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We first present several existence results and compactness of solutions set for the following Volterra
type integral inclusions of the form: y(t) ∈ ∫ t0 a(t − s)[Ay(s) + F(s, y(s))]ds, a.e. t ∈ J , where
J = [0, b], A is the infinitesimal generator of an integral resolvent family on a separable Banach
space E, and F is a set-valued map. Then the Filippov’s theorem and a Filippov-Ważewski result
are proved.

1. Introduction

In the past few years, several papers have been devoted to the study of integral equations on
real compact intervals under different conditions on the kernel (see, e.g., [1–4]) and references
therein. However very few results are available for integral inclusions on compact intervals,
see [5–7]. Topological structure of the solution set of integral inclusions of Volterra type is
studied in [8].

In this paper we present some results on the existence of solutions, the compactness
of set of solutions, Filippov’s theorem, and relaxation for linear and semilinear integral
inclusions of Volterra type of the form

y(t) ∈
∫ t

0
a(t − s)

[
Ay(s) + F

(
s, y(s)

)]
ds, a.e. t ∈ J := [0, b], (1.1)
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where a ∈ L1([0, b],R) andA : D(A) ⊂ E → E is the generator of an integral resolvent family
defined on a complex Banach space E, and F : [0, b] × E → P(E) is a multivalued map.

In 1980, Da Prato and Iannelli introduced the concept of resolvent families, which can
be regarded as an extension of C0-semigroups in the study of a class of integrodifferential
equations [9]. It is well known that the following abstract Volterra equation

y(t) = f(t) +
∫ t

0
a(t − s)Ay(s)ds, t ≥ 0, (1.2)

where f : R+ → E is a continuous function, is well-posed if and only if it admits a resolvent
family, that is, there is a strongly continuous family S(t), t > 0, of bounded linear operators
defined in E, which commutes with A and satisfies the resolvent equation

S(t)x = x +
∫ t

0
a(t − s)AS(s)xds, t ≥ 0, x ∈ D(A). (1.3)

The study of diverse properties of resolvent families such as the regularity, positivity,
periodicity, approximation, uniform continuity, compactness, and others are studied by
several authors under different conditions on the kernel and the operator A (see [10–24]).
An important kernel is given by

a(t) = f1−α(t)e−kt, t > 0, k ≥ 0, α ∈ (0, 1), (1.4)

where

fα(t) =

⎧
⎪⎨

⎪⎩

tα−1

Γ(α)
if t > 0,

0 if t ≤ 0
(1.5)

is the Riemann-Liouville kernel. In this case (1.1) and (1.2) can be represented in the form
of fractional differential equations and inclusions or abstract fractional differential equations
and inclusions. Also in the case where A ≡ 0, and a is a Rieman-Liouville kernel, (1.1) and
(1.2) can be represented in the form of fractional differential equations and inclusions, see for
instants [25–27].

Our goal in this paper is to complement and extend some recent results to the case of
infinite-dimensional spaces; moreover the right-hand side nonlinearity may be either convex
or nonconvex. Some auxiliary results from multivalued analysis, resolvent family theory,
and so forth, are gathered together in Sections 2 and 3. In the first part of this work, we
prove some existence results based on the nonlinear alternative of Leray-Schauder type
(in the convex case), on Bressan-Colombo selection theorem and on the Covitz combined
the nonlinear alternative of Leray-Schauder type for single-valued operators, and Covitz-
Nadler fixed point theorem for contraction multivalued maps in a generalized metric space
(in the nonconvex case). Some topological ingredients including some notions of measure
of noncompactness are recalled and employed to prove the compactness of the solution
set in Section 4.2. Section 5 is concerned with Filippov’s theorem for the problem (1.1).
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In Section 6, we discuss the relaxed problem, namely, the density of the solution set of
problem (1.1) in that of the convexified problem.

2. Preliminaries

In this section, we recall from the literature some notations, definitions, and auxiliary results
which will be used throughout this paper. Let (E, ‖ · ‖) be a separable Banach space, J = [0, b]
an interval in R and C(J, E) the Banach space of all continuous functions from J into E with
the norm

∥
∥y
∥
∥
∞ = sup

{∥∥y(t)
∥
∥ : 0 ≤ t ≤ b

}
. (2.1)

B(E) refers to the Banach space of linear bounded operators from E into E with norm

‖N‖B(E) = sup
{∥∥N
(
y
)∥∥ :
∥∥y
∥∥ = 1
}
. (2.2)

A function y : J → E is called measurable provided for every open subset U ⊂ E, the set
y−1(U) = {t ∈ J : y(t) ∈ U} is Lebesgue measurable. A measurable function y : J → E
is Bochner integrable if ‖y‖ is Lebesgue integrable. For properties of the Bochner integral,
see, for example, Yosida [28]. In what follows, L1(J, E) denotes the Banach space of functions
y : J → E, which are Bochner integrable with norm

∥∥y
∥∥
1 =
∫b

0

∥∥y(t)
∥∥dt. (2.3)

Denote by P(E) = {Y ⊂ E : Y /= ∅}, Pcl(E) = {Y ∈ P(E) : Y closed}, Pb(E) = {Y ∈ P(E) : Y
bounded}, Pcv(E) = {Y ∈ P(E) : Y convex}, Pcp(E) = {Y ∈ P(E) : Y compact}.

2.1. Multivalued Analysis

Let (X, d) and (Y, ρ) be two metric spaces and G : X → Pcl(Y ) be a multivalued map. A
single-valued map g : X → Y is said to be a selection of G and we write g ⊂ G whenever
g(x) ∈ G(x) for every x ∈ X.

G is called upper semicontinuous (u.s.c. for short) on X if for each x0 ∈ X the set G(x0)
is a nonempty, closed subset of X, and if for each open set N of Y containing G(x0), there
exists an open neighborhood M of x0 such that G(M) ⊆ Y . That is, if the set G−1(V ) = {x ∈
X, G(x)∩V /= ∅} is closed for any closed set V in Y . Equivalently,G is u.s.c. if the setG+1(V ) =
{x ∈ X, G(x) ⊂ V } is open for any open set V in Y .

The following two results are easily deduced from the limit properties.

Lemma 2.1 (see, e.g., [29, Theorem 1.4.13]). If G : X → Pcp(x) is u.s.c., then for any x0 ∈ X,

lim sup
x→x0

G(x) = G(x0). (2.4)
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Lemma 2.2 (see, e.g., [29, Lemma 1.1.9]). Let (Kn)n∈N ⊂ K ⊂ X be a sequence of subsets where
K is compact in the separable Banach space X. Then

co
(
lim sup
n→∞

Kn

)
=
⋂

N>0

co

(
⋃

n≥N
Kn

)

, (2.5)

where co C refers to the closure of the convex hull of C.

G is said to be completely continuous if it is u.s.c. and, for every bounded subset A ⊆ X,
G(A) is relatively compact, that is, there exists a relatively compact set K = K(A) ⊂ X such
that G(A) = ∪ {G(x), x ∈ A} ⊂ K. G is compact if G(X) is relatively compact. It is called
locally compact if, for each x ∈ X, there existsU ∈ V(x) such that G(U) is relatively compact.
G is quasicompact if, for each subset A ⊂ X, G(A) is relatively compact.

Definition 2.3. A multivalued map F : J = [0, b] → Pcl(Y ) is said measurable provided for
every open U ⊂ Y , the set F+1(U) is Lebesgue measurable.

We have

Lemma 2.4 (see [30, 31]). The mapping F is measurable if and only if for each x ∈ Y , the function
ζ : J → [0,+∞) defined by

ζ(t) = dist(x, F(t)) = inf
{∥∥x − y

∥∥ : y ∈ F(t)
}
, t ∈ J, (2.6)

is Lebesgue measurable.

The following two lemmas are needed in this paper. The first one is the celebrated
Kuratowski-Ryll-Nardzewski selection theorem.

Lemma 2.5 (see [31, Theorem 19.7]). Let Y be a separable metric space and F : [a, b] → P(Y ) a
measurable multivalued map with nonempty closed values. Then F has a measurable selection.

Lemma 2.6 (see [32, Lemma 3.2]). Let F : [0, b] → P(Y ) be a measurable multivalued map and
u : [a, b] → Y a measurable function. Then for any measurable v : [a, b] → (0,+∞), there exists a
measurable selection fv of F such that for a.e. t ∈ [a, b],

∥∥u(t) − fv(t)
∥∥ ≤ d(u(t), F(t)) + v(t). (2.7)

Corollary 2.7. Let F : [0, b] → Pcp(Y ) be a measurable multivalued map and u : [0, b] → E a
measurable function. Then there exists a measurable selection f of F such that for a.e. t ∈ [0, b],

∥∥u(t) − f(t)
∥∥ ≤ d(u(t), F(t)). (2.8)

2.1.1. Closed Graphs

We denote the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.
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Definition 2.8. G is closed if Gr(G) is a closed subset of X × Y , that is, for every sequences
(xn)n∈N ⊂ X and (yn)n∈N ⊂ Y , if xn → x∗, yn → y∗ as n → ∞ with yn ∈ F(xn), then
y∗ ∈ G(x∗).

We recall the following two results; the first one is classical.

Lemma 2.9 (see [33, Proposition 1.2]). If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed subset
of X × Y . Conversely, if G is locally compact and has nonempty compact values and a closed graph,
then it is u.s.c.

