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We propose a fractional-order controller to stabilize unstable fractional-order open-loop systems
with interval uncertainty whereas one does not need to change the poles of the closed-loop system
in the proposed method. For this, we will use the robust stability theory of Fractional-Order Linear
Time Invariant (FO-LTI) systems. To determine the control parameters, one needs only a little
knowledge about the plant and therefore, the proposed controller is a suitable choice in the control
of interval nonlinear systems and especially in fractional-order chaotic systems. Finally numerical
simulations are presented to show the effectiveness of the proposed controller.

1. Introduction

Recently, studying fractional-order differential systems has become an active research field.
Even though fractional calculus is a mathematical topic with more than 300 years old
history, its application to physics and engineering has attracted many researchers in different
branches of control. It has been found that in interdisciplinary fields, many systems can be
described by fractional differential equations [1–8]. These examples and similar researches
perfectly clarify the importance of consideration and analysis of dynamical systems with
fractional-order models. The PIλDμ controller [9], the fractional lead-lag compensator [10],
and the CRONE controllers are some of the famous FO controllers [11].

Stabilizing of FO systems (Linear or Nonlinear) with interval uncertainties is still open
to our best knowledge. In [12], authors proposed a fractional-order controller to change
the order of the overall closed-loop system to a desired fractional order when open-loop
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system was integer and has no interval uncertainty. For the first time, this paper will present
a fractional-order controller to stabilize unstable fractional-order open-loop systems with
interval uncertainty whereas one does not need to change the poles of the closed-loop
system in the proposed method. Clearly, for closed-loop control systems, there are four
situations. They are IO (integer order) plant with IO controller, IO plant with FO (fractional
order) controller, FO plant with IO controller, and FO plant with FO controller. In this
paper, we focus on using FO controllers for unstable FO systems and we propose a simple
fractional-order controller to control of fractional-order interval systems. It is obvious that the
considered formation covers IO plant.

The remaining part of this paper is organized as follows. Section 2 includes basic
concepts in fractional calculus. In Section 3, we consider stability of the fractional-order linear
and nonlinear systems. Using of two lemmas in Section 4, it is easy to calculate the lower and
upper boundaries of interval eigenvalues separately in real part and imaginary part. Stability
check via minimum argument of phase criteria is another discussion that is presented in this
section. In order to achieve a robust stabilization of an FO-LTI, a fractional-order controller is
proposed in Section 5 that can be extended to FO nonlinear systems and guarantees locally
robust stability of considered system. Numerical simulation results are given in Section 6 to
illustrate the effectiveness of the proposed controller. Finally, conclusions in Section 7 close
the paper.

2. Fractional Calculus

2.1. Definition

The noninteger-order integro-differential operator, denoted by aD
α
t , is a combined

integration-differentiation operator commonly used in fractional calculus. This operator is
defined by

aD
α
t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dα

dtα
, α > 0,

1, α = 0,
∫ t

a

(dτ)−α, α < 0.

(2.1)

There are some definitions for fractional derivatives [13]. The Riemann-Liouville
definition is a common notation of fractional derivative. Accordingly, an αth order fractional
derivative of function f(t) with respect to time t and the terminal value a is given by

aD
α
t f(t) =

dαf(t)
d(t − a)α

=
1

Γ(n − α)
dn

dtn

∫ t

0
(t − τ)n−α−1f(τ)dτ, (2.2)

where n is the first integer which is not less than α, that is, n − 1 ≤ α < n and Γ is the Gamma
function as

Γ(z) =
∫∞

0
tz−1e−tdt. (2.3)
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The Laplace transforms of the Riemann-Liouville fractional integral and derivative are
given as follows:

L
{

0D
α
t f(t)

}
= sαF(s), α ≤ 0,

L
{

0D
α
t f(t)

}
= sαF(s) −

n−1∑

k=0

sk 0D
α−k−1
t f(0), n − 1 < α ≤ n ∈ N.

