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We consider the twisted g-extensions of the generalized Euler numbers and polynomials attached
to .

1. Introduction and Preliminaries

Let p be an odd prime number. For n € Z, = NU {0}, let Cpn = {¢ | ¢7" = 1} be the
cyclic group of order p", and let T, = lim,, .,Cp» = U,;59 Cpn = Cp be the space of locally
constant functions in the p-adic number field C,. When one talks of g-extension, g is variously
considered as an indeterminate, a complex number g € C, or p-adic number g € C,. If g € C,
one normally assumes that |q| < 1. If g € C,, one normally assumes that |1 - g|, < 1. In this
paper, we use the notation

ﬂ. 1.1)

ly= 57— [xl,=

Let d be a fixed positive odd integer. For N € N, we set

limNZ

X =X,= T
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X*= |J (a+dpz,),
O<a<dp
(ap)=1

a+dp"Z, = {x € X | x=a(mod dp")},
(1.2)

where a € Z lies in 0 < a < dp"; compared to [1-16].
Let y be the Dirichlet’s character with an odd conductor d € N. Then the generalized
¢-Euler polynomials attached to y, E, ¢ (x), are defined as

233 ()0,
- ¢dedt +1 ¢

Fye(x,1)
(1.3)

[ee] tn
= > Enye (x)ﬁ, for { € T,
n=0 .

In the special case x = 0, Ej, \.; = Ey;(0) are called the nth ¢-Euler numbers attached to y.
For f € UD(Z,), the p-adic fermionic integral on Z, is defined by

pN-1

(1.4)
pN-1 x
. x_ 9
= ]Jlinw XZO F(x)(-1) ] _q, (see [7-17]).
Let I.; =lim; .1 = I ;(f). Then, we see that
[ fodisto= [ f@ap, 15)
Z, X
Forn e N, let f,(x) = f(x + n). Then, we have
n-1
: flx+n)du_(x) = (-1)" , fx)dpu(x) + 22(—1)"‘1_lf(l). (1.6)
P p =0

Thus, we have

n-1
Ly(fa) + (CD)" L (f) =22 (-D" (D), (see [7-17]). (1.7)
1=0
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By (1.7), we see that

1 l 11t o) m
IXX(y)Cye“”y”dﬂ—l(y)— 22 gcfedt)”( = e = 2 Bnxe () (18)

From (1.8), we can derive the Witt’s formula for E, , ¢ (x) as follows:

JX X s (x) = Eny,

(1.9)
f x()(y+x)"¥dua(y) = Enye(x), for (€T, (see[5-17]).
X
The nth generalized ¢-Euler polynomials of order k, Eflk;( o are defined as
2350 -1 (et ot ‘ ") (1.10)
Qdedf+1 ZE"“ n!’ '

. _ (k)
In the special case x = 0, Ey e =
attached to y.

Now, we consider the multivariate p-adic invariant integral on X as follows:

= Eflk))( g(O) are called the nth ¢-Euler numbers of order k

k
J‘X .. J;( <Hx(xi)> e(x1+~~+xk+x)t§x1+~~+xk dp_q(x1) -+~ dp1(xk)
i1
S D (et
< gdedt +1 > ZEik))cé nl

By (1.10) and (1.11), we see the Witt’s formula for Eilk))(é(x) as follows:

(1.11)

k
J‘X o J;( <HX(xl)> (014 X+ )" ST (x0) - dp (k) = E(k) g(x) (1.12)
i=1

The purpose of this paper is to present a systemic study of some formulas of the
twisted g-extension of the generalized Euler numbers and polynomials of order k attached

to x.

2. On the Twisted g-Extension of the Generalized Euler Polynomials

In this section, we assume that g € C, with |1 —g|, <1and ¢ € T,. For d € N with 2 { d, let
x be the Dirichlet’s character with conductor d. For h € Z, k € N, let us consider the twisted
(h, g)-extension of the generalized Euler numbers and polynomials of order k attached to .
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We firstly consider the twisted g-extension of the generalized Euler polynomials of higher
order as follows:

< tn X+
D Enyiq() = fx ety y (y)dpa (y)
n=0 :

(2.1)
= ZEX(m)(—l)mCme[erx]qt'
m=0
By (2.1), we see that
-[X [.’X,' + y] ZX(]/)gyd‘ll_l (]/) = ZZX(m)(_g)me[rer]qt
m=0
(2.2)

~ d-1 \asa 1 n n ~ lgluql(m—x)
=23 @ (1_q)nz(,)< DS

1=0

From the multivariate fermionic p-adic invariant integral on Z,, we can derive the twisted
g-extension of the generalized Euler polynomials of order k attached to y as follows:

< t" £ X1+ X+ X1+ X
DI [~ (1_‘1[x<xi>>e[ Sy () - dpa (). (23)

Thus, we have

k
Eveq®) = ,[X - fx <1,:Ix(xi)> ooy + -+ X+ XG0 dp g () - - dpe ()

