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We prove the existence and uniqueness of solutions for nonlinear integro-differential equations of
fractional order q ∈ (1, 2] with three-point nonlocal fractional boundary conditions by applying
some standard fixed point theorems.

1. Introduction

Fractional calculus (differentiation and integration of arbitrary order) is proved to be an
important tool in the modelling of dynamical systems associated with phenomena such
as fractal and chaos. In fact, this branch of calculus has found its applications in various
disciplines of science and engineering such as mechanics, electricity, chemistry, biology,
economics, control theory, signal and image processing, polymer rheology, regular variation
in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics
of complex medium, viscoelasticity and damping, control theory, wave propagation,
percolation, identification, and fitting of experimental data [1–4].

Recently, differential equations of fractional order have been addressed by several
researchers with the sphere of study ranging from the theoretical aspects of existence and
uniqueness of solutions to the analytic and numerical methods for finding solutions. For some
recent work on fractional differential equations, see [5–11] and the references therein.

In this paper, we study the following nonlinear fractional integro-differential
equations with three-point nonlocal fractional boundary conditions

Dqx(t) + f
(
t, x(t),

(
φx

)
(t),

(
ψx

)
(t)

)
= 0, 0 < t < 1, 1 < q ≤ 2,

D(q−1)/2x(0) = 0, aD(q−1)/2x(1) + x
(
η
)
= 0, 0 < η < 1,

(1.1)
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where D is the standard Riemann-Liouville fractional derivative, f : [0, 1] × X × X × X → X
is continuous, for γ, δ : [0, 1] × [0, 1] → [0,∞),

(
φx

)
(t) =

∫ t

0
γ(t, s)x(s)ds,

(
ψx

)
(t) =

∫ t

0
δ(t, s)x(s)ds, (1.2)

and a ∈ R satisfies the condition aΓ(q)+η(q−1)Γ((q+1)/2)/= 0.Here, (X, ‖ ·‖) is a Banach space
and C = C([0, 1], X) denotes the Banach space of all continuous functions from [0, 1] → X
endowed with a topology of uniform convergence with the norm denoted by ‖ · ‖.

We remark that fractional boundary conditions result in the existence of both electric
and magnetic surface currents on the strip and are similar to the impedance boundary
conditions with pure imaginary impedance, and in the physical optics approximation, the
ratio of the surface currents is the same as for the impedance strip. For the comparison
of the physical characteristics of the fractional and impedance strips such as radiation
pattern, monostatic radar cross-section, and surface current densities, see [12]. The concept
of nonlocal multipoint boundary conditions is quite important in various physical problems
of applied nature when the controllers at the end points of the interval (under consideration)
dissipate or add energy according to the censors located at intermediate points. Some recent
results on nonlocal fractional boundary value problems can be found in [13–15].

2. Preliminaries

Let us recall some basic definitions [1–3] on fractional calculus.

Definition 2.1. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.1)

provided the integral exists.

Definition 2.2. The Riemann-Liouville fractional derivative of order q for a function g(t) is
defined by

Dqg(t) =
1

Γ
(
n − q

)
(

d

dt

)n ∫ t

0

g(s)

(t − s)q−n+1
ds, n − 1 < q ≤ n, q > 0, (2.2)

provided the right-hand side is pointwise defined on (0,∞).

Lemma 2.3 (see [16]). For q > 0, let x,Dqx ∈ C(0, 1) ∩ L(0, 1). Then

IqDqx(t) = x(t) + c1t
q−1 + c2t

q−2 + · · · + cnt
q−n, (2.3)

where ci ∈ R, i = 1, 2, . . . , n (n is the smallest integer such that n ≥ q).
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Lemma 2.4 (see [2]). Let x ∈ L(0, 1). Then

(i)DνIμx(t) = Iμ−νx(t), μ > ν > 0;

(ii) Dμtξ−1 = (Γ(ξ)/Γ(ξ − μ))tξ−μ−1, μ > 0, ξ > 0.

Lemma 2.5. For a given σ ∈ C[0, 1] ∩ L(0, 1), the unique solution of the boundary value problem

Dqx(t) + σ(t) = 0, 0 < t < 1, 1 < q ≤ 2,

D(q−1)/2x(0) = 0, aD(q−1)/2x(1) + x
(
η
)
= 0, 0 < η < 1,

(2.4)

is given by

x(t) = −
∫ t

0

(t − s)q−1

Γ
(
q
) σ(s)ds +

Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

×
{∫η

0

(
η − s

)q−1

Γ
(
q
) σ(s)ds + a

∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)σ(s)ds

}

.