(2.4)

For an initial problem of Riemann-Liouville type, one would have to specify the values
of certain fractional derivatives of the unknown solution at the initial point t = 0. However, it
is not clear what the physical meanings of fractional derivatives of x are when we are dealing
with a concrete physical application, and hence it is also not clear how such quantities can be
measured. The problem will be coped with the Caputo definition, which is sometimes called
smooth fractional derivative. This is described by

0D
α
t f(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Γ(m − α)

∫ t

0

f (m)(τ)

(t − τ)α+1−mdτ, m − 1 < α < m,

dm

dtm
f(t), α = m,

(2.5)

where m is the first integer larger than α. It is found that the equations with Riemann-
Liouville operators are equivalent to those with Caputo operators by homogeneous initial
conditions assumption [13]. The Laplace transform of the Caputo fractional derivative is

L
{

0D
α
t f(t)

}
= sαF(s) −

n−1∑

k=0

sα−1−kf (k)(0), n − 1 < α ≤ n ∈ N. (2.6)

According to (2.6), only integer-order derivatives of function f appear in the Caputo
fractional Laplace transformation. In the rest of this paper, the notation aD

α
t represents the

Caputo fractional derivative.

2.2. Approximation Methods

The numerical calculation of a fractional differential equation is not simple as that of an
ordinary differential equation. In the literatures of fractional chaos, two approximation
methods have been proposed for numerical solution of a fractional differential equation. One
is the frequency-domain method [14, 15] and another is the time-domain method that is based
on the predictor-correctors scheme [16, 17]. This method is an improved version of Adams-
Bashforth-Moulton algorithm [17–19].

Here we use a predictor-corrector algorithm for fractional-order differential equations.
The brief introduction of this algorithm is as following.

Consider the following differential equation:

Dα
t x = f(t, x), 0 ≤ t ≤ T, x(k)(0) = x

(k)
0 , k = 0, 1, 2, . . . , n − 1 (2.7)
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which is equivalent to the Volterra integral equation [20]

x =
[α]−1∑

k=0

x
(k)
0

tk

k!
+

1
Γ(α)

∫ t

0

f(τ, x)

(t − τ)1−α dτ. (2.8)

Set h = T/N, tn = nh (n = 0, 1, 2, . . . ,N). Then (2.8) can be discretized as follows:

xh(tn+1) =
[α]−1∑

k=0

x
(k)
0

tkn+1

k!
+

hα

Γ(α + 2)
f
(
tn+1, x

p

h(tn+1)
)
+

hα

Γ(α + 2)

∑
aj,n+1f

(
tj , xh

(
tj
))
, (2.9)

where predicted value x
p

h
(tn+1) is determined by

x
p

h(tn+1) =
n−1∑

k=0

x
(k)
0

tkn+1

k!
+

1
Γ(α)

n∑

j=0

bj,n+1f
(
tj , xh

(
tj
))
,

aj,n+1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α+1, j = 0,

(
n − j + 2

)α+1 +
(
n − j

)α+1 − 2
(
n − j + 1

)α+1
, 1 ≤ j ≤ n,

1, j = n + 1,

bj,n+1 =
hα

α

((
n − j + 1

)α −
(
n − j

)α)
.

(2.10)

The estimation error in this method is calculated as

e = Max
∣
∣x
(
tj
)
− xh

(
tj
)∣
∣ = O(hp)

(
j = 0, 1, . . . ,N

)
, (2.11)

in which p = Min(2, 1 + α). By utilizing the above method, numerical solution of a fractional-
order equation with dimension n can be determined.

Now, consider a 3D fractional-order system as below:

Dαx = f1
(
x, y, z

)
,

Dαy = f2
(
x, y, z

)
,

Dαz = f3
(
x, y, z

)

(2.12)
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for 0 < α ≤ 1and initial condition (x0, y0, z0) system (2.12) can be discretized as follows:

xn+1 = x0 +
hα

Γ(α + 2)

⎡

⎣f1

(
x
p

n+1, y
p

n+1, z
p

n+1

)
+

n∑

j=0

γ1,j,n+1f1
(
xj , yj , zj

)

⎤

⎦,

yn+1 = y0 +
hα

Γ(α + 2)

⎡

⎣f2

(
x
p

n+1, y
p

n+1, z
p

n+1

)
+

n∑

j=0

γ2,j,n+1f2
(
xj , yj , zj

)

⎤

⎦,

zn+1 = z0 +
hα

Γ(α + 2)

