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We define the twisted q-Bernoulli polynomials and the twisted generalized q-Bernoulli polynomi-
als attached to χ of higher order and investigate some symmetric properties of them. Furthermore,
using these symmetric properties of them, we can obtain some relationships between twisted q-
Bernoulli numbers and polynomials and between twisted generalized q-Bernoulli numbers and
polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paperZp,Qp, andCp will, respectively, denote
the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion
of algebraic closure of Qp. Let vp be the normalized exponential valuation of Cp with |p|p =
p−vp(p) = p−1. When one talks of q-extension, q is variously considered as an indeterminate,
a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally assumes
|q| < 1. If q ∈ Cp, then we assume |q − 1|p < p−1/(p−1), so that qx = exp(x log q) for |x|p ≤ 1
(cf. [1–32]).
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For N,d ∈ N, we set

X = Xd =
lim←

N
Z

dpNZ
, X1 = Zp (1.1)

(see [1–13]). The Bernoulli numbers Bn and polynomials Bn(x) are defined by the generating
function as

t

et − 1
=

∞∑

n=0

Bn
tn

n!
, (1.2)

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
(1.3)

(cf. [17, 18, 21, 24, 26]). Let UD(X) be the set of uniformly differentiable functions on X. For
f ∈ UD(X), the p-adic invariant integral on Zp is defined as

I
(
f
)
=
∫

X

f(x)dx = lim
N→∞

1
dpN

dpN−1∑

x=0

f(x). (1.4)

Note that
∫
X f(x)dx =

∫
Zp

f(x)dx (see [27]). Let fn(x) be a translation with fn(x) = f(x + n).
We note that

I
(
fn
)
= I

(
f
)
+

n−1∑

i=0

f ′(i) (1.5)

(cf. [1–32]). Kim [18] studied the symmetric properties of the q-Bernoulli numbers and
polynomials as follows:

t + log q
qet − 1

ext =
∞∑

n=0

B
q
n(x)

tn

n!
. (1.6)

In this paper, we define the twisted q-Bernoulli polynomials and the twisted
generalized q-Bernoulli polynomials attached to χ of higher order and investigate some
symmetric properties of them. Furthermore, using these symmetric properties of them, we
can obtain some relationships between the twisted q-Bernoulli numbers and polynomials
and between the twisted generalized q-Bernoulli numbers and polynomials attached to χ of
higher order.
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2. The Twisted q-Bernoulli Polynomials

Let Cp∞ =
⋃

n≥1 Cpn = limn→∞Cpn be the locally constant space, where Cpn = {ξ | ξpn = 1} is the
cyclic group of order pn. For w ∈ Cp∞ , we denote the locally constant function by

φw : Zp −→ Cp, x 	−→ wx (2.1)

(cf. [2, 3, 21, 24]). If we take f(x) = φw(x)qxetx, then

∫

Zp

extwxqxdx =
log q + t

wqet − 1
. (2.2)

Now we define the q-extension of twisted Bernoulli numbers and polynomials as
follows:

log q + t

wqet − 1
=

∞∑

n=0

B
q
n,w

tn

n!
, (2.3)

log q + t

wqet − 1
etx =

∞∑

n=0

B
q
n,w(x)

tn

n!
(2.4)

(see [31]). From (1.5), (2.2), (2.3), and (2.4), we can derive

∫

Zp

wyqy
(
x + y

)n
dy = B

q
n,w(x),

∫

Zp

wyqyyndy = B
q
n,w. (2.5)

By (1.5), we can see that

1
log q + t

(∫

Zp

wn+xqn+xe(n+x)tdx −
∫

Zp

wxqxextdx

)

=
wnqnent − 1
t + log q

∫

Zp

wxqxextdx

=
wnqnent − 1
wqet − 1

=
n−1∑

i=0

wiqieit

=
∞∑

k=0

(
n−1∑

i=0

ikwiqi
)

tk

k!
.