Lemma 2.10. If G : X → Pcp(Y ) is quasicompact and has a closed graph, then G is u.s.c.

Given a separable Banach space (E, ‖ · ‖), for a multivalued map F : J × E → P(E),
denote

‖F(t, x)‖P := sup{‖v‖ : v ∈ F(t, x)}. (2.9)

Definition 2.11. A multivalued map F is called a Carathéodory function if

(a) the function t �→ F(t, x) is measurable for each x ∈ E;

(b) for a.e. t ∈ J , the map x �→ F(t, x) is upper semicontinuous.

Furthermore, F is L1-Carathéodory if it is locally integrably bounded, that is, for each positive
r, there exists hr ∈ L1(J,R+) such that

‖F(t, x)‖P ≤ hr(t), for a.e. t ∈ J and all ‖x‖ ≤ r. (2.10)

For each x ∈ C(J, E), the set

SF,x =
{
f ∈ L1(J, E) : f(t) ∈ F(t, x(t)) for a.e. t ∈ J

}
(2.11)

is known as the set of selection functions.

Remark 2.12. (a) For each x ∈ C(J, E), the set SF,x is closed whenever F has closed values. It is
convex if and only if F(t, x(t)) is convex for a.e. t ∈ J .

(b) From [34] (see also [35] when E is finite-dimensional), we know that SF,x is
nonempty if and only if the mapping t �→ inf{‖v‖ : v ∈ F(t, x(t))} belongs to L1(J). It
is bounded if and only if the mapping t �→ ‖F(t, x(t))‖P belongs to L1(J); this particularly
holds true when F is L1-Carathéodory. For the sake of completeness, we refer also to Theorem
1.3.5 in [36] which states that SF,x contains a measurable selection whenever x is measurable
and F is a Carathéodory function.

Lemma 2.13 (see [35]). Given a Banach space E, let F : [a, b] × E → Pcp,cv(E) be an L1-
Carathéodory multivalued map, and let Γ be a linear continuous mapping from L1([a, b], E) into
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C([a, b], E). Then the operator

Γ ◦ SF : C([a, b], E) −→ Pcp,cv(C([a, b], E)),

y �−→ (Γ ◦ SF)
(
y
)
:= Γ
(
SF,y

) (2.12)

has a closed graph in C([a, b], E) × C([a, b], E).

For further readings and details on multivalued analysis, we refer to the books by
Andres and Górniewicz [37], Aubin and Cellina [38], Aubin and Frankowska [29], Deimling
[33], Górniewicz [31], Hu and Papageorgiou [34], Kamenskii et al. [36], and Tolstonogov
[39].

2.2. Semicompactness in L1([0, b], E)

Definition 2.14. A sequence {vn}n∈N ⊂ L1(J, E) is said to be semicompact if

(a) it is integrably bounded, that is, there exists q ∈ L1(J,R+) such that

‖vn(t)‖E ≤ q(t), for a.e. t ∈ J and every n ∈ N, (2.13)

(b) the image sequence {vn(t)}n∈N is relatively compact in E for a.e. t ∈ J .

We recall two fundamental results. The first one follows from the Dunford-Pettis
theorem (see [36, Proposition 4.2.1]). This result is of particular importance if E is reflexive in
which case (a) implies (b) in Definition 2.14.

Lemma 2.15. Every semicompact sequence L1(J, E) is weakly compact in L1(J, E).

The second one is due to Mazur, 1933.

Lemma 2.16 (Mazur’s Lemma, [28]). Let E be a normed space and {xk}k∈N ⊂ E be a sequence
weakly converging to a limit x ∈ E. Then there exists a sequence of convex combinations ym =∑m

k=1 αmkxk with αmk > 0 for k = 1, 2, . . . , m and
∑m

k=1 αmk = 1, which converges strongly to x.

3. Resolvent Family

The Laplace transformation of a function f ∈ L1
loc(R+, E) is defined by

L(f)(λ) :=: â(λ) =
∫∞

0
e−λtf(t)dt, Re(λ) > ω, (3.1)

if the integral is absolutely convergent for Re(λ) > ω. In order to defined the mild solution of
the problems (1.1) we recall the following definition.
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Definition 3.1. Let A be a closed and linear operator with domain D(A) defined on a Banach
space E. We call A the generator of an integral resolvent if there exists ω > 0 and a strongly
continuous function S : R+ → B(E) such that

(
1

â(λ)
I −A

)−1
x =
∫∞

0
e−λtS(t)xdt, Reλ > ω, x ∈ E. (3.2)

In this case, S(t) is called the integral resolvent family generated by A.

The following result is a direct consequence of ([16, Proposition 3.1 and Lemma 2.2]).

Proposition 3.2. Let {S(t)}t≥0 ⊂ B(E) be an integral resolvent family with generator A. Then the
following conditions are satisfied:

(a) S(t) is strongly continuous for t ≥ 0 and S(0) = I;

(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A), t ≥ 0;

(c) for every x ∈ D(A) and t ≥ 0,

S(t)x = a(t)x +
∫ t

0
a(t − s)AS(s)xds, (3.3)

(d) let x ∈ D(A). Then
∫ t
0 a(t − s)S(s)xds ∈ D(A), and

S(t)x = a(t)x +A

∫ t

0
a(t − s)S(s)xds. (3.4)

In particular, S(0) = a(0).

Remark 3.3. The uniqueness of resolvent is well known (see Prüss [24]).

If an operator A with domain D(A) is the infinitesimal generator of an integral
resolvent family S(t) and a(t) is a continuous, positive and nondecreasing function which
satisfies limt→ 0+‖S(t)‖B(E)/a(t) < ∞, then for all x ∈ D(A)we have

Ax = lim
t→ 0+

S(t)x − a(t)x
(a ∗ a)(t) , (3.5)

(see [22, Theorem 2.1]). For example, the case a(t) ≡ 1 corresponds to the generator of
a C0-semigroup and a(t) = t actually corresponds to the generator of a sine family; see
[40]. A characterization of generators of integral resolvent families, analogous to the Hille-
Yosida Theorem for C0-semigroups, can be directly deduced from [22, Theorem 3.4]. More
information on the C0-semigroups and sine families can be found in [41–43].

Definition 3.4. A resolvent family of bounded linear operators, {S(t)}t>0, is called uniformly
continuous if

lim
t→ s

‖S(t) − S(s)‖B(E) = 0. (3.6)
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Definition 3.5. The solution operator S(t) is called exponentially bounded if there are
constants M > 0 and ω ≥ 0 such that

‖S(t)‖B(E) ≤ Meωt, t ≥ 0. (3.7)

4. Existence Results

4.1. Mild Solutions

In order to define mild solutions for problem (1.1), we proof the following auxiliary lemma.

Lemma 4.1. Let a ∈ L1(J,R). Assume that A generates an integral resolvent family {S(t)}t≥0 on
E, which is in addition integrable and D(A) = E. Let f : J → E be a continuous function (or
f ∈ L1(J, E)), then the unique bounded solution of the problem

y(t) =
∫ t

0
a(t − s)Ay(s)ds +

∫ t

0
a(t − s)f(s)ds, t ∈ J, (4.1)

is given by

y(t) =
∫ t

0
S(t − s)f(s)ds, t ∈ J. (4.2)

Proof. Let y be a solution of the integral equation (4.2), then

y(t) =
∫ t

0
S(t − s)f(s)ds. (4.3)

Using the fact that S is solution operator and Fubini’s theorem we obtain

∫ t

0
a(t − s)Ay(s)ds =

∫ t

0
a(t − s)A

∫ s

0
S(s − r)f(r)dr ds

=
∫ t

0

∫ t

r

a(t − s)AS(s − r)dsf(r)dr

=
∫ t

0

∫ t−r

0
a(t − s − r)AS(s)dsf(r)dr

=
∫ t

0
[S(t − r) − a(t − r)]f(r)dr

=
∫ t

0
S(t − s)f(s)ds −

∫ t

0
a(t − s)f(s)ds.

(4.4)
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Thus

y(t) =
∫ t

0
a(t − s)Ay(s)ds +

∫ t

0
a(t − s)f(s)ds, t ∈ J. (4.5)

This lemma leads us to the definition of a mild solution of the problem (1.1).

Definition 4.2. A function y ∈ C(J, E) is said to be a mild solution of problem (1.1) if there
exists f ∈ L1(J, E) such that f(t) ∈ F(t, y(t)) a.e. on J such that

y(t) =
∫ t

0
S(t − s)f(s)ds, t ∈ J. (4.6)

Consider the following assumptions.

(B1) The operator solution {S(t)}t∈J is compact for t > 0.

(B2) There exist a function p ∈ L1(J,R+) and a continuous nondecreasing function ψ :
[0,∞) → [0,∞) such that

‖F(t, x)‖P ≤ p(t)ψ(‖x‖) for a.e. t ∈ J and each x ∈ E (4.7)

with

Meωb

∫b

0
p(s)ds <

∫∞

0

du

ψ(u)
. (4.8)

(B3) For every t > 0, S(t) is uniformly continuous.

In all the sequel we assume that S(·) is exponentially bounded. Our first main existence result
is the following.

Theorem 4.3. Assume F : J × E → Pcp,cv(E) is a Carathéodory map satisfying (B1)-(B2)(or
(B2)-(B3)). Then problem (1.1) has at least one solution. If further E is a reflexive space, then the
solution set is compact in C(J, E).