⎡

⎣f3

(
x
p

n+1, y
p

n+1, z
p

n+1

)
+

n∑

j=0

γ3,j,n+1f3
(
xj , yj , zj

)

⎤

⎦,

(2.13)

where

x
p

n+1 = x0 +
1

Γ(α)

n∑

j=0

ω1,j,n+1f1
(
xj , yj , zj

)
,

y
p

n+1 = y0 +
1

Γ(α)

n∑

j=0

ω2,j,n+1f2
(
xj , yj , zj

)
,

z
p

n+1 = z0 +
1

Γ(α)

n∑

j=0

ω3,j,n+1f3
(
xj , yj , zj

)
,

(2.14)

γi,j,n+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α+1, j = 0,

(
n − j + 2

)α+1 +
(
n − j

)α+1 − 2
(
n − j + 1

)α+1
, 1 ≤ j ≤ n,

1, j = n + 1,

ωi,j,n+1 =
hα

α

((
n − j + 1

)α −
(
n − j

)α)
, 0 ≤ j ≤ n, i = 1, 2, 3.

(2.15)

In the simulations of this paper, we use the above method to solve the fractional-order
differential equations.

3. Stability of FO-LTI System

We consider the FO-LTI system with interval uncertainties in the parameters as follows:

Dα
t x(t) = Ax(t) (3.1)

in which α is a noninteger number and A ∈ AI = [A,A].
With no interval uncertainty, it is well known that the stability condition of an FO-LTI

system Dα
t x(t) = Ax(t) is as in the following lemma.
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Lemma 3.1 (see [21]). The following autonomous system:

Dα
t x(t) = Ax(t), (3.2)

with 0 < α < 1, x ∈ Rn, and A ∈ Rn×n, is asymptotically stable if and only if | arg(λ)| > απ/2 is
satisfied for all eigenvalues (λ) of matrixA. Also, this system is stable if and only if | arg(λ)| ≥ απ/2 is
satisfied for all eigenvalues (λ) of matrixAwith those critical eigenvalues satisfying | arg(λ)| = απ/2
having geometric multiplicity of one. The geometric multiplicity of an eigenvalue λ of the matrix A is
the dimension of the subspace of vectors v for which Av = λv.

Then, our robust stability test task for FO-LTI interval systems amounts to examining
if

min
i

∣
∣arg(λi(A))

∣
∣ >

απ

2
, i = 1, 2, . . . ,N, ∀A ∈ AI. (3.3)

Consider the following nonlinear commensurate fractional-order system:

Dαx = f(x), (3.4)

where 0 < α < 1 and x ∈ Rn. The fixed points of system (3.4) are calculated by solving
equation f(x) = 0. These points are locally asymptotically stable if all eigenvalues of the
Jacobian matrix J = ∂f/∂x evaluated at the fixed points satisfy [22]

min
i

∣
∣arg(λi(J))

∣
∣ >

π

2
, i = 1, 2, . . . ,N, (3.5)

where λi is ith the eigenvalue of matrix J . Here, we focus on the uncertain fractional-order
nonlinear systems with interval Jacobian matrix.

4. Robust Stability of FO-LTI Interval System

From previous section, for the robust stability check of the uncertain fractional system, it
is required to calculate the arguments of phase of eigenvalues. When there is no model
uncertainty, it is easy to find the argument of phase of each eigenvalue. That is, by simply
calculating

φi =
∣
∣
∣
∣arctan

(
ξi
σi

)∣
∣
∣
∣, i = 1, . . . ,N, (4.1)

where N is number of eigenvalues of A, σi = Re{λi} and ξi = Im{λi} of eigenvalue λi, and
finding the minimum φi such as

φ∗ = inf
{
φ1, . . . , φN

}
, (4.2)

If φ∗ > απ/2, then the fractional system is considered stable. However, when there is model
uncertainty, it is not easy to find (4.2) because λi is not a fixed point in complex plane, instead
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it is a cluster of infinite points so that boundaries of considered cluster are calculated via the
below subsection.