(2.6)
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In (1.4), it is easy to show that

1
log q + t

(∫

Zp

wn+xqn+xe(n+x)tdx −
∫

Zp

wxqxextdx

)
=

n
∫
Zp

wxqxextdx
∫
Zp

wnxqnxenxtdx
. (2.7)

For each integer k ≥ 0, let

S
q

k,w(n) = 0k + 1kwq + 2kw2q2 + · · · + nkwnqn. (2.8)

From (2.6), (2.7), and (2.8), we derive

1
log q + t

(∫

Zp

wn+xqn+xe(n+x)tdx −
∫

Zp

wxqxextdx

)
=

n
∫
Zp

wxqxextdx
∫
Zp

wnxqnxenxtdx
=

∞∑

k=0

S
q

k,w(n − 1)
tk

k!
.

(2.9)

From (2.9), we note that

B
q

k,w(n) − B
q

k,w
= kS

q

k−1,w(n − 1) + log qSq

k,w(n − 1), (2.10)

for all k, n ∈ N. Let u1, u2 ∈ N and w ∈ Cp∞ ; then we have

∫
Zp

wu1x1+u2x2qu1x1+u2x2eu1x1+u2x2dx1dx2
∫
Zp

wu1u2xqu1u2xeu1u2xtdx
=
(
t + log q

)wu1u2qu1u2eu1t − 1
wu2qu2eu2t − 1

. (2.11)

By (2.9), we see that

u1
∫
Zp

wxqxextdx
∫
Zp

wu1xqu1xeu1xtdx
=

∞∑

l=0

(
u1−1∑

k=0

klwkqk
)

tl

l!
=

∞∑

l=0

S
q

l,w(u1 − 1)
tl

l!
. (2.12)

Let Tw(u1, u2;x, t) be as follows:

Tw(u1, u2;x, t) =

∫
Zp

wu1x1+u2x2qu1x1+u2x2e(u1x1+u2x2+u1u2x)tdx1dx2
∫
Zp

wu1u2xqu1u2xeu1u2xtdx
. (2.13)

Then we have

Tw(u1, u2;x, t) =

(
t + log q

)
eu1u2t

(
wu1u2qu1u2eu1u2t − 1

)
(
wu1qu1eu1t − 1

)(
wu2qu2eu2t − 1

) . (2.14)
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From (2.13), we derive

Tw(u1, u2;x, t) =

(
1
u1

∫

Zp

wu1x1qu1x1eu1(x1+u2x)tdx1

)⎛

⎝
u1

∫
Zp

wu2x2qu2x2eu2x2t

∫
Zp

wu1u2xqu1u2xeu1u2xtdx

⎞

⎠. (2.15)

By (2.4), (2.12), and (2.15), we can see that

Tw(u1, u2;x, t) =
1
u1

( ∞∑

i=0

B
qu1

i,wu1 (u2x)
ui
1t

i

i!

)( ∞∑

l=0

S
qu2

l,wu2 (u1 − 1)
ul
2t

l

l!

)

=
∞∑

n=0

(
n∑

i=0

(
n
i

)
B
qu1

i,wu1 (u2x)S
qu2

n−i,wu2 (u1 − 1)ui−1
1 un−i

2

)
tn

n!
.

(2.16)

By the symmetry of p-adic invariant integral on Zp, we also see that

Tw(u1, u2;x, t) =

(
1
u2

∫

Zp

wu2x2qu2x2eu2(x2+u1x)tdx2

)⎛

⎝
u2

∫
Zp

wu1x1qu1x1eu1x1t

∫
Zp

wu1u2xqu1u2xeu1u2xtdx

⎞

⎠

=
∞∑

n=0

(
n∑

i=0

(
n
i

)
B
qu2

i,wu2 (u1x)S
qu1

n−i,wu1 (u2 − 1)ui−1
2 un−i

1

)
tn

n!
.

(2.17)

By comparing the coefficients of tn/n! on both sides of (2.16) and (2.17), we obtain the
following theorem.