The following so-called nonlinear alternatives of Leray-Schauder type will be needed
in the proof (see [31, 44]).

Lemma 4.4. Let (X, ‖ · ‖) be a normed space and F : X → Pcl,cv(X) a compact, u.s.c. multivalued
map. Then either one of the following conditions holds.

(a) F has at least one fixed point,

(b) the setM := {x ∈ E, x ∈ λF(x), λ ∈ (0, 1)} is unbounded.

The single-valued version may be stated as follows.



10 Advances in Difference Equations

Lemma 4.5. LetX be a Banach space andC ⊂ X a nonempty bounded, closed, convex subset. Assume
U is an open subset of C with 0 ∈ U and let G : U → C be a a continuous compact map. Then

(a) either there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λG(u),

(b) or G has a fixed point inU.

Proof of Theorem 4.3. We have the following parts.

Part 1: Existence of Solutions

It is clear that all solutions of problem (1.1) are fixed points of the multivalued operator
N : C(J, E) → P(C(J, E)) defined by

N
(
y
)
:=

{

h ∈ C(J, E) | h(t) =
∫ t

0
S(t − s)f(s)ds, for t ∈ J

}

(4.9)

where

f ∈ SF,y =
{
f ∈ L1(J, E) : f(t) ∈ F

(
t, y(t)

)
, for a.e. t ∈ J

}
. (4.10)

Notice that the set SF,y is nonempty (see Remark 2.12,(b)). Since, for each y ∈ C(J, E), the
nonlinearity F takes convex values, the selection set SF,y is convex and thereforeN has convex
values.

Step 1 (N is completely continuous). (a) N sends bounded sets into bounded sets in C(J, E).
Let q > 0, Bq := {y ∈ C(J, E) : ‖y‖∞ ≤ q} be a bounded set in C(J, E), and y ∈ Bq. Then for
each h ∈ N(y), there exists f ∈ SF,y such that

h(t) =
∫ t

0
S(t − s)f(s)ds, for t ∈ J. (4.11)

Thus for each t ∈ J ,

‖h‖∞ ≤ eωbψ
(
q
)
∫b

0
p(t)dt. (4.12)

(b) N maps bounded sets into equicontinuous sets of C(J, E).
Let τ1, τ2 ∈ J , 0 < τ1 < τ2 and Bq be a bounded set of C(J, E) as in (a). Let y ∈ Bq; then for each
t ∈ J

‖h(τ2) − h(τ1)‖ ≤ ψ
(
q
)
∫ τ2

τ1

‖S(τ2 − s)‖B(E)p(s)ds

+ ψ
(
q
)
∫ τ1

0
‖S(τ1 − s) − S(τ2 − s)‖B(E)p(s)ds.

(4.13)

The right-hand side tends to zero as τ2 − τ1 → 0 since S(t) is uniformly continuous.
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(c) As a consequence of parts (a) and (b) together with the Arzéla-Ascoli theorem, it
suffices to show thatN maps Bq into a precompact set in E. Let 0 < t ≤ b and let 0 < ε < t. For
y ∈ Bq, define

hε(t) =
∫ t−ε

0
S(t − s − ε)f(s)ds. (4.14)

Then

|h(t) − hε(t)| ≤ ψ
(
q
)
∫ t−ε

0
‖S(t − s) − S(t − s − ε)‖B(E)p(s)ds

+ ψ
(
q
)
∫ t

t−ε
‖S(t − s)‖B(E)p(s)ds,

(4.15)

which tends to 0 as ε → 0. Therefore, there are precompact sets arbitrarily close to the set
H(t) = {h(t) : h ∈ N(y)}. This set is then precompact in E.

Step 2 (N has a closed graph). Let hn → h∗, hn ∈ N(yn) and yn → y∗. We will prove that
h∗ ∈ N(y∗). hn ∈ N(yn)means that there exists fn ∈ SF,yn such that for each t ∈ J

hn(t) =
∫ t

0
S(t − s)fn(s)ds. (4.16)

First, we have

‖hn − h∗‖∞ −→ 0, as n −→ ∞. (4.17)

Now, consider the linear continuous operator Γ : L1(J, E) → C(J, E) defined by

(Γv)(t) =
∫ t

0
S(t − s)v(s)ds. (4.18)

From the definition of Γ, we know that

hn(t) ∈ Γ
(
SF,yn

)
. (4.19)

Since yn → y∗ and Γ ◦ SF is a closed graph operator by Lemma 2.13, then there exists f∗ ∈
SF,y∗ such that

h∗(t) =
∫ t

0
S(t − s)f∗(s)ds. (4.20)

Hence h∗ ∈ N(y∗), proving our claim. Lemma 2.10 implies that N is u.s.c.
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Step 3 (a priori bounds on solutions). Let y ∈ C(J, E) be such that y ∈ N(y). Then there exists
f ∈ SF,y such that

y(t) =
∫ t

0
S(t − s)f(s)ds, for t ∈ J. (4.21)

Then

∥
∥y(t)
∥
∥ ≤
∫ t

0
‖S(t − s)‖B(E)

∥
∥f(s)
∥
∥ds

≤
∫ t

0
‖S(t − s)‖B(E)p(s)ψ

(∥∥y(s)
∥
∥)ds

≤ Meωb

∫ t

0
p(s)ψ

(∥∥y(s)
∥∥)ds.

(4.22)

Set

v(t) = Meωb

∫ t

0
p(s)ψ

(∥∥y(s)
∥∥)ds, (4.23)

then v(0) = 0 and for a.e. t ∈ J we have

v′(t) = Meωbp(t)ψ
(∥∥y(t)

∥∥) ≤ Meωbp(t)ψ(v(t)). (4.24)

Thus

∫ t

0

v(s)
ψ(v(s))

ds ≤ Meωb

∫ t

0
p(s)ds. (4.25)

Using a change of variable we get

∫v(t)

0

du

ψ(u)
≤ Meωb

∫b

0
p(s)ds. (4.26)

From (B2) there exists M̃ > 0 such that

∥∥y(t)
∥∥ ≤ v(t) ≤ M̃ for each t ∈ J. (4.27)

Let

U :=
{
y ∈ C(J, E) :

∥∥y
∥∥
∞ < M̃ + 1

}
, (4.28)
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and consider the operator N : U → Pcv,cp(C(J, E)). From the choice of U, there is no y ∈ ∂U
such that y ∈ γN(y) for some γ ∈ (0, 1). As a consequence of the Leray-Schauder nonlinear
alternative (Lemma 4.4), we deduce that N has a fixed point y in U which is a mild solution
of problem (1.1).

Part 2: Compactness of the Solution Set

Let

SF =
{
y ∈ C(J, E) | y is a solution of problem (1.1)

}
. (4.29)

From Part 1, SF /= ∅ and there exists M̃ such that for every y ∈ SF , ‖y‖∞ ≤ M̃. Since N is
completely continuous, thenN(SF) is relatively compact inC(J, E). Let y ∈ SF ; then y ∈ N(y)
and SF ⊂ N(SF). It remains to prove that SF is closed set in C(J, E). Let yn ∈ SF such that yn

converge to y. For every n ∈ N, there exists vn(t) ∈ F(t, yn(t)), a.e. t ∈ J such that

yn(t) =
∫ t

0
S(t − s)vn(s)ds. (4.30)

(B1) implies that vn(t) ∈ p(t)B(0, 1), hence (vn)n∈N is integrably bounded. Note this still
remains true when (B2) holds for SF is a bounded set. Since E is reflexive, (vn)n∈N is
semicompact. By Lemma 2.15, there exists a subsequence, still denoted (vn)n∈N, which
converges weakly to some limit v ∈ L1(J, E). Moreover, the mapping Γ : L1(J, E) → C(J, E)
defined by

Γ
(
g
)
(t) =
∫ t

0
S(t − s)g(s)ds (4.31)

is a continuous linear operator. Then it remains continuous if these spaces are endowed with
their weak topologies. Therefore for a.e. t ∈ J , the sequence yn(t) converges to y(t), it follows
that

y(t) =
∫ t

0
S(t − s)v(s)ds. (4.32)

It remains to prove that v ∈ F(t, y(t)), for a.e. t ∈ J . Lemma 2.16 yields the existence of
αn
i ≥ 0, i = n, . . . , k(n) such that

∑k(n)
i=1 αn

i = 1 and the sequence of convex combinaisons
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gn(·) =
∑k(n)

i=1 αn
i vi(·) converges strongly to v in L1. Since F takes convex values, using

Lemma 2.2, we obtain that

v(t) ∈
⋂

n≥1
{gn(t)}, a.e. t ∈ J

⊂
⋂

n≥1
co{vk(t), k ≥ n}

⊂
⋂

n≥1
co

{
⋃

k≥n
F
(
t, yk(t)

)
}

= co

(

lim sup
k→∞

F
(
t, yk(t)

)
)

.

(4.33)

Since F is u.s.c.with compact values, then by Lemma 2.1, we have

lim sup
n→∞

F
(
t, yn(t)

)
= F
(
t, y(t)

)
, for a.e. t ∈ J. (4.34)

This with (4.33) imply that v(t) ∈ co F(t, y(t)). Since F(·, ·) has closed, convex values, we
deduce that v(t) ∈ F(t, y(t)), for a.e. t ∈ J , as claimed. Hence y ∈ SF which yields that SF is
closed, hence compact in C(J, E).