4.1. Boundaries of Eigenvalues

To identify eigenvalues of uncertain fractional-order system, the following interval matrix is
defined:

AI = [Ac −ΔA,Ac + ΔA], (4.3)

where Ac is a center matrix that is defined as nominal plant without uncertainty, and ΔA is a
radius matrix corresponding to interval uncertainty.

Lemma 4.1 (see [23]). Define a sign calculation operator evaluated at Ac such as

Pi := sign
[(

ure
i v

re
i − uim

i vim
i

)T
]

, (4.4)

where vi and ui are left and right eigenvectors corresponding to ith eigenvalue of center matrix Ac,
respectively, and ure

i , v
re
i , u

im
i , and vim

i are defined as

ure
i = Re(ui), uim

i = Im(ui),

vre
i = Re(vi), vim

i = Im(vi).
(4.5)

If Pi is constant for all AI , then the lower and upper boundaries of the real part of ith interval
eigenvalue are calculated as

λrei = Ore
i

(
Ac −ΔA ◦ Pi

)
, (4.6)

where Ore
i (·) is an operator for selecting the ith real eigenvalue of (·) and C = A ◦ B are ckj = akjbkj ,

and

λ
re
i = Ore

i

(
Ac + ΔA ◦ Pi

)
. (4.7)

Lemma 4.2 (see [23]). Define a sign calculation operator evaluated at Ac such as

Qi := sign
[(

ure
i v

re
i + uim

i vim
i

)T
]

. (4.8)

If Qi is constant for all AI , then the lower and upper boundaries of the imaginary part of ith interval
eigenvalue are calculated as

λimi = Oim
i

(
Ac −ΔA ◦Qi

)
, (4.9)
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where Oim
i (·) is an operator for selecting the ith imaginary eigenvalue, and

λ
im
i = Oim

i

(
Ac + ΔA ◦Qi

)
. (4.10)

Thus, by utilizing Lemmas 4.1 and 4.2, the lower and upper boundaries of interval
eigenvalue separately in real part and imaginary part are calculated. From above Lemmas,
first Pi and Qi, i = 1, . . . ,N are calculated, then, interval ranges of eigenvalues are finally
calculated as

λIi :=
{[

λre
i , λ

re
i

]
+ j

[

λim
i , λ

im
i

]}

, (4.11)

where j represents imaginary part.

4.2. Robust Stability Check

From (4.2), since the stability condition is given as φ∗ > απ/2, if we find sufficient condition
for this, the stability can be checked. For calculating φ∗, the following procedure can be used
[23].

(P1) Calculate Pi and Qi for i = 1, . . . ,N.

(P2) Calculate λre
i , λ

re
i , λim

i , and λ
im
i for all i ∈ {1, 2, . . . ,N}.

(P3) Find arguments of phase of four points such as

φ1
i = ∠

(
λre
i , λ

im
i

)
, φ2

i = ∠
(

λre
i , λ

im
i

)

,

φ3
i = ∠

(

λ
re
i , λ

im
i

)

, φ4
i = ∠

(
λ

re
i , λ

im
i

)
,

(4.12)

in the complex plane.

(P4) Find φ∗
i = inf{|φ1

i |, |φ
2
i |, |φ

3
i |, |φ

4
i |}.

(P5) Repeat procedures (P3) and (P4) for i = 1, . . . ,N.

(P6) Find φ∗ = inf{φ∗
i , i = 1, . . . ,N}.

(P7) If φ∗ > απ/2, then the fractional interval system is robust stable. Otherwise, the
robust stability of system cannot be guaranteed.

5. Controller Design

A well-designed control system will have desirable performance. Moreover, a well-designed
control system will be tolerant of imperfections in the model or changes that occur in the
system. This important quality of a control system is called robustness [24]. It is obvious
that open-loop and closed-loop systems with the same poles can exhibit different stability
property if stability regions for these systems are different. Different stability regions are
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obtained when the open-loop and closed-loop systems have different orders. For this reason,
a controller in order to change the order of the closed-loop system to a specific fractional order
is designed. In [12], authors proposed a fractional-order controller to change the order of the
overall closed-loop system to a desired fractional order when open-loop system was integer
and has no interval uncertainty. To the best of our knowledge, stabilization of fractional-order
open-loop systems with interval uncertainties via fractional-order controllers has not been
considered yet. Therefore, in this paper we propose a fractional-order controller to stabilize
unstable and uncertain fractional order open-loop systems whereas one does not need to
change the poles of the closed-loop system in the proposed method. First, we assume that the
uncertain system is described by an interval linear model given as follows:

Dαx(t) = (Ac + ΔA)x(t) + u(t), (5.1)

where x ∈ Rn, u ∈ Rn, Ac is an n × n center matrix, and ΔA is an n × n radius matrix
corresponding to interval uncertainty. Assume that the control objective is to stabilize the
closed-loop system. To achieve the goal, the below theorem is considered.