M

i=1

d-1 k k n o(n 1 l(x+Z’-‘: a;)
VY Ea 2 (M (-1)'g ==
<Hx(az)>( 0) (1_q)nz o

d-1 k . e _ "
=k Z (X(ai))(_g)zjﬂujZ(m +T: 1> x <_§d> [x + a; +"'+ak+md]2.
ai,...,.ar=0 i=1 m=0

(2.4)

k k . . k
Let F;,;,g(t, x) = >7, Eft,))c,é,q(x)(tn /n!) be the generating function for Efw)(,g,q(x)' By (2.3),
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we easily see that

-1 -
Fip(t0)=2" 3, <Hx<az > w3 (M) <yttt

(25 aj= =0 m=0
(2.5)
( g)nﬁ +1 < X(T’lz > n1+~--+nk+x]qt'
23 I
Therefore, we obtain the following theorem.
Theorem 2.1. For k € N,n > 0, one has
nxgq(x) Zk Z (=g)mr <Hx(n1 > ny+ e+ x])
,,,,, n=0
(2.6)

d-1 k - n ( )(_1)lql(x+z;(:1“i)
> (Hx(a»)(—@)zw nZ s 4720

i=1 1=0

Let h € Z,r € N. Then we define the extension of Ef:))( g,q(x) as follows:

T tn T (h=7)x; s x+37 . x; X1+ +X
ZEnhxéq T J‘X”'J‘X g ]<I=—1[X(xi)>e[ Rl Gy () - dp (x).

(2.7)

Then, Ei:))(,glq (x) are called the nth generalized (h, q)-Euler polynomials of order r attached

n  _p®
.64 .64
numbers of order r. By (1.7), we obtain the Witt’s formula for E o (x) as follows:

to y. In the special case x = 0, E (0) are called the nth generalized (h,r)-Euler

(hr)
Enxéq( )

k r "
[ o] g (Hx(xf>> x+ S| e n) - dpa ()
X X i-1 =],

(D(D)q e

(Hx<a,><—c)2?=1“fqu"=l“f(h” i q) Z( e, d)

Yok

(2.8)

where (a;9), = (1-a)(1-aq)---(1-aq™).
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Let (ﬁ)q = ([nlgn-1],---[n -k +1])/[k];! = [n],!/([[K],![n - k],!) where [k],! =
[k]q[k - 1]q “ee [Z]q[l]q. From (2.8), we note that

’ 2 T oa; ST (h-j)a;
Eflhxéq( )= Z <Hx(al >(—§)Z/=1 /qZ,=1(h a

(1 q) ai,...,a,=0

n

x+57 a4 & +r—-1 m _
N Z<7>(_1)lql( b ,)Z_O<m nz ) d<_§d> gelrym glam

1=0 q

d-
=2r . <Hx(a )>( g)Z, 1a/qZ, 1(h=j)a;
=0

ai,...,a,= i=1
(2.9)
< [Mm+71— 1) a\" dth-rym 1 d(m+(x+ ¥ a))/d)\"
X —g q S 1 — q j=1“j
(") ) e )
& /myr—1 A\ dm “
n —
=21y (M) (<) g <Hx(a >>
m=0 q1 air,...,a,=0
-1 _ "
d .
(h,r) _ (h,r) (h,r)
Let Fq,x,é (f,x) = .Z Enxgq(x)(t” n!) be the generating function for Enxgq(x). From
(2.8), we can easily derive
F(hr)(t x)=2" Z qzjl(h—J)m( g)Z,an <Hx(n,)>e["l+"'+"’+xlqt
ny,...,n,=0
(2.10)

23 (") () g 5 <l_[x<az>

m=0 q ai,...,a,=0

< (_g)Z,ﬁq aqu]L] (h=j)aj ,[md+x+ 37 ajlt

By (2.10), we obtain the following theorem.
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Theorem 2.2. For h € Z, r € N, one has

EPT () =2 Z gE 0 (- @)Z”"](Hx(n])> oy

S 3 (") () g S <ﬁx<ai>>
i-1

q ai,...,ar=0

. Lo x+X_ a1
x (_g)ijl aquj:l(h_])af m+ i
d 4

( )( 1)1 l(x+Z]1aJ

d-1 r o ST (D or
> <HX(711')>(—§)Z;'1 g Z e -2 Z (—qre g, gdy

ar-a,=0 \ j=1
(2.11)

Let h = r. Then we see that

. d-1 n 1 130, aj+x)
" ) = 2 i 1 S e (1Y) g ="
Eoxeql®) = 1-q) alZ <HX(‘11 > " ’XZ (~q¢% 4%,