4.2. The Convex Case: An MNC Approach

First, we gather together some material on the measure of noncompactness. For more details,
we refer the reader to [36, 45] and the references therein.

Definition 4.6. Let E be a Banach space and (A,≥) a partially ordered set. A map β : P(E) →
A is called a measure of noncompactness on E, MNC for short, if

β(co Ω) = β(Ω) (4.35)

for every Ω ∈ P(E).

Notice that if D is dense in Ω, then co Ω = co D and hence

β(Ω) = β(D). (4.36)

Definition 4.7. A measure of noncompactness β is called

(a) monotone if Ω0, Ω1 ∈ P(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1).

(b) nonsingular if β({a} ∪Ω) = β(Ω) for every a ∈ E, Ω ∈ P(E).

(c) invariant with respect to the union with compact sets if β(K ∪Ω) = β(Ω) for every
relatively compact set K ⊂ E, and Ω ∈ P(E).
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(d) real ifA = R+ = [0,∞] and β(Ω) < ∞ for every bounded Ω.

(e) semiadditive if β(Ω0 ∪Ω1) = max(β(Ω0), β(Ω1)) for every Ω0,Ω1 ∈ P(E).

(f) regular if the condition β(Ω) = 0 is equivalent to the relative compactness of Ω.

As example of an MNC, one may consider the Hausdorf MNC

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}. (4.37)

Recall that a bounded set A ⊂ E has a finite ε-net if there exits a finite subset S ⊂ E such that
A ⊂ S + εB where B is a closed ball in E.

Other examples are given by the following measures of noncompactness defined on
the space of continuous functions C(J, E)with values in a Banach space E:

(i) the modulus of fiber noncompactness

ϕ(Ω) = sup
t∈J

χE(Ω(t)), (4.38)

where χE is the Hausdorff MNC in E and Ω(t) = {y(t) : y ∈ Ω};
(ii) the modulus of equicontinuity

modC(Ω) = lim
δ→ 0

sup
y∈Ω

max
‖τ1−τ2‖≤δ

∥∥y(τ1) − y(τ2)
∥∥. (4.39)

It should be mentioned that these MNC satisfy all above-mentioned properties
except regularity.

Definition 4.8. Let M be a closed subset of a Banach space E and β : P(E) → (A,≥) an MNC
on E. A multivalued map F : M → Pcp(E) is said to be β-condensing if for every Ω ⊂ M, the
relation

β(Ω) ≤ β(F(Ω)), (4.40)

implies the relative compactness of Ω.

Some important results on fixed point theory with MNCs are recalled hereafter (see,
e.g., [36] for the proofs and further details). The first one is a compactness criterion.

Lemma 4.9 (see [36, Theorem 5.1.1]). Let N : L1([a, b], E) → C([a, b], E) be an abstract
operator satisfying the following conditions:

(S1) N is ξ-Lipschitz: there exists ξ > 0 such that for every f, g ∈ L1([a, b], E)

∥∥Nf(t) −Ng(t)
∥∥ ≤ ξ

∫b

a

∥∥f(s) − g(s)
∥∥ds, ∀t ∈ [a, b]. (4.41)
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(S2) N is weakly-strongly sequentially continuous on compact subsets: for any compact K ⊂ E
and any sequence {fn}∞n=1 ⊂ L1([a, b], E) such that {fn(t)}∞n=1 ⊂ K for a.e. t ∈ [a, b], the
weak convergence fn ⇀ f0 implies the strong convergenceN(fn) → N(f0) as n → +∞.

Then for every semicompact sequence {fn}∞n=1 ⊂ L1(J, E), the image sequenceN({fn}∞n=1) is relatively
compact in C([a, b], E).

Lemma 4.10 (see [36, Theorem 5.2.2]). Let an operator N : L1([a, b], E) → C([a, b], E) satisfy
conditions (S1)-(S2) together with the following:

(S3) there exits η ∈ L1([a, b]) such that for every integrable bounded sequence {fn}∞n=1, one has

χ
({

fn(t)
}∞
n=1

) ≤ η(t), for a.e. t ∈ [a, b], (4.42)

where χ is the Hausdorff MNC.

Then

χ
({

N
(
fn
)
(t)
}∞
n=1

) ≤ 2ξ
∫b

a

η(s)ds, ∀t ∈ [a, b], (4.43)

where ξ is the constant in (S1).

The next result is concerned with the nonlinear alternative for β-condensing u.s.c.
multivalued maps.

Lemma 4.11 (see [36]). Let V ⊂ E be a bounded open neighborhood of zero andN : V → Pcp,cv(E)
a β-condensing u.s.c. multivalued map, where β is a nonsingular measure of noncompactness defined
on subsets of E, satisfying the boundary condition

x /∈ λN(x) (4.44)

for all x ∈ ∂V and 0 < λ < 1. Then FixN/= ∅.

Lemma 4.12 (see [36]). Let W be a closed subset of a Banach space E and F : W → Pcp(E) is a
closed β-condensing multivalued map where β is a monotone MNC on E. If the fixed point set Fix F
is bounded, then it is compact.

4.2.1. Main Results

In all this part, we assume that there exists M > 0 such that

‖S(t)‖B(E) ≤ M for every t ∈ J. (4.45)

Let F : J × E → Pcp,cv(E) be a Carathéodory multivalued map which satisfies Lipschitz
conditions with respect to the Hausdorf MNC.
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(B4) There exists p ∈ L1(J,R+) such that for every bounded D in E,

χ(F(t,D)) ≤ p(t)χ(D), (4.46)

Lemma 4.13. Under conditions (B2) and (B4), the operatorN is closed andN(y) ∈ Pcp,cv(C(J, E)),
for every y ∈ C(J, E) whereN is as defined in the proof of Theorem 4.3.

Proof. We have the following steps.

Step 1 (N is closed). Let hn → h∗, hn ∈ N(yn), and yn → y∗. We will prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists fn ∈ SF,yn such that for a.e. t ∈ J

hn(t) =
∫ t

0
S(t − s)fn(s)ds. (4.47)

Since {fn(t) : n ∈ N} ⊆ F(t, yn(t)), Assumption (B1) implies that (fn)n∈N is integrably
bounded. In addition, the set {fn(t) : n ∈ N} is relatively compact for a.e. t ∈ J because
Assumption (B4) both with the convergence of {yn}n∈N imply that

χ
({

fn(t) : n ∈ N
}) ≤ χ

(
F
(
t, yn(t)

)) ≤ p(t)χ
({

yn(t) : n ∈ N
})

= 0. (4.48)

Hence the sequence {fn : n ∈ N} is semicompact, hence weakly compact in L1(J ;E) to some
limit f∗ by Lemma 2.15. Arguing as in the proof of Theorem 4.3 Part 2, and passing to the
limit in (4.47), we obtain that f∗ ∈ SF,y∗ and for each t ∈ J

h∗(t) =
∫ t

0
S(t − s)f∗(s)ds. (4.49)

As a consequence, h∗ ∈ N(y∗), as claimed.

Step 2 (N has compact, convex values). The convexity of N(y) follows immediately by the
convexity of the values of F. To prove the compactness of the values of F, let N(y) ∈ P(E)
for some y ∈ C(J, E) and hn ∈ N(y). Then there exists fn ∈ SF,y satisfying (4.47). Arguing
again as in Step 1, we prove that {fn} is semicompact and converges weakly to some limit
f∗ ∈ F(t, y(t)), a.e. t ∈ J hence passing to the limit in (4.47), hn tends to some limit h∗ in
the closed set N(y) with h∗ satisfying (4.49). Therefore the set N(y) is sequentially compact,
hence compact.

Lemma 4.14. Under the conditions (B2) and (B4), the operator N is u.s.c.

Proof. Using Lemmas 2.10 and 4.13, we only prove that N is quasicompact. Let K be a
compact set in C(J, E) and hn ∈ N(yn) such that yn ∈ K. Then there exists fn ∈ SF,yn such that

hn(t) =
∫ t

0
S(t − s)fn(s)ds. (4.50)
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Since K is compact, we may pass to a subsequence, if necessary, to get that {yn} converges
to some limit y∗ in C(J, E). Arguing as in the proof of Theorem 4.3 Step 1, we can prove
the existence of a subsequence {fn} which converges weakly to some limit f∗ and hence hn

converges to h∗, where

h∗(t) =
∫ t

0
S(t − s)f∗(s)ds. (4.51)

As a consequence, N is u.s.c.

We are now in position to prove our second existence result in the convex case.

Theorem 4.15. Assume that F satisfies Assumptions (B2) and (B4). If

q := 2M
∫b

0
p(s)ds < 1, (4.52)

then the set of solutions for problem (1.1) is nonempty and compact.

Proof. It is clear that all solutions of problem (1.1) are fixed points of the multivalued operator
N defined in Theorem 4.3. By Lemmas 4.13 and 4.14, N(·) ∈ Pcv,cp(C(J, E)) and it is u.s.c.
Next, we prove that N is a β-condensing operator for a suitable MNC β. Given a bounded
subset D ⊂ C(J, E), let modC(D) the modulus of quasiequicontinuity of the set of functions
D denote

modC(D) = lim
δ→ 0

sup
x∈D

max
‖τ2−τ1‖≤δ

‖x(τ1) − x(τ2)‖. (4.53)

It is well known (see, e.g., [36, Example 2.1.2]) that modC(D) defines an MNC in C(J, E)
which satisfies all of the properties in Definition 4.7 except regularity. Given the Hausdorff
MNC χ, let γ be the real MNC defined on bounded subsets on C(J, E) by

γ(D) = sup
t∈J

χ(D(t)). (4.54)

Finally, define the following MNC on bounded subsets of C(J, E) by

β(D) = max
D∈Δ(C(J,E))

(
γ(D),modC(D)

)
, (4.55)

whereΔ(C(J, E)) is the collection of all countable subsets of B. Then the MNC β is monotone,
regular and nonsingular (see [36, Example 2.1.4]).

