
r, f(z + c)

)
+ S

(
r, f

)

≥ (n − 1)T
(
r, f(z)

)
+ S

(
r, f

)
.

(3.1)

Using the second main theorem, we have

(n − 1)T
(
r, f

) ≤ T(r, G) + S
(
r, f

)

≤ N(r, G) +N

(
r,

1
G

)
+N

(
r,

1
G + α(z)

)
+ S(r, G)

≤ N
(
r, f

)
+N

(
r, f(z + c)

)
+N

(
r,

1
f

)
+N

(
r,

1
f(z + c)

)
+N

(
r,

1
G

)
+ S

(
r, f

)

≤ 4T
(
r, f

)
+N

(
r,

1
G

)
+ S

(
r, f

)
.

(3.2)

So the condition n ≥ 6 implies that G must have infinitely many zeros.

Proof of Theorem 1.7. Let

ψ :=
β(z)

[
f(z + c) − f(z)

]m − α(z)
f(z)n

. (3.3)

We proceed to prove that ψ + 1 has infinitely many zeros, which implies that f(z)n +
β(z)[f(z + c) − f(z)]m − α(z) has infinitely many zeros. We first prove that

T
(
r, ψ

) ≥ (n − 2m)T
(
r, f

)
+ S

(
r, f

)
. (3.4)
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Applying the first main theorem and Lemma 2.2, we observe that

T
(
r, f(z)n

)
= T

(

r, ψ · 1
β(z)

[
f(z + c) − f(z)

]m − R(z)

)

+O(1)

≤ T
(
r, ψ

)
+ T

(
r, β(z)

[
f(z + c) − f(z)

]m − α(z)
)
+O(1)

≤ T
(
r, ψ

)
+ 2mT

(
r, f

)
+ S

(
r, f

)
.

(3.5)

From (3.5), we easily obtain the inequality (3.4). Concerning the zeros and poles of ψ, we
have

N
(
r, ψ

) ≤ N
(
r, f(z + c)

)
+N

(
r,

1
f

)
+ S

(
r, f

)

≤ 2T
(
r, f

)
+ S

(
r, f

)
,

(3.6)

N

(
r,

1
ψ

)
≤ N

(
r, f

)
+N

(

r,
1

[
f(z + c) − f(z)

]m − α(z)/β(z)

)

+ S
(
r, f

)

≤ T
(
r, f

)
+ 2mT

(
r, f

)
+ S

(
r, f

)
.

(3.7)

Using the second main theorem, Lemma 2.2, (3.6) and (3.7), we get

(n − 2m)T
(
r, f

) ≤ T
(
r, ψ

)
+ S

(
r, f

)

≤ N
(
r, ψ

)
+N

(
r,

1
ψ

)
+N

(
r,

1
ψ + 1

)
+ S

(
r, f

)

≤ (3 + 2m)T
(
r, f

)
+N

(
r,

1
ψ + 1

)
+ S

(
r, f

)
.

(3.8)

Since n ≥ 4m + 4, then (3.8) implies that ψ + 1 has infinitely many zeros, completing the
proof.

Remark 3.1. It is easy to know that if α(z) ≡ 0, then (3.7) can be replaced by

N

(
r,

1
ψ

)
≤ 3T

(
r, f

)
+ S

(
r, f

)
, (3.9)

which implies that n ≥ 2m + 6 in Theorem 1.7.

Proof of Theorem 1.10. Let F(z) = f(z)nf(z+ c) and G(z) = g(z)ng(z+ c). Thus, F and G share
the value 1 CM. Suppose first that F /=G and F · G/= 1. From the beginning of the proof of
Theorem 1.2, we obtain

T(r, F) ≥ (n − 1)T
(
r, f

)
+ S

(
r, f

)
,

T(r, G) ≥ (n − 1)T
(
r, g

)
+ S

(
r, g

)
.

(3.10)
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Moreover, from Lemma 2.2, it is easy to get

T(r, G) ≤ (n + 1)T
(
r, g

)
+ S

(
r, g

)
,

T(r, F) ≤ (n + 1)T
(
r, f

)
+ S

(
r, f

)
.

(3.11)

Using the second main theorem, we have

T(r, F) ≤ N(r, F) +N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
+ S(r, F)

≤ N
(
r, f

)
+N

(
r, f(z + c)

)
+N

(
r,

1
f

)
+N

(
r,

1
f(z + c)

)
+N

(
r,

1
G − 1

)
+ S

(
r, f

)

≤ 4T
(
r, f

)
+ T(r, G) + S

(
r, f

)

≤ 4T
(
r, f

)
+ (n + 1)T

(
r, g

)
+ S

(
r, g

)
+ S

(
r, f

)
.

(3.12)

Thus,

(n − 5)T
(
r, f

) ≤ (n + 1)T
(
r, g

)
+ S

(
r, g

)
+ S

(
r, f

)
. (3.13)

Similarly, we obtain

(n − 5)T
(
r, g

) ≤ (n + 1)T
(
r, f

)
+ S

(
r, g

)
+ S

(
r, f

)
. (3.14)

Therefore, from (3.13) and (3.14), S(r, f) = S(r, g) follows. From the definition of F, we get

N2

(
r,

1
F

)
≤ 2N

(
r,

1
f

)
+N

(
r,

1
f(z + c)

)
+ S

(
r, f

)

≤ 3T
(
r, f

)
+ S

(
r, f

)
.