(2.5)

Proof. In view of Lemma 2.3, the fractional differential equation in (2.4) is equivalent to the
integral equation

x(t) = −Iqσ(t) + b1t
q−1 + b2t

q−2 = −
∫ t

0

(t − s)q−1

Γ
(
q
) σ(s)ds + b1t

q−1 + b2t
q−2, (2.6)

where b1, b2 ∈ R are arbitrary constants. Applying the boundary conditions for (2.4), we find
that b2 = 0 and

b1 =
Γ
((
q + 1

)
/2

)

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

(∫η

0

(
η − s

)q−1

Γ
(
q
) σ(s)ds + a

∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)σ(s)ds

)

. (2.7)

Substituting the values of b1 and b2 in (2.6), we obtain (2.5). This completes the proof.

3. Main Results

To establish the main results, we need the following assumptions.

(A1) There exist positive functions L1(t), L2(t), L3(t) such that

∥∥f
(
t, x(t),

(
φx

)
(t),

(
ψx

)
(t)

) − f
(
t, y(t),

(
φy

)
(t),

(
ψy

)
(t)

)∥∥

≤ L1(t)
∥∥x − y

∥∥ + L2(t)
∥∥φx − φy

∥∥ + L3(t)
∥∥ψx − ψy

∥∥, ∀t ∈ [0, 1], x, y ∈ X.
(3.1)
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Further,

γ0 = sup
t∈[0,1]

∣
∣
∣
∣
∣

∫ t

0
γ(t, s)ds

∣
∣
∣
∣
∣
, δ0 = sup

t∈[0,1]

∣
∣
∣
∣
∣

∫ t

0
δ(t, s)ds

∣
∣
∣
∣
∣
,

I
q

L = sup
t∈[0,1]

{|IqL1(t)|, |IqL2(t)|, |IqL3(t)|},

I(q+1)/2L(1) = max
{∣∣
∣I(q+1)/2L1(1)

∣
∣
∣,
∣
∣
∣I(q+1)/2L2(1)

∣
∣
∣,
∣
∣
∣I(q+1)/2L3(1)

∣
∣
∣
}
,

IqL
(
η
)
= max

{∣∣IqL1
(
η
)∣∣,

∣
∣IqL2

(
η
)∣∣,

∣
∣IqL3

(
η
)∣∣}.

(3.2)

(A2) There exists a number κ such that Λ ≤ κ < 1, where

Λ =
(
1 + γ0 + δ0

){
I
q

L + λ1
(
IqL

(
η
)
+ |a|I(q+1)/2L(1)

)}
,

λ1 =
Γ
((
q + 1

)
/2

)

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)] .

(3.3)

(A3) ‖f(t, x(t), (φx)(t), (ψx)(t))‖ ≤ μ(t), for all (t, x, φx, ψx) ∈ [0, 1] × X × X × X, μ ∈
L1([0, 1], R+).

Theorem 3.1. Assume that f : [0, 1]×X×X×X → X is a jointly continuous function and satisfies
the assumption (A1). Then the boundary value problem (1.1) has a unique solution provided Λ < 1,
where Λ is given in the assumption (A2).

Proof. Define � : C → C by

(�x)(t) = −
∫ t

0

(t − s)q−1

Γ
(
q
) f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)
ds

+
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

×
{∫η

0

(
η − s

)q−1

Γ
(
q
) f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)
ds

+a
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)f
(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)
ds

}

, t ∈ [0, 1].

(3.4)

Let us set supt∈[0,1]|f(t, 0, 0, 0)| = M, and choose

r ≥ M

(1 − λ)

{
1 + λ1η

q

Γ
(
q + 1

) +
λ1|a|

Γ
((
q + 3

)
/2

)

}

, (3.5)
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where λ is such that Λ ≤ λ < 1. Now we show that �Br ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}.
For x ∈ Br, we have

‖(�x)(t)‖

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

∥
∥f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)∥∥ds

+

∣
∣
∣∣
∣

Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣
∣
∣∣
∣

×
{∫η

0

(
η − s

)q−1

Γ
(
q
)

∥
∥f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)∥∥ds

+|a|
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)
∥∥f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)∥∥ds

}

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

(∥∥f
(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

) − f(s, 0, 0, 0)
∥∥ +

∥∥f(s, 0, 0, 0)
∥∥)ds

+

∣∣∣∣∣
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣∣∣∣∣

×
{∫η

0

(
η − s

)q−1

Γ
(
q
)

(∥∥f
(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

) − f(s, 0, 0, 0)
∥∥ +

∥∥f(s, 0, 0, 0)
∥∥)ds

+|a|
∫1

0

(1−s)(q−1)/2
Γ
((
q+1

)
/2

)
(∥∥f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)−f(s, 0, 0, 0)∥∥+∥∥f(s, 0, 0, 0)∥∥)ds
}