To show that N is β-condensing, let B ⊂ be a bounded set in C(J, E) such that

β(B) ≤ β(N(B)). (4.56)
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We will show that B is relatively compact. Let {yn : n ∈ N} ⊂ B and let N = Γ ◦ SF where
SF : C(J, E) → L1(J, E) is defined by

SF

(
y
)
= SF,y =

{
v ∈ L1(J, E) : v(t) ∈ F

(
t, y(t)

)
a.e. t ∈ J

}
, (4.57)

Γ : L1(J, E) → C(J, E) is defined by

Γ
(
f
)
(t) =
∫ t

0
S(t − s)f(s)ds, t ∈ J. (4.58)

Then

∥∥Γf1(t) − Γf2(t)
∥∥ ≤
∫ t

0
‖S(t − s)‖ · ∥∥f1(s) − f2(s)

∥∥ds ≤ M

∫ t

0

∥∥f1(s) − f2(s)
∥∥ds. (4.59)

Moreover, each element hn in N(yn) can be represented as

hn = Γ
(
fn
)
, with fn ∈ SF

(
yn

)
. (4.60)

Moreover (4.56) yields

β({hn : n ∈ N}) ≥ β
({

yn : n ∈ N
})

. (4.61)

From Assumption (B4), it holds that for a.e. t ∈ J ,

χ
({

fn(t) : n ∈ N
}) ≤ χ

(
F
(
t,
{
yn(t)
}∞
n=1

))

≤ p(t)χ
({

yn(t)
}∞
n=1

)

≤ p(t)sup
0≤s≤t

χ
({

yn(s)
}∞
n=1

)

≤ p(t)γ
({

yn

}∞
n=1

)
.

(4.62)

Lemmas 4.9 and 4.10 imply that

χ
({

Γ
(
fn
)
(t)
}∞
n=1

) ≤ γ
({

yn

}∞
n=1

)
2M
∫ t

0
p(s)ds. (4.63)

Therefore

γ
({

yn

}∞
n=1

) ≤ γ({hn}∞n=1) = sup
t∈J

χ({hn(t)}∞n=1) ≤ qγ
({

yn

}∞
n=1

)
. (4.64)
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Since 0 < q < 1, we infer that

γ
({

yn

}∞
n=1

)
= 0. (4.65)

γ(yn) = 0 implies that χ({yn(t)}) = 0, for a.e. t ∈ J . In turn, (4.62) implies that

χ
({

fn(t)
})

= 0, for a.e. t ∈ J. (4.66)

Hence (4.60) implies that χ({hn}∞n=1) = 0. To show that modC(B) = 0, i.e, the set {hn} is
equicontinuous, we proceed as in the proof of Theorem 4.3 Step 1 Part (b). It follows that
β({hn}∞n=1) = 0 which implies, by (4.61), that β({yn}∞n=1) = 0. We have proved that B is
relatively compact. Hence N : U → Pcp,cv(C(J, E)) is u.s.c. and β-condensing, where U is
as in the proof of Theorem 4.3. From the choice of U, there is no z ∈ ∂U such that y ∈ λN(y)
for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder type
for condensing maps (Lemma 4.11), we deduce that N has a fixed point y in U, which is a
solution to problem (1.1). Finally, since FixN is bounded, by Lemma 4.12, FixN is further
compact.

4.3. The Nonconvex Case

In this section, we present a second existence result for problem (1.1) when the multivalued
nonlinearity is not necessarily convex. In the proof, we will make use of the nonlinear
alternative of Leray-Schauder type [44] combined with a selection theorem due to Bressan
and Colombo [46] for lower semicontinuous multivalued maps with decomposable values.
The main ingredients are presented hereafter. We first start with some definitions (see, e.g.,
[47]). Consider a topological space E and a family A of subsets of E.

Definition 4.16. A is called L ⊗ B measurable if A belongs to the σ-algebra generated by all
sets of the form I ×D where I is Lebesgue measurable in J and D is Borel measurable in E.

Definition 4.17. A subset A ⊂ L1(J, E) is decomposable if for all u, v ∈ A and for every
Lebesgue measurable set I ⊂ J , we have:

uχI + vχJ\I ∈ A, (4.67)

where χA stands for the characteristic function of the set A.

Let F : J × E → P(E) be a multivalued map with nonempty closed values. Assign to
F the multivalued operator F : C(J, E) → P(L1(J, E)) defined by F(y) = SF,y. The operator
F is called the Nemyts’kiı̆ operator associated to F.

Definition 4.18. Let F : J × E → P(E) be a multivalued map with nonempty compact
values. We say that F is of lower semicontinuous type (l.s.c. type) if its associated Nemyts’kiı̆
operator F is lower semicontinuous and has nonempty closed and decomposable values.

Next, we state a classical selection theorem due to Bressan and Colombo.
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Lemma 4.19 (see [46, 47]). Let X be a separable metric space and let E be a Banach space. Then
every l.s.c. multivalued operator N : X → Pcl(L1(J ,E)) with closed decomposable values has a
continuous selection, that is, there exists a continuous single-valued function f : X → L1(J, E) such
that f(x) ∈ N(x) for every x ∈ X.

Let us introduce the following hypothesis.

(H1) F : J × E → P(E) is a nonempty compact valued multivalued map such that

(a) the mapping (t, y) �→ F(t, y) is L ⊗ Bmeasurable;
(b) the mapping y �→ F(t, y) is lower semicontinuous for a.e. t ∈ J .

The following lemma is crucial in the proof of our existence theorem.

Lemma 4.20 (see, e.g., [48]). Let F : J × E → Pcp(E) be an integrably bounded multivalued map
satisfying (H1). Then F is of lower semicontinuous type.

Theorem 4.21. Suppose that the hypotheses (B1) or (B3)-(B2) and (H1) are satisfied. Then problem
(1.1) has at least one solution.

Proof. (H1) imply, by Lemma 4.20, that F is of lower semicontinuous type. From Lemma 4.19,
there is a continuous selection f : C(J, E) → L1(J, E) such that f(y) ∈ F(y) for all y ∈ C(J, E).
Consider the problem

y(t) =
∫ t

0
a(t − s)

[
Ay(s) + f

(
y
)
(s)
]
ds, t ∈ J, (4.68)

and the operator G : C(J, E) → C(J, E) defined by

G
(
y
)
(t) =
∫ t

0
S(t − s)f

(
y
)
(s)ds, for t ∈ J. (4.69)

As in Theorem 4.3, we can prove that the single-valued operatorG is compact and there exists
M∗ > 0 such that for all possible solutions y, we have ‖y‖∞ < M∗. Now, we only check that
G is continuous. Let {yn} be a sequence such that yn → y in C(J, E), as n → +∞. Then

∥∥G
(
yn(t)
) −G
(
y(t)
)∥∥ ≤ M

∫b

0

∥∥f
(
yn(s)
) − f
(
y(s)
)∥∥ds. (4.70)

Since the function f is continuous, we have

∥∥G(yn) −G(y)
∥∥
∞ ≤ M

∥∥f(yn) − f(y)
∥∥
L1 −→ 0, as n −→ ∞. (4.71)

Let

U =
{
y ∈ C(J, E) | ∥∥y∥∥∞ < M∗

}
. (4.72)
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From the choice ofU, there is no y ∈ ∂U such that y = λNy for in λ ∈ (0, 1). As a consequence
of the nonlinear alternative of the Leray-Schauder type (Lemma 4.5), we deduce that G has
a fixed point y ∈ U which is a solution of problem (4.68), hence a solution to the problem
(1.1).

4.4. A Further Result

In this part, we present a second existence result to problem (1.1) with a nonconvex valued
right-hand side. First, consider the Hausdorff pseudo-metric distance

Hd : P(E) × P(E) −→ R
+ ∪ {∞} (4.73)

defined by

Hd(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}

, (4.74)

where d(A, b) = infa∈Ad(a, b) and d(a, B) = infb∈Bd(a, b). Then (Pb,cl(E),Hd) is a metric
space and (Pcl(X),Hd) is a generalized metric space (see [49]). In particular, Hd satisfies
the triangle inequality.

Definition 4.22. A multivalued operator N : E → Pcl(E) is called

(a) γ-Lipschitz if there exists γ > 0 such that

Hd

(
N(x),N

(
y
)) ≤ γd

(
x, y
)
, for each x, y ∈ E, (4.75)

(b) a contraction if it is γ-Lipschitz with γ < 1.

Notice that if N is γ-Lipschitz, then for every γ ′ > γ ,

N(x) ⊂ N
(
y
)
+ γ ′d
(
x, y
)
B(0, 1), ∀x, y ∈ E. (4.76)

Our proofs are based on the following classical fixed point theorem for contraction
multivalued operators proved by Covitz and Nadler in 1970 [50] (see also Deimling [33,
Theorem 11.1]).