(3.15)

Similarly, we can get

N2

(
r,

1
G

)
≤ 3T

(
r, g

)
+ S

(
r, f

)
, (3.16)

N2(r, F) ≤ 3T
(
r, f

)
+ S

(
r, f

)
, (3.17)

N2(r, G) ≤ 3T
(
r, g

)
+ S

(
r, g

)
. (3.18)

Thus,

T(r, F) + T(r, G) ≤ 2N2

(
r,

1
F

)
+ 2N2(r, F) + 2N2

(
r,

1
G

)
+ 2N2(r, G) + S

(
r, f

)

≤ 12
(
T
(
r, f

)
+ T

(
r, g

))
+ S

(
r, f

)
.

(3.19)
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Then, from (3.10), and (3.19), we have

(n − 1)
(
T
(
r, f

)
+ T

(
r, g

)) ≤ 12
(
T
(
r, f

)
+ T

(
r, g

))
+ S

(
r, f

)
, (3.20)

which is in contradiction with n ≥ 14.Therefore, applying Lemma 2.5, we must have either
F = G or F ·G = 1. If F = G, thus, fnf(z+ c) = gng(z+ c). LetH(z) = f(z)/g(z). Assume that
H(z) is not a constant. Then we get

H(z)n =
1

H(z + c)
. (3.21)

Thus, from Lemma 2.2, we get

nT(r,H) = T(r,H(z + c)) +O(1) = T(r,H) + S(r,H), (3.22)

which is a contradiction with n ≥ 14. HenceH must be a constant, which implies thatHn+1 =
1, thus, f = tg and tn+1 = 1.

If F ·G = 1, implies that

f(z)nf(z + c)g(z)ng(z + c) = 1. (3.23)

Let M(z) = f(z)g(z), similar as above, M(z) must be a constant. Thus fg = t, tn+1 = 1
follows; we have completed the proof.

Proof of Theorem 1.11. Let F(z) = f(z)nf(z + c) and G(z) = g(z)ng(z + c), let H be defined
in Lemma 2.6. Using the similar proof as the proof of Theorem 1.10 up to (3.18), combining
with Lemma 2.6 and

N

(
r,

1
F

)
≤ N

(
r,

1
f

)
+N

(
r,

1
f(z + c)

)
+ S

(
r, f

)

≤ 2T
(
r, f

)
+ S

(
r, f

)
,

(3.24)

we can get

(n − 1)
(
T
(
r, f

)
+ T

(
r, g

)) ≤ 24
(
T
(
r, f

)
+ T

(
r, g

))
+ S

(
r, f

)
, (3.25)

which is in contradiction with n ≥ 26. Thus, we get H ≡ 0. The following is standard. For the
convenience of reader, we give a complete proof here. By integratiing (2.10) twice, we have

F =
(b + 1)G + (a − b − 1)

bG + (a − b)
, (3.26)
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which implies T(r, F) = T(r, G) +O(1). From (3.10)-(3.11), thus,

(n − 1)T
(
r, f

) ≤ (n + 1)T
(
r, g

)
+ S

(
r, f

)
+ S

(
r, g

)
, (3.27)

(n − 1)T
(
r, g

) ≤ (n + 1)T
(
r, f

)
+ S

(
r, f

)
+ S

(
r, g

)
. (3.28)

In the following, we will prove that F = G or F ·G = 1.

Case 1 (b /= 0,−1). If a − b − 1/= 0, then by (3.26), we get

N

(
r,

1
F

)
= N

(
r,

1
G − (a − b − 1)/(b + 1)

)
. (3.29)

Combining the Nevanlinna second main theorem with Lemma 2.4 and (3.27), we have

(n − 1)T
(
r, g

)
+ S

(
r, g

) ≤ T(r, G)

≤ N

(
r,

1
G

)
+N(r, G) +N

(
r,

1
G − (a − b − 1)/(b + 1)

)
+ S(r, G)

≤ N

(
r,

1
G

)
+N(r, G) +N

(
r,

1
F

)
+ S(r, G)

≤ N

(
r,

1
g

)
+N

(
r,

1
g(z + c)

)
+N

(
r, g

)
+N

(
r, g(z + c)

)

+N

(
r,

1
f

)
+N

(
r,

1
f(z + c)

)
+ S

(
r, g

)

≤ 4T
(
r, g

)
+ 2T

(
r, f

)
+ S

(
r, g

)

≤
(
4 + 2

n − 1
n + 1

)
T
(
r, g

)
+ S

(
r, g

)
.

(3.30)

This implies n2 − 6n − 3 ≤ 0, which is in contradiction with n ≥ 26. Thus, a − b − 1 = 0, hence

F =
(b + 1)G
bG + 1

. (3.31)
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Using the same method as above,

(n − 1)T
(
r, g

)
+ S

(
r, g

) ≤ T(r, G)

≤ N

(
r,

1
G

)
+N(r, G) +N

(
r,

1
G + 1/b

)
+ S(r, G)

≤ N

(
r,

1
G

)
+N(r, G) +N(r, F) + S(r, G)

≤
(
4 + 2

n − 1
n + 1

)
T
(
r, g

)
+ S

(
r, g

)
,

(3.32)

which is also a contradiction.

Case 2 (b = 0, a/= 1). From (3.26), we have

F =
G + a − 1

a
. (3.33)

Similarly, we also can get a contradiction. Thus, a = 1 follows, implies that F = G. Thus, we
get f = tg and tn+1 = 1.

Case 3 (b = −1, a/= − 1). From (3.26), we obtain

F =
a

a + 1 −G
. (3.34)

Similarly, we get a contradiction, a = −1 follows. Thus, we get F · G = 1 also implies fg = t,
tn+1 = 1. Thus, we have completed the proof.
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