Theorem 2.1. Let u1, u2, n ∈ N. Then for all x ∈ Zp,

n∑

i=0

(
n
i

)
B
qu1

i,wu1 (u2x)S
qu2

n−i,wu2 (u1 − 1)ui−1
1 un−i

2 =
n∑

i=0

(
n
i

)
B
qu2

i,wu2 (u1x)S
qu1

n−i,wu1 (u2 − 1)ui−1
2 un−i

1 , (2.18)

where ( n
i ) is the binomial coefficient.

From Theorem 2.1, if we take u2 = 1, then we have the following corollary.

Corollary 2.2. For m ≥ 0, one we has

B
q

i,w(u1x) =
n∑

i=0

(
n
i

)
B
qu1

i,wu1 (x)S
q

n−i,w(u1 − 1)ui−1
1 , (2.19)

where ( n
i ) is the binomial coefficient.
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By (2.17), (2.18), and (2.19), we can see that

Tw(u1, u2;x, t) =

(
eu1u2xt

u1

∫

Zp

wu1xqu1x1eu1x1tdx1

)⎛

⎝
u1

∫
Zp

wu2x2qu2x2eu2x2tdx2
∫
Zp

wu1u2xqu1u2xeu1u2xtdx

⎞

⎠

=

(
eu1u2xt

u1

∫

Zp

wu1xqu1x1eu1x1tdx1

)(
u1−1∑

i=0

wu2iqu2ieu2it

)

=
1
u1

u1−1∑

i=0

wu2iqu2i

∫

Zp

wu1xqu1xe(x1+u2x+(u2/u1)i)tu1dx1

=
∞∑

n=0

u1−1∑

i=0

B
qu1

n,wu1

(
u2x +

u2

u1
i

)
un−1
1 wu2iqu2i

tn

n!
.

(2.20)

From the symmetry of Tw(u1, u2;x, t), we can also derive

Tw(u1, u2;x, t) =
∞∑

n=0

u2−1∑

i=0

B
qu2

n,wu2

(
u1x +

u1

u2
i

)
un−1
2 wu1iqu1i

tn

n!
. (2.21)

By comparing the coefficients of tn/n! on both sides of (2.20) and (2.21), we obtain the
following theorem.

Theorem 2.3. For m ∈ Z+, u1, u2 ∈ N, we have

u1−1∑

i=0

B
qu1

n,wu1

(
u2x +

u2

u1
i

)
un−1
1 wu2iqu2i =

u2−1∑

i=0

B
qu2

n,wu2

(
u1x +

u1

u2
i

)
un−1
2 wu1iqu1i. (2.22)

We note that by setting u2 = 1 in Theorem 2.3, we get the following multiplication
theorem for the twisted q-Bernoulli polynomials.

Theorem 2.4. For m ∈ Z+, u1 ∈ N, one has

B
q
n,w(u1x) = un−1

1

u1−1∑

i=0

B
qu1

n,wu1

(
x +

i

u1

)
wiqi. (2.23)

Remark 2.5. [18], Kim suggested open questions related to finding symmetric properties for
Carlitz q-Bernoulli numbers. In this paper, we give the symmetric property for q-Bernoulli
numbers in the viewpoint to give the answer of Kim’s open questions.

3. The Twisted Generalized Bernoulli Polynomials
Attached to χ of Higher Order

In this section, we consider the generalized Bernoulli numbers and polynomials and then
define the twisted generalized Bernoulli polynomials attached to χ of higher order by using
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multivariate p-adic invariant integrals on Zp. Let χ be Dirichlet’s character with conductor
d ∈ N. Then the generalized Bernoulli numbers Bn,χ and polynomials Bn,χ(x) attached to χ
are defined as

t
∑d−1

a=0 χ(a)e
at

edt − 1
=

∞∑

n=0

Bn,χ
tn

n!
, (3.1)

t
∑d−1

a=0 χ(a)e
at

edt − 1
ext =

∞∑

n=0

Bn,χ(x)
tn

n!
(3.2)