..... a,=0 1=0

=2f[dlzi<’"+,;‘1>q< o Z (Hx(a)> 212)

ay,...,a,=0

« (_C)Z,'-:1 a; qZ]r':l (r=j)a; [m +

r n
X+ 20 a;
— | -

qd

It is easy to see that

k .
f h f <Hx<xi>> g DI gy () - dp (%)
X X\ i=1

Z <Hx(a)> g Sty g Siaa o f f GEA D g ey - dp (x)
ay, X X

,a,=0

29 S o (TTax(8) g% 0 () Fi
- (_qd(m—r)éd; qd)r ’

(2.13)
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Thus, we have

2" 34 oo (TTax(a)) ) g = " (=g 2
(_qd(m—r) éd; qd)r

= J‘X .. J;( <[x +x1 4+ xr]q(q - 1) + 1)"‘q—2,’-=1 ijgxwwrx,
X <1—1[X(xj)> dp-1(x1) - dpr ()
=

=g(*y)w—1>’fx"'fx<§X(Xj)>

X [+ x4+ + xr]fiq*Z]r-:l jxfgx”'"*x’d‘u_l(ﬂ) o dpg (xy)
& /m 1 ~(0,r
= lz_@:( l )(q -1)'ELD ().

By (2.14), we obtain the following theorem.

(2.14)

Theorem 2.3. For d, k € Nwith 2 td, one has

g 247 oo (TTjax(ay) ) g™ ()i
(_qd(mfr) gd’. qd)r

=S (™ (4 - 1) EO) 2.15
_l:0<l>(q D'EY) (x).  (215)

By (1.7), we easily see that

d-1
f fox + d)edpa (x) + f FEOdp(x) =23 (- F(). (2.16)
X X 1=0
Thus,we have

qd(h—l) I .. f [x +d+ X1+ + xr];lqz,r-zl(r—j)xi€2§:1 Xj
X X
x (Hx(xj)>dﬂ1(x1) < dp ()
j=1
= —f j [x+x1 4+ xr]ZqZ’(Zl(r_j)xigz’r:l Y x <HX(xj)>d/4—1(x1) e dp (xr)
X X j=1

d-1 o
2500 [ - f [x+l+xz+-~-+xrﬁ<nx<xm>>
1=0 X X i-1

% qz]’.;ll Xji1 (h—l—j)§x2+x3+-~-+x,dl/l_1 (x2) -+ dpa (xy).
(2.17)

By (2.17), we obtain the following theorem.
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Theorem 2.4. For h € Z,d € Nwith 2 t d, one has

d-1
d(h-1) p(hr) (h,r) _ (h=1,r-1)
gt )Enxrgq(x +d) + En;gq x) = zg;x(l)(-n Enxgg (x +1). (2.18)
It is easy to see that
T Eniy 0) = (@=DET 1+ By, () (219)

h1 i
Let F;xg(t xX)=>m0 Equgq(x)(t”/n!). Then we note that

i) =23 (g gl (220)

From (2.20), we can derive

gD (x) = 22 (h-1)m )a = (1)(= 1)lql(x+a)
n,x,$,49 X(m)q ( é) [m+x]q (1_ ) ZX( ) Z

221
2 ey 22

3. Further Remark

In this section, we assume that g € C with |g| < 1. Let y be the Dirichlet’s character with an
odd conductor d € N. From the Mellin transformation of F;}:(rg (t,x) in (2.10), we note that

Ui (h=j)mj ¢ s\t r .

© q= ( g) H.= X(m )

! fF(hrg( t/x)ts_ldtZZr Z ( ]Sl i >, (3.1)
F(S) q.x ml,u.,mr=0 [m1 + 0+ mr + x]q

where h,s € C, x#0,-1,-2,...,and r € N, ¢{ = ¢*™/4. By (3.1), we can define the Dirichlet’s
type multiple (h, g)-I-function as follows.

Definition 3.1. For s € C, x € Rwith x#0,-1,-2,..., one defines the Dirichlet’s type multiple
(h, g)-I-function related to higher order (h, g)-Euler polynomials as

) 1 (h=j)m; my+-+m,
(hr) . - (=) (TT- 1x(ml))
Ly (s,x1x) =2 Z [mq + - +mr+x]s

my - my=0

(3.2)

where s,h € C,x#0,-1,-2,---,r € N, and ¢ = e?7/4,
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Note that lfih’r) (s,x | x) is analytic continuation in whole complex s-plane. In (2.10), we
note that

0 r

h) oy = © (e, iy eimax t

Fooat¥)=2" 3 Oqz”( I (g 1._1[)(("1) elmmly
ny,...,ny= ]j=

(3.3)

n

< ) ot
— 7z _
= nZ:gE"’X’g’q(X) ot

By Laurent series and Cauchy residue theorem in (3.1) and (3.3), we obtain the
following theorem.

Theorem 3.2. Let x be Dirichlet's character with odd conductor d € N, and let { = e*™'/4. For
h,seC,x#0,-1,-2,...,r e N,and n € Z,, one has

197 (<h,x | y) = B (). (3.4)
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