Lemma 4.23. Let (X, d) be a complete metric space. If G : X → Pcl(X) is a contraction, then
FixN/= ∅.

Let us introduce the following hypotheses:

(A1) F : J × E → Pcp(E); t �→ F(t, x) is measurable for each x ∈ E;

(A2) there exists a function l ∈ L1(J,R+) such that

Hd

(
F(t, x), F

(
t, y
)) ≤ l(t)

∥∥x − y
∥∥, for a.e. t ∈ J and all x, y ∈ E, (4.77)
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with

F(t, 0) ⊂ l(t)B(0, 1), for a.e. t ∈ J. (4.78)

Theorem 4.24. Let Assumptions (A1)-(A2) be satisfied. Then problem (1.1) has at least one solution.

Proof. In order to transform the problem (1.1) into a fixed point problem, let the multivalued
operator N : C(J, E) → P(C(J, E)) be as defined in Theorem 4.3. We will show that N
satisfies the assumptions of Lemma 4.23.

(a) N(y) ∈ Pcl(C(J, E)) for each y ∈ C(J, E). Indeed, let {hn : n ∈ N} ⊂ N(y) be a
sequence converge to h. Then there exists a sequence gn ∈ SF,y such that

yn(t) =
∫ t

0
S(t − s)gn(s)ds, t ∈ J. (4.79)

Since F(·, ·) has compact values, let w(·) ∈ F(·, 0) be such that ‖g(t) −w(t)‖ = d(g(t), F(t, 0)).
From (A1) and (A2), we infer that for a.e. t ∈ J

∥∥gn(t)
∥∥ ≤ ∥∥gn(t) −w(t)

∥∥ + ‖w(t)‖

≤ l(t)
∥∥y
∥∥
∞ + l(t) := M̂(t), ∀n ∈ N.

(4.80)

Then the Lebesgue dominated convergence theorem implies that, as n → ∞,

∥∥gn − g
∥∥
L1 −→ 0 and thus hn(t) −→ h(t) (4.81)

with

h(t) =
∫ t

0
S(t − s)g(s)ds, t ∈ J, (4.82)

proving that h ∈ N(y).
(b) There exists γ < 1, such that

Hd

(
N
(
y
)
,N
(
y
)) ≤ γ

∥∥y − y
∥∥
∞, ∀y, y ∈ C(J, E). (4.83)

Let y, y ∈ C(J, E) and h ∈ N(y). Then there exists g(t) ∈ F(t, y(t)) (g is a measurable
selection) such that for each t ∈ J

h(t) =
∫ t

0
S(t − s)g(s)ds. (4.84)

(A2) tells us that

Hd

(
F
(
t, y(t)

)
, F
(
t, y(t)

)) ≤ l(t)
∥∥y(t) − y(t)

∥∥, a.e. t ∈ J. (4.85)
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Hence there is w ∈ F(t, y(t)) such that

∥
∥g(t) −w

∥
∥ ≤ l(t)

∥
∥y(t) − y(t)

∥
∥, t ∈ J. (4.86)

Then consider the mapping U : J → P(E), given by

U(t) =
{
w ∈ E :

∥
∥g(t) −w

∥
∥ ≤ l(t)

∥
∥y(t) − y(t)

∥
∥}, t ∈ J, (4.87)

that is U(t) = B(g(t), l(t)‖y(t) − y(t)‖). Since g, l, y, y are measurable, Theorem III.4.1 in
[30] tells us that the closed ball U is measurable. Finally the set V (t) = U(t) ∩ F(t, y(t))
is nonempty since it contains w. Therefore the intersection multivalued operator V is
measurable with nonempty, closed values (see [29–31]). By Lemma 2.5, there exists a function
g(t), which is a measurable selection for V . Thus g(t) ∈ F(t, y(t)) and

∥∥g(t) − g(t)
∥∥ ≤ l(t)

∥∥y(t) − y(t)
∥∥, for a.e. t ∈ J. (4.88)

Let us define for a.e. t ∈ J

h(t) =
∫ t

0
S(t − s)g(s)ds. (4.89)

Then

∥∥∥h(t) − h(t)
∥∥∥ ≤
∫b

0
l(s)
∥∥y(s) − y(s)

∥∥ds

≤
∫b

0
l(s)eτL(s)e−τL(s)

∥∥y(s) − y(s)
∥∥ds

≤ 1
τ
eτL(t)
∥∥y − y

∥∥
∗.

(4.90)

Thus

∥∥∥h − h
∥∥∥
∗
≤ 1

τ

∥∥y − y
∥∥
∗. (4.91)

By an analogous relation, obtained by interchanging the roles of y and y, we finally arrive at

Hd

(
N
(
y
)
,N
(
y
)) ≤ 1

τ

∥∥y − y
∥∥
∗, (4.92)

where τ > 1 and

∥∥y
∥∥
∗ = sup

{
e−τL(t)

∥∥y(t)
∥∥ : t ∈ J

}
, L(t) = Meωb

∫ t

0
l(s)ds (4.93)
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is the Bielecki-type norm on C(J, E). So,N is a contraction and thus, by Lemma 4.23,N has a
fixed point y, which is a mild solution to (1.1).

Arguing as in Theorem 4.3, we can also prove the following result the proof of which
is omitted.

Theorem 4.25. Let (E, ‖ · ‖) be a reflexive Banach space. Suppose that all conditions of Theorem 4.24
are satisfied and F : J × E → Pcp,cv(E). Then the solution set of problem (1.1) is nonempty and
compact.

5. Filippov’s Theorem

5.1. Filippov’s Theorem on a Bounded Interval

Let x ∈ C(J, E) be a mild solution of the integral equation:

x(t) =
∫ t

0
a(t − s)

[
Ax(s) + g(s)

]
ds, a.e. t ∈ J. (5.1)

We will consider the following two assumptions.

(C1) The function F : J × E → Pcl(E) is such that

(a) for all y ∈ E, themap t �→ F(t, y) is measurable,

(b) the map γ : t �→ d(g(t), F(t, x(t))) is integrable.

(C2) There exist a function p ∈ L1(J, R+) and a positive constant β > 0 such that

Hd(F(t, z1), F(t, z2)) ≤ p(t)‖z1 − z2‖, ∀z1, z2 ∈ E. (5.2)

Theorem 5.1. Assume that the conditions (C1)-(C2). Then, for every ε > 0 problem (1.1) has at least
one solution yε satisfying, for a.e. t ∈ J , the estimates

∥∥yε(t) − x(t)
∥∥ ≤ M

∫ t

0

[
γ(u) + ε

]
exp
(
2MeP(t)−P(s)

)
ds, t ∈ J, (5.3)

where P(t) =
∫ t
0 p(s)ds.

Proof. We construct a sequence of functions (yn)n∈ N
which will be shown to converge to some

solution of problem (1.1) on the interval J , namely, to

y(t) ∈
∫ t

0
a(t − s)

[
Ay(s) + F

(
s, y(s)

)]
ds, t ∈ J.

(5.4)
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Let f0 = g on J and y0(t) = x(t), t ∈ [0, b), that is,

y0(t) =
∫ t

0
S(t − s)f0(s)ds, t ∈ J, (5.5)

Then define the multivalued map U1 : J → P(E) by U1(t) = F(t, y0(t)) ∩ B(g(t), γ(t) + ε).
Since g and γ are measurable, Theorem III.4.1 in [30] tells us that the ball B(g(t), γ(t) + ε) is
measurable. Moreover F(t, y0(t)) is measurable (see [29]) and U1 is nonempty. Indeed, since
v = ε > 0 is a measurable function, from Lemma 2.6, there exists a function u which is a
measurable selection of F(t, y0(t)) and such that

∣
∣u(t) − g(t)

∣
∣ ≤ d
(
g(t), F

(
t, y0(t)

))
+ ε = γ(t) + ε. (5.6)

Then u ∈ U1(t), proving our claim. We deduce that the intersection multivalued operator
U1(t) is measurable (see [29–31]). By Lemma 2.7 (Kuratowski-Ryll-Nardzewski selection
theorem), there exists a function t → f1(t) which is a measurable selection forU1. Consider

y1(t) =
∫ t

0
S(t − s)f1(s)ds, t ∈ J. (5.7)

For each t ∈ J , we have

∥∥y1(t) − y0(t)
∥∥ ≤ Mt

0

∥∥f0(s) − f1(s)
∥∥ds. (5.8)

Hence

∥∥y1(t) − y0(t)
∥∥ ≤ M

∫ t

0
γ(s)ds +Mtε. (5.9)

Using the fact that F(t, y1(t)) is measurable, the ball B(f1(t), p(t)‖y1(t) − y0(t)‖) is also
measurable by Theorm III.4.1 in [30]. From (C2) we have

Hd

(
F
(
t, y1(t)

))
, F
(
t, y0(t)

) ≤ p(t)
∥∥y1(t) − y0(t)

∥∥. (5.10)

Hence there exist w ∈ F(t, y1(t)) such that

∥∥f1(t) −w
∥∥ ≤ p(t)

∥∥y1(t) − y0(t)
∥∥. (5.11)

We consider the followingmultivaluedmapU2(t) = F(t, y1(t)) ∩ B(f1(t), p(t)‖y1(t)−y0(t)‖) is
nonempty. Therefore the intersection multivalued operatorU2 is measurable with nonempty,
closed values (see [29–31]). By Lemma 2.5, there exists a function f2(t), which is a measurable
selection for V . Thus f2(t) ∈ F(t, y1(t)) and

∥∥f1(t) − f2(t)
∥∥ ≤ p(t)

∥∥y1(t) − y0(t)
∥∥. (5.12)
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Define

y2(t) =
∫ t

0
S(t − s)f2(s)ds, t ∈ J. (5.13)

Using (5.8) and (5.12), a simple integration by parts yields the following estimates, valid for
every t ∈ J :

∥
∥y2(t) − y1(t)

∥
∥ ≤
∫ t

0
‖S(t − s)‖B(E)

∥
∥f2(s) − f1(s)

∥
∥ds

≤
∫ t

0
Mp(s)

(
M

∫s

0
γ(u)du +Mεs

)
ds

≤ M2
∫ t

0

[
γ(s) + ε

]
eP(t)−P(s)ds, t ∈ J.