(cf. [2, 18, 23, 27]).
Let Cp∞ =

⋃
n≥1 Cpn = limn→∞Cpn be the locally constant space, where Cpn = {w | wpn =

1} is the cyclic group of order pn. For w ∈ Cp∞ , we denote the locally constant function by

φw : Zp −→ Cp, x −→ wx (3.3)

(cf. [2, 3, 21, 23, 24]). If we take f(x) = χ(x)etxφw(x)qx, for q ∈ Cp with |q − 1|p < 1, then it is
obvious from (3.1) that

∫

X

χ(x)etxwxqxdx =

(
t + log q

)∑d−1
a=0 χ(a)w

aqaeat

wdqdedt − 1
. (3.4)

Now we define the twisted generalized Bernoulli numbers Bq
n,χ,w and polynomials Bq

n,χ,w(x)
attached to χ as follows:

(
t + log q

)∑d−1
a=0 χ(a)w

aqaeat

wdqdedt − 1
=

∞∑

n=0

B
q
n,χ,w

tn

n!
, (3.5)

(
t + log q

)∑d−1
a=0 χ(a)w

aqaeatext

wdqdedt − 1
=

∞∑

n=0

B
q
n,χ,w(x)

tn

n!
(3.6)

for each w ∈ Cp∞ (see [31, 32]). By (3.5) and (3.6),

∫

X

χ(x)xnwxqxdx = B
q
n,χ,w,

∫

X

χ
(
y
)(
x + y

)n
wyqydy = B

q
n,χ,w(x).

(3.7)
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Thus we have

1
log q + t

(∫

X

χ(x)e(nd+x)twn+xqn+xdx −
∫

X

χ(x)extwxqxdx

)

=
nd

∫
X χ(x)extwxqxdx

∫
X endxtwndxqndxdx

=
wndqndendt − 1
wdqdedt − 1

d−1∑

i=0

χ(i)eitwiqi.

(3.8)

Then

1
log q + t

(∫

X

χ(x)e(nd+x)twn+xqn+xdx −
∫

X

χ(x)extwxqxdx

)

=
nd−1∑

l=0

χ(l)eltwlql =
∞∑

k=0

nd−1∑

l=0

χ(l)lkwlql
tk

k!
.

(3.9)

Let us define the p-adic twisted q-function T
q

k,w(χ, n) as follows:

T
q

k,w

(
χ, n

)
=

n∑

l=0

χ(l)lkwlql. (3.10)

By (3.9) and (3.10), we see that

1
log q + t

(∫

X

χ(x)e(nd+x)twnd+xqnd+xdx −
∫

X

χ(x)extwxqxdx

)
=

∞∑

k=0

T
q

k,w

(
χ, nd − 1

) tk

k!
. (3.11)

Thus,

(∫

X

χ(x)(nd + x)kwn+xqn+xdx −
∫

X

χ(x)xkwxqxdx

)
=
(
t + log q

)
T
q

k,w

(
χ, nd − 1

)
, (3.12)

for all k, n, d ∈ N. This means that

B
q

k,χ,w(nd) − B
q
n,χ,w =

(
t + log q

)
T
q

k,w

(
χ, nd − 1

)
, (3.13)
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for all k, n, d ∈ N. For all u1, u2, d ∈ N, we have

d
∫
X

∫
X χ(x1)χ(x2)e(w1x1+w2x2)twu1x1+u2x2qu1x1+u2x2dx1dx2∫

X edu1u2xtwdu1u2xqdu1u2xdx

=

(
t + log q

)(
edu1u2twdu1u2qdu1u2 − 1

)
(
edu1twdu1qdu1 − 1

)(
edu2twdu2qdu2 − 1

)

×
(

d−1∑

a=0

χ(a)eu1atwu1aqu1a

)(
d−1∑

b=0

χ(b)eu2btwu2bqu2b

)
.