Theorem 5.1. Based on the control law (t) = Dαx(t) −Dαcontrollerx(t), fractional interval system (5.1)
will be robust stable if

αcontroller <
2φ∗

π
, (5.2)

where αcontroller is order of controller and φ∗ = inf{φ1, . . . , φN}.

Proof. Due to applying the control law u as follows:

u(t) = Dαx(t) −Dαcontrollerx(t), (5.3)

the closed-loop system is described as below:

Dαcontrollerx(t) = (Ac + ΔA)x(t). (5.4)

Now, using Lemmas 4.1 and 4.2 in Section 4, and selection of αcontroller as the following:

αcontroller <
2φ∗

π
(5.5)

fractional interval system (5.1) will be robust stable.

For an uncertain plant with nonlinear fractional-order dynamics, we have

Dαx(t) = fΔ(x) + u(t), (5.6)
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where fΔ(x) is uncertain with interval uncertainty in the parameters. By calculating the
Jacobian matrix of nonlinear system (5.6) at fixed points, we have

J(x) =
∂f

∂x

∣
∣
∣
∣
x∗

= Jc + ΔJ, (5.7)

where Jc is an n × n center matrix and ΔJ is an n × n radius matrix corresponding to
interval uncertainty. From Section 4, it is evident that by applying the proposed controller in
Theorem 5.1, the closed-loop dynamics will be locally robust stable if the parameter αcontroller

is properly selected.

6. Simulation Results

6.1. Stabilizing an Unstable FO-LTI Interval System

Consider the following system [23]:

Dαx(t) = (Ac + ΔA)x(t) + u(t), (6.1)

where,

Ac =

⎡

⎣
−1 −0.5 −2
1 0.5 −0.5

−0.5 2.5 1.2

⎤

⎦, ΔA =

⎡

⎣
0.1 0.05 0.2
0.1 0.05 0.05

0.05 0.25 0.12

⎤

⎦, (6.2)

and α = 0.9. Eigenvalues of center matrix Ac are calculated as λ1 = −1.7486, λ2 = 1.2243 +
j1.5597, and λ3 = 1.2243− j1.5597. It is obvious that the system is unstable. To robust stabilize
the system via the proposed controller, αcontroller as the control parameter should be chosen to
satisfy condition (5.2) for λ2,3. Now, from procedures (P1)–(P6), we find φ∗ = 0.7836. So, from
(5.2), we select αcontroller < 2φ∗/π = 0.4989 and conclude that the fractional interval system
(6.1) is robust stable.

The numerical simulation has carried out using MATLAB subroutines written based
on the method described in Section 2. The time step size employed in the simulation is 0.01
(h = 0.01). The simulation results are given in Figures 1 and 2, when the controller has started
to work at time t = 10 seconds. In this example, the control parameter has been chosen as
α = 0.4. As one can see, the maximum control efforts in this example are 5× 106, 4.9× 106, and
0.6 × 107.

6.2. Chaos Control of Fractional-Order Interval Arneodo System via
Proposed Controller

In dynamical systems, a saddle point is called a fixed point that has at least one eigenvalue
in stable region and one eigenvalue in unstable region. In a three-dimensional system, if one
of the eigenvalues is unstable and other eigenvalues are stable, then the equilibrium point
is called saddle point of index 1. By similar definition, a saddle point of index 2 is a saddle
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Figure 1: The time response of the states.
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Figure 2: Control efforts.
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point with one stable eigenvalue and two unstable eigenvalues. In a chaotic system, scrolls
are generated only around the saddle points of index 2.