(5.14)

Let U3(t) = F(t, y2(t)) ∩ B(f2(t), p(t)‖y2(t) − y1(t)‖). Arguing as for U2, we can prove that
U3 is a measurable multivalued map with nonempty values; so there exists a measurable
selection f3(t) ∈ U3(t). This allows us to define

y3(t) =
∫ t

0
S(t − s)f3(s)ds, t ∈ J. (5.15)

For t ∈ J , we have

∥∥y3(t) − y2(t)
∥∥ ≤ M

∫ t

0

∥∥f2(s) − f3(s)
∥∥ds

≤ M

∫ t

0
p(s)
∥∥y2(s) − y1(s)

∥∥ds.

(5.16)

Then

∥∥y2(s) − y3(s)
∥∥ ≤ M

(∫ t

0
M2
∫s

0

(
γ(r) + ε

)
eP(s)−P(r)dsdr

)

. (5.17)
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Performing an integration by parts, we obtain, since P is a nondecreasing function, the
following estimates:

∥
∥y3(t) − y2(t)

∥
∥ ≤ M3

2

∫ t

0
2p(s)
(∫s

0

[
γ(u) + ε

]
eP(s)−P(u)du

)
ds

≤ M3

2

(∫ t

0
2p(s)ds

∫ s

0

[
γ(u) + ε

]
e2(P(s)−P(u))du

)

≤ M3

2

(∫ t

0

(
e2P(s)
)′
ds

∫ s

0

[
γ(u) + ε

]
e−2P(u))du

)

≤ M3

2

(

e2P(t)
∫ t

0

[
γ(s) + ε

]
e−2P(s)ds −

∫ t

0

[
γ(s) + ε

]
ds

)

≤ M3

2

(∫ t

0

[
γ(s) + ε

]
e2(P(t)−P(s))ds

)

.

(5.18)

LetU4(t) = F(t, y3(t)) ∩ B(f3(t), p(t)‖y3(t)−y2(t)‖). Then, arguing again as forU1,U2,U3, we
show thatU4 is a measurable multivalued map with nonempty values and that there exists a
measurable selection f4(t) inU4(t). Define

y4(t) =
∫ t

0
S(t − s)f4(s)ds, t ∈ J. (5.19)

For t ∈ J , we have

∥∥y4(t) − y3(t)
∥∥ ≤ M

∫ t

0

∥∥f4(s) − f3(s)
∥∥ ds

≤ M

∫ t

0
p(s)
∥∥y3(s) − y2(s)

∥∥ +Mεds

≤ M4

2

∫ t

0
p(s)
(∫s

0

[
γ(s) + ε

]
e2(P(s)−P(u))du

)
ds

≤ M4e4ωb

6

∫ t

0
3p(s)e3P(s)ds

∫ s

0

[
γ(s) + ε

]
e−3P(u)du

≤ M4

6

(∫ t

0

[
γ(s) + ε

]
e3(P(t)−P(s))ds

)

.

(5.20)

Repeating the process for n = 0, 1, 2, 3, . . ., we arrive at the following bound:

∥∥yn(t) − yn−1(t)
∥∥ ≤ Mn

(n − 1)!

∫ t

0

[
γ(s) + ε

]
e(n−1)(P(t)−P(s))ds, t ∈ J. (5.21)
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By induction, suppose that (5.21) holds for some n and check (5.21) for n + 1. Let Un+1(t) =
F(t, yn(t)) ∩ B(fn, p(t)‖yn(t) − yn−1(t)‖ + ε). Since Un+1 is a nonempty measurable set, there
exists a measurable selection fn+1(t) ∈ Un+1(t), which allows us to define for n ∈ N

yn+1(t) =
∫ t

0
S(t − s)fn+1(s)ds, t ∈ J. (5.22)

Therefore, for a.e. t ∈ J , we have

∥
∥yn+1(t) − yn(t)

∥
∥ ≤ M

∫ t

0

∥
∥fn+1(s) − fn(s)

∥
∥ds

≤ Mn+1

(n − 1)!

∫ t

0
p(s)ds

(∫s

0

[
γ(u) + ε

]
e(n−1)(P(s)−P(u))du

)

≤ Mn+1

n!

∫ t

0
np(s)enP(s)ds

∫ s

0

[
γ(u) + ε

]
e−nP(u)du.

(5.23)

Again, an integration by parts leads to

∥∥yn+1(t) − yn(t)
∥∥ ≤ M(n+1)

n!

∫ t

0

[
γ(s) + ε

]
en(P(t)−P(s))ds. (5.24)

Consequently, (5.21) holds true for all n ∈ N. We infer that {yn} is a Cauchy sequence in
C(J, E), converging uniformly to a limit function y ∈ C(J, E). Moreover, from the definition
of {Un}, we have

∥∥fn+1(t) − fn(t)
∥∥ ≤ p(t)

∥∥yn(t) − yn−1(t)
∥∥, for a.e t ∈ J. (5.25)

Hence, for a.e. t ∈ J , {fn(t)} is also a Cauchy sequence in E and then converges almost
everywhere to some measurable function f(·) in E. In addition, since f0 = g, we have for
a.e. t ∈ J

∥∥fn(t)
∥∥ ≤

n∑

k=1

∥∥fk(t) − fk−1(t)
∥∥ +
∥∥f0(t)

∥∥

≤
n∑

k=1

p(t)
∥∥yk−1(t) − yk−2(t)

∥∥ + γ(t) +
∥∥g(t)
∥∥ + ε

≤ p(t)
∞∑

k=1

∥∥yk(t) − yk−1(t)
∥∥ + γ(t) +

∥∥g(t)
∥∥ + ε.

(5.26)

Hence

∥∥fn(t)
∥∥ ≤ MH(t)p(t) + γ(t) +

∥∥g(t)
∥∥ + ε, (5.27)
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where

H(t) := M

∫ t

0

[
γ(s) + ε

]
exp
(
MeP(t)−P(s)

)
ds. (5.28)

From the Lebesgue dominated convergence theorem, we deduce that {fn} converges to f in
L1(J, E). Passing to the limit in (5.22), we find that the function

y(t) =
∫ t

0
S(t − s)f(s)ds, t ∈ J (5.29)

is solution to problem (1.1) on J . Moreover, for a.e. t ∈ J , we have

∥∥x(t) − y(t)
∥∥ =

∥∥∥∥∥

∫ t

0
S(t − s)g(s)ds −

∫ t

0
S(t − s)f(s)ds

∥∥∥∥∥

≤ M

∫ t

0

∥∥f(s) − f0(s)
∥∥ds

≤
∫ t

0

∥∥f(s) − fn(s)
∥∥ds +M

∫ t

0

∥∥fn(s) − f0(s)
∥∥ds

≤ M

∫ t

0

∥∥f(s) − fn(s)
∥∥ds +M

∫ t

0
p(s)H(s)ds

≤ M

∫ t

0

∥∥f(s) − fn(s)
∥∥ds +M

∫ t

0
p(s)
[
M

∫s

0

[
γ(u) + ε

]
]
exp
(
MeP(s)−P(u)

)
dsdu

≤ M

∫ t

0

∥∥f(s) − fn(s)
∥∥ds

+M

∫ t

0

(
eP(s)
)′[

M

∫s

0
e−P(u)
[
γ(u) + ε

]
exp
(
MeP(s)−P(u)

)
dsdu

]
.

(5.30)

Passing to the limit as n → ∞, we get

∥∥x(t) − y(t)
∥∥ ≤ η(t), a.e. t ∈ J (5.31)

with

η(t) := M

∫ t

0

[
γ(u) + ε

]
exp
(
2MeP(t)−P(s)

)
ds. (5.32)
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6. The Relaxed Problem

More precisely, we compare, in this section, trajectories of the following problem,

y(t) ∈
∫ t

0
a(t − s)

[
Ay(s) + F

(
s, y(s)

)]
ds, a.e. t ∈ J, (6.1)

and those of the convexified Volttera integral inclusion problem

y(t) ∈
∫ t

0
a(t − s)

[
Ay(s) + co F

(
s, y(s)

)]
ds, a.e. t ∈ J, (6.2)

where co C refers to the closure of the convex hull of the set C. We will need the following
auxiliary results in order to prove our main relaxation theorem.