(3.14)

The twisted generalized Bernoulli numbers B(k,q)
n,χ,w and polynomials B(k,q)

n,χ,w(x) attached
to χ of order k are defined as

((
t + log q

)∑d−1
a=0 χ(a)w

aqaeat

wdqdedt − 1

)k

=
∞∑

n=0

B
(k,q)
n,χ,w

tn

n!
, (3.15)

((
t + log q

)∑d−1
a=0 χ(a)w

aqaeat

wdqdedt − 1

)k

ext =
∞∑

n=0

B
(k,q)
n,χ,w(x)

tn

n!
(3.16)

for each w ∈ Cp∞ . For u1, u2 ∈ N, we set

K
q
w

(
m,χ;u1, u2

)

=
d
∫
Xm

∏m
i=1χ(xi)e(

∑m
i=1 xi+u2x)u1tw(

∑m
i=1 xi+u2x)u1q(

∑m
i=1 xi+u2x)u1dx1 · · ·dxm∫

X edu1u2xtwdu1u2xqdu1u2xdx

×
∫

Xm

m∏

i=1

χ(xi)e(
∑m

i=1 xi+u1y)u2tw(
∑m

i=1 xi+u1y)u2q(
∑m

i=1 xi+u1y)u1dx1 · · ·dxm,

(3.17)

where
∫
Xm f(x1 · · ·xm)dx1 · · ·dxm =

∫
X · · · ∫X f(x1, . . . , xm)dx1 · · ·dxm. In (3.17), we note that

Kq
w(m,χ;u1, u2) is symmetric in u1, u2. From (3.17), we have

K
q
w

(
m,χ;u1, u2

)
=
∫

Xm

m∏

i=1

χ(xi)e(
∑m

i=1 xi)u2tw(
∑m

i=1 xi)u2q(
∑m

i=1 xi)u2dx1 · · ·dxm

× eu1u2xtwu1u2xqu1u2x

(
d
∫
X χ(xm)eu2xmtwu2xmqu2xmdxm∫

X edu1u2xqdu1u2xdx

)

×
∫

Xm−1

m−1∏

i=1

χ(xi)e(
∑m−1

i=1 xi)u2tw(
∑m−1

i=1 xi)u2q(
∑m−1

i=1 xi)u2dx1 · · ·dxm−1

× eu1u2ytwu1u2yqu1u2y.

(3.18)
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Thus we can obtain

u1d
∫
X χ(x)extwxqxdx

∫
X edu2xtwdu2xqdu2xdx

=
∞∑

k=0

(
u1d−1∑

i=0

χ(i)ikwiqi
)

tk

k!
=

∞∑

k=0

T
q

k,w

(
χ, u1d − 1

) tk

k!
,

eu1u2xtwu1u2xqu1u2x

∫

Xm

m∏

i=1

χ(xi)e(
∑m

i=1 xi)u1tw(
∑m

i=1 xi)u1q(
∑m

i=1 xi)u1dx1 · · ·dxm

= eu1u2xtwu1u2xqu1u2x

(
u1

edu1twdu1qdu1 − 1

d−1∑

a=0

χ(a)eu1atwu1aqu1a

)

=
∞∑

n=0

B
(m,q)
n,χ,w(u2x)un

1
tn

n!
.

(3.19)

From (3.19), we derive

K
q
w

(
m,χ;u1, u2

)

=
∞∑

l=0

B
(m,q)
l,χ,w (u1x)ul

1
tl

l!

∞∑

k=0

T
q

k,w

(
χ, u1d − 1

) tk

k!

( ∞∑

i=0

B
(m−1,q)
i,χ,w

(
u1y

)ui
2t

i

i!

)
1
u1

=
∞∑

n=0

n∑

j=0

(
n
j

)
u
j

2u
n−j−1
1 B

(m,q)
n−j,χ,w(u2x) ×

j∑

k=0

T
q

k,w

(
χ, u1d − 1

)(j
k

)
B
(m−1,q)
j−k,χ,w

(
u1y

) tn

n!
.