To control a three-dimensional chaotic system, saddle points of index 2 should be
stabilized. By utilizing control law as (5.2), this goal is accessible by changing stable region
via the proposed controller (5.3). Here, order of the overall closed-loop system is changed
without any variation in eigenvalues of the fixed points.

Now, we consider the fractional-order Arneodo’s system [25] as following:

Dαx1(t) = x2(t),

Dαx2(t) = x3(t),

Dαx3(t) = −β1x1(t) − β2x2(t) − β3x3(t) + β4x
3
1,

(6.3)

where β1, β2, β3, and β4 are constant parameters. Nominal model of this system is found to be
chaotic for the parameters β1 = −5.5, β2 = 3.5, β3 = 1, and β4 = −1.

Here, we assume that the mentioned parameters have interval uncertainty. Their
corresponding uncertainties are as following:

βc1 = −5.5, Δβ1 = 0.1,

βc2 = 3.5, Δβ2 = 0.1,

βc3 = 1, Δβ3 = 0.1,

βc4 = −1, Δβ4 = 0.1.

(6.4)

With the given interval uncertainties, the fractional-order Arneodo’s system has three fixed
points as following:

x1,eq = (0, 0, 0), x2,eq =
(
βc1 + Δβ1, 0, 0

)
, x3,eq =

(
−
(
βc1 + Δβ1

)
, 0, 0

)
. (6.5)

The Jacobian matrix of system (6.3), evaluated at (x1,eq, x2,eq, x3,eq), is

J =

⎡

⎢
⎢
⎢
⎣

0 1 0

0 0 1

−
(
βc1 + Δβ1

)
+ 3

(
βc4 + Δβ4

)
x2

1,eq −
(
βc2 + Δβ2

)
−
(
βc3 + Δβ3

)

⎤

⎥
⎥
⎥
⎦

(6.6)

or

Jc =

⎡

⎢
⎢
⎢
⎣

0 1 0

0 0 1

−βc1 + 3βc4x
2
1,eq −βc2 −βc3

⎤

⎥
⎥
⎥
⎦
, (6.7)
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Figure 3: The time response of the states (stabilizing x2,eq, x3,eq).

ΔJ =

⎡

⎢
⎢
⎣

0 1 0

0 0 1

−Δβ1 + 3Δβ4x
2
1,eq −Δβ2 −Δβ3

⎤

⎥
⎥
⎦. (6.8)

The fixed points and their corresponding eigenvalues for Jc are calculated as follows:

x1,eq = (0, 0, 0): λ1 = 1, λ2,3 = −1 ± j2.1213,

x2,eq = (5.5, 0, 0): λ1 = −2, λ2,3 = 0.5 ± j2.2913,

x3,eq = (−5.5, 0, 0): λ1 = −2, λ2,3 = 0.5 ± j2.2913.

(6.9)

Necessary conditions to check the existence of chaos in fractional systems with
commensurate or incommensurate rational orders are given in [26, 27], respectively. Based
on [26], a necessary condition for fractional systems (6.3) to be chaotic is

q > max
i

(
2
π

tan−1
(

2.2913
0.5

))

= 0.8632. (6.10)

According to (6.9), fixed points x2,eq and x3,eq are saddle points of index 2. From procedures
(P1)–(P6), and then by using Theorem 5.1, when control parameter αcontroller is chosen less
than 0.8509, eigenvalues of the fixed points x2,eq and x3,eq settle in the robust stable region
and closed-loop system will be locally robust stable. Figures 3 and 4 exhibit simulation results
when the controller with αcontroller = 0.8 has been applied at time t = 30 seconds.

Here, the maximum control efforts in this example are 0.6534, 0.9771, and 3.3212.
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Figure 4: Control efforts.

7. Conclusion

In this paper, based on the robust stability theory of FO-LTI systems, we proposed a
fractional-order controller to stabilize the unstable fixed points of an unstable open-loop
fractional-order interval system. To determine the control parameters, one needed only a little
knowledge about the plant and therefore, the proposed controller was a terrific choice in the
control of fractional-order interval nonlinear systems. Finally, numerical simulations are also
provided to show effectiveness of proposed controller in order to achieve robust stabilization
of unstable and interval fractional-order systems.
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