Lemma 6.1 (see [29]). LetU : J → Pcl(E) be a measurable, integrably bounded set-valued map and
let t �→ d(0, U(t)) be an integrable map. Then the integral

∫b
0 U(t)dt is convex, the map t �→ coU(t) is

measurable and, for every ε > 0, and every measurable selection u of co U(t), there exists a measurable
selection u of U such that

sup
t∈J

∥∥∥∥∥

∫ t

0
u(s)ds −

∫ t

0
u(s)ds

∥∥∥∥∥
≤ ε,

∫b

0
co U(t)dt =

∫b

0
U(t)dt =

∫b

0
co U(t)dt.

(6.3)

With E being a reflexive Banach space, the following hypotheses will be assumed in
this section:

(H1) The function F : J × E → Pcl(E) satisfies

(a) for all y ∈ E, the map t �→ F(t, y) is measurable,
(b) the map t �→ F(t, 0) is integrable bounded (i.e., there exists k ∈ L1(J,R+) such

that F(t, 0) ⊂ k(t)B(0, 1)).

Then our main contribution is the following.

Theorem 6.2. Assume that (C2) and (H1) hold. Then problem (6.2) has at least one solution. In
addition, for all ε > 0 and every solution x of problem (6.2), has a solution y defined on J satisfying

∥∥x − y
∥∥
∞ ≤ ε. (6.4)

In particular Sco = S, where

Sco =
{
y : y is a solution to (6.2)

}
. (6.5)

Remark 6.3. Notice that the multivalued map t �→ co F(t, ·) also satisfies (H2).
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Proof. Part 1 (Sco /= ∅)
For this, we first transform problem (6.2) into a fixed point problem and then make use of
Lemma 4.23. It is clear that all solutions of problem (6.2) are fixed points of the multivalued
operator N : C(J, E) → P(CJ, E) defined by

N
(
y
)
:=

{

h ∈ C(J, E) | h(t) =
∫ t

0
S(t − s)f(s)ds, t ∈ [0, b]

}

, (6.6)

where

g ∈ ScoF,y =
{
g ∈ L1(J, E) : g(t) ∈ co F

(
t, y(t)

)
for a.e. t ∈ J

}
. (6.7)

To show thatN satisfies the assumptions of Lemma 4.23, the proof will be given in two steps.

Step 1. N(y) ∈ Pcl(CJ, E) for each y ∈ (CJ, E). Indeed, let {yn} ∈ N(y) be such that yn → ỹ
in C(J, E), as n → ∞. Then ỹ ∈ (CJ, E) and there exists a sequence gn ∈ Sco F,y such that

yn(t) =
∫ t

0
S(t − s)gn(s)ds, t ∈ J. (6.8)

Then {gn} is integrably bounded. Since coF(·, ·) has closed values and integrable bounded,
then from Corollary 4.14 for every n ∈ Nwe have wn(·) ∈ coF(·, 0) such that

∥∥gn(t) −wn(t)
∥∥ ≤ d
(
gn(t), coF(t, 0)

)
. (6.9)

Since {yn}n∈ N
is a convergent sequence the there exists M∗ > 0 such that

∥∥yn

∥∥
∞ ≤ M∗, ∀n ∈ N. (6.10)

Then

∥∥gn(t)
∥∥ ≤ ∥∥gn(t) −wn(t)

∥∥ + ‖wn(t)‖
≤ p(t)

∥∥yn

∥∥
∞ + k(t)

≤ M∗p(t) + k(t) := M(t), ∀n ∈ N,

(6.11)

that is

gn(t) ∈ M(t)B(0, 1), a.e. t ∈ J. (6.12)

Since B(0, 1) is weakly compact in the reflexive Banach space E, there exists a subsequence,
still denoted {gn}, which converges weakly to g by the Dunford-Pettis theorem. By Mazur’s
Lemma (Lemma 2.16), there exists a second subsequence which converges strongly to g in E,



Advances in Difference Equations 33

hence almost everywhere. Then the Lebesgue dominated convergence theorem implies that,
as n → ∞,

∥
∥gn − g

∥
∥
L1 −→ 0 thus yn(t) −→ ỹ(t),

ỹ(t) =
∫ t

0
S(t − s)g(s)ds, t ∈ J,

(6.13)

proving that ỹ ∈ N(y).

Step 2. There exists γ < 1 such thatHd(N(y),N(y)) ≤ γ‖y−y‖BC for each y, y ∈ (CJ, E)where
the norm ‖y−y‖BC will be chosen conveniently. Indeed, let y, y ∈ (CJ, E) and h1 ∈ N(y). Then
there exists g1(t) ∈ co F(t, y(t)) such that for each t ∈ J

h1(t) =
∫ t

0
S(t − s)g1(s)ds. (6.14)

Since, for each t ∈ J ,

Hd

(
co F
(
t, yt

)
, co F
(
t, yt

)) ≤ p(t)
∥∥y(t) − y(t)

∥∥, (6.15)

then there exists some w(t) ∈ co F(t, y(t)) such that

∥∥g1(t) −w(t)
∥∥ ≤ p(t)

∥∥y(t) − y(t)
∥∥, t ∈ J. (6.16)

Consider the multimap U1 : J → Pcl(E) defined by

U1(t) =
{
w ∈ E :

∥∥g1(t) −w
∥∥ ≤ p(t)

∥∥y(t) − y(t)
∥∥}. (6.17)

As in the proof of Theorem 5.1, we can show that the multivalued operator V1(t) = U1(t) ∩
co F(t, y(t)) is measurable and takes nonempty values. Then there exists a function g2(t),
which is a measurable selection for V1. Thus, g2(t) ∈ co F(t, y(t)) and

∥∥g1(t) − g2(t)
∥∥ ≤ p(t)

∥∥y(t) − y(t)
∥∥, for a.e. t ∈ J. (6.18)

For each t ∈ J , let

h2(t) =
∫ t

0
S(t − s)g2(s)ds. (6.19)
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Therefore, for each t ∈ J , we have

‖h1(t) − h2(t)‖ ≤ M

∫ t

0

∥
∥g1(s) − g2(s)

∥
∥ds

≤
∫ t

0
Mp(s)

∥
∥y(s) − y(s)

∥
∥ds

≤
∫ t

0
p(s)eτ

∫s
0 p(u)du

(

sup
0≤z≤b

e−τ
∫z
0 p(u)du∥∥y(z) − y(z)

∥
∥
)

ds

≤ 1
τ

∫ t

0

(
eτ
∫s
0 p(u)du

)′∥
∥y − y

∥
∥
∗ds.

(6.20)

Hence

‖h1 − h2‖∗ ≤
1
τ

∥∥y − y
∥∥
∗, (6.21)

where

∥∥y
∥∥
∗ = sup

{
e−τ
∫ t
0 p(s)ds

∥∥y(t)
∥∥ : t ∈ J

}
, τ > 1. (6.22)

By an analogous relation, obtained by interchanging the roles of y and y, we find that

Hd

(
N
(
y
)
,N
(
y
)) ≤ 1

τ

∥∥y − y
∥∥
∗. (6.23)

Then N is a contraction and hence, by Lemma 4.23, N has a fixed point y, which is solution
to problem (6.2).

Part 2

Let x be a solution of problem (6.2). Then, there exists g ∈ Sco F,x such that

x(t) =
∫ t

0
S(t − s)g(s)ds, t ∈ J, (6.24)

that is, x is a solution of the problem

x(t) =
∫ t

0
a(t − s)

[
Ax(s) + g(s)

]
ds, a.e. t ∈ J. (6.25)
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Let ε > 0 and δ > 0 be given by the relation δ = bε/(2‖p‖L1). From Lemma 6.1, there exists a
measurable selection f∗ of t �→ F(t, x(t)) such that

sup
t∈J

∥
∥∥
∥
∥

∫ t

0
S(t − s)g(s)ds −

∫ t

0
S(t − s)f∗(s)ds

∥
∥∥
∥
∥
≤ Mδ. (6.26)

Let

z(t) =
∫ t

0
S(t − s)f∗(s)ds, t ∈ J. (6.27)

Hence

‖x(t) − z(t)‖ ≤ Mδ. (6.28)

With Assumption (H1), we infer from Corollary 4.14 that there exists u(t) ∈ coF(t, z(t)) such
that

∥∥g(t) − u(t)
∥∥ ≤ d
(
g(t), coF(t, z(t))

)
. (6.29)

Then

γ(t) := d
(
g(t), F(t, x(t))

) ≤ d
(
g(t), u

)
+Hd(coF(t, z(t)), F(t, x(t)))

≤ Hd(co F(t, x(t)), co F(t, z(t)))

+Hd(coF(t, z(t)), coF(t, x(t)))

≤ 2p(t)‖x(t) − z(t)‖ ≤ 2δp(t).

(6.30)

Since, under (H1(a)) and (C2), γ is measurable (see [29]), by the above inequality, we deduce
that γ ∈ L1(J, E). From Theorem 5.1, problem (6.1) has a solution y which satisfies

∥∥y(t) − x(t)
∥∥ ≤ η(t), t ∈ J, (6.31)

where

η(t) = M

∫ t

0

[
γ(s) + ε

]
exp
(
2MeP(t)−P(s)

)
ds

≤ M
[
2δ
∥∥p
∥∥
L1 + εb

]
exp
(
2MeP(b)

)
.

(6.32)

Using the definition of δ, we obtain the upper bound

∥∥y − x
∥∥
∞ ≤ 2bε exp

(
2MeP(b)

)
. (6.33)

Since ε is arbitrary, ‖y − x‖∞ ≤ ε, showing the density relation Sco = S.
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