(3.20)

By the symmetry of Kq
w(m,χ;u1, u2) in u1 and u2, we can see that

K
q
w

(
m,χ;u1, u2

)

=
∞∑

n=0

n∑

j=0

(
n
j

)
u
j

1u
n−j−1
2 B

(m,q)
n−j,χ,w(u1x) ×

j∑

k=0

T
q

k,w

(
χ, u2d − 1

)(j
k

)
B
(m−1,q)
j−k,χ,w

(
u2y

) tn

n!
.

(3.21)

By comparing the coefficients on both sides of (3.20) and (3.21), we see the following theorem.

Theorem 3.1. For d, u1, u2, m ∈ N, n ∈ Z, one has

n∑

j=0

(
n
j

)
u
j

2u
n−j−1
1 B

(m,q)
n−j,χ,w(u2x)

j∑

k=0

T
q

k,w

(
χ, u1d − 1

)(j
k

)
B
(m−1,q)
j−k,χ,w

(
u1y

)

=
n∑

j=0

(
n
j

)
u
j

1u
n−j−1
2 B

(m,q)
n−j,χ,w(u1x)

j∑

k=0

T
q

k,w

(
χ, u2d − 1

)(j
k

)
B
(m−1,q)
j−k,χ,w

(
u2y

)
.

(3.22)
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Remark 3.2. If we take y = 0 and m = 1 in (3.22), then we have

n∑

j=0

(
n
j

)
u
j

2u
n−j−1
1 B

q

n−j,χ,w(u2x)
j∑

k=0

T
q

k,w

(
χ, u1d − 1

)(j
k

)

=
n∑

j=0

(
n
j

)
u
j

1u
n−j−1
2 B

q

n−j,χ,w(u1x)
j∑

k=0

T
q

k,w

(
χ, u2d − 1

)(j
k

)
.

(3.23)

Now we can also calculate

K
q
w

(
m,χ;u1, u2

)
=

∞∑

n=0

(
n∑

k=0

(
n
k

)
uk−1
1 un−k

2 B
(m−1,q)
n−k,χ,w

(
u1y

)du1−1∑

i=0

B
(m,q)
i,χ,w

(
u2x +

u2

u1
i

))
tn

n!
. (3.24)

From the symmetric property of Kq
w(m,χ;u1, u2) in u1 and u2, we derive

K
q
w

(
m,χ;u1, u2

)
=

∞∑

n=0

(
n∑

k=0

(
n
k

)
uk−1
2 un−k

1 B
(m−1,q)
n−k,χ,w

(
u2y

)du2−1∑

i=0

B
(m,q)
i,χ,w

(
u1x +

u1

u2
i

))
tn

n!
. (3.25)

By comparing the coefficients on both sides of (3.24) and (3.26), we obtain the following
theorem.

Theorem 3.3. For d, u1, u2, m ∈ N, n ∈ Z, we have

n∑

k=0

(
n
k

)
uk−1
1 un−k

2 B
(m−1,q)
n−k,χ,w

(
u1y

)du1−1∑

i=0

B
(m,q)
k,χ,w

(
u2x +

u2

u1
i

)

=
n∑

k=0

(
n
k

)
uk−1
2 un−k

1 B
(m−1,q)
n−k,χ,w

(
u2y

)du2−1∑

i=0

B
(m,q)
k,χ,w

(
u1x +

u1

u2
i

)
.

(3.26)

Remark 3.4. If we take y = 0 and m = 1 in (3.26), then one has

un−1
1

du1−1∑

i=0

B
q
n,χ,w

(
u2x +

u2

u1
i

)
= un−1

2

du2−1∑

i=0

B
q
n,χ,w

(
u1x +

u1

u2
i

)
. (3.27)

Remark 3.5. In our results for q = 1, we can also derive similar results, which were treated
in [27]. In this paper, we used the p-adic integrals to derive the symmetric properties of
the q-Bernoulli polynomials. By using the symmetric properties of p-adic integral on X, we
can easily derive many interesting symmetric properties related to Bernoulli numbers and
polynomials.
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