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

(
L1(s)‖x(s)‖ + L2(s)

∥∥(φx
)
(s)

∥∥ + L3(s)
∥∥(ψx

)
(s)

∥∥ +M
)
ds

+

∣∣∣∣∣
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣∣∣∣∣

×
{∫η

0

(
η − s

)q−1

Γ
(
q
)

(
L1(s)‖x(s)‖ + L2(s)

∥∥(φx
)
(s)

∥∥ + L3(s)
∥∥(ψx

)
(s)

∥∥ +M
)
ds

+|a|
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)
(
L1(s)‖x(s)‖ + L2(s)

∥∥(φx
)
(s)

∥∥ + L3(s)
∥∥(ψx

)
(s)

∥∥ +M
)
ds

}

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

(
L1(s)‖x(s)‖ + γ0L2(s)‖x(s)‖ + δ0L3(s)‖x(s)‖ +M

)
ds

+

∣∣∣∣∣
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣∣∣∣∣
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×
{∫η

0

(
η − s

)q−1

Γ
(
q
)

(
L1(s)‖x(s)‖ + γ0L2(s)‖x(s)‖ + δ0L3(s)‖x(s)‖ +M

)
ds

+|a|
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)
(
L1(s)‖x(s)‖ + γ0L2(s)‖x(s)‖ + δ0L3(s)‖x(s)‖ +M

)
ds

}

≤ (
IqL1(t) + γ0I

qL2(t) + δ0I
qL3(t)

)
r +

Mtq

Γ
(
q + 1

) +

∣
∣
∣
∣
∣

Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣
∣
∣
∣
∣

×
{(

(
IqL1

(
η
)
+ γ0I

qL2
(
η
)
+ δ0I

qL3
(
η
))
r +

Mηq

Γ
(
q + 1

)

)

+|a|
((

I(q+1)/2L1(1) + γ0I
(q+1)/2L2(1) + δ0I

(q+1)/2L3(1)
)
r +

M

Γ
((
q + 3

)
/2

)

)}

≤ (
1 + γ0 + δ0

){
I
q

L + λ1
(
IqL

(
η
)
+ |a|I(q+1)/2L(1)

)}
r +M

{
1 + λ1η

q

Γ
(
q + 1

) +
λ1|a|

Γ
((
q + 3

)
/2

)

}

≤ (Λ + 1 − λ)r ≤ r.

(3.6)

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

∥∥(�x)(t) − (
�y

)
(t)

∥∥

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

∥∥f
(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

) − f
(
s, y(s),

(
φy

)
(s),

(
ψy

)
(s)

)∥∥ds

+

∣∣∣∣∣
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣∣∣∣∣

×
{∫η

0

(
η − s

)q−1

Γ
(
q
)

∥∥f
(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

) − f
(
s, y(s),

(
φy

)
(s),

(
ψy

)
(s)

)∥∥ds

+|a|
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)
∥∥f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

) − f
(
s, y(s),

(
φy

)
(s),

(
ψy

)
(s)

)∥∥ds

}

≤
∫ t

0

(t − s)q−1

Γ
(
q
)

(
L1(s)

∥∥x − y
∥∥ + L2(s)

∥∥φx − φy
∥∥ + L3(s)

∥∥ψx − ψy
∥∥)ds

+

∣∣∣∣∣
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣∣∣∣∣

×
{∫η

0

(
η − s

)q−1

Γ
(
q
)

(
L1(s)

∥∥x − y
∥∥ + L2(s)

∥∥φx − φy
∥∥ + L3(s)

∥∥ψx − ψy
∥∥)ds

+|a|
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)
(
L1(s)

∥∥x − y
∥∥ + L2(s)

∥∥φx − φy
∥∥ + L3(s)

∥∥ψx − ψy
∥∥)ds

}
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≤ (
IqL1(t) + γ0I

qL2(t) + δ0I
qL3(t)

)∥∥x − y
∥
∥ +

∣
∣
∣
∣
∣

Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

∣
∣
∣
∣
∣

×
{
IqL1

(
η
)
+ γ0I

qL2
(
η
)
+ δ0I

qL3
(
η
)

+|a|
(
I(q+1)/2L1(1) + γ0I

(q+1)/2L2(1) + δ0I
(q+1)/2L3(1)

)}∥
∥x − y

∥
∥

≤ (
1 + γ0 + δ0

){
I
q

L + λ1
(
IqL

(
η
)
+ |a|I(q+1)/2L(1)

)}∥
∥x − y

∥
∥

= Λ
∥
∥x − y

∥
∥,

(3.7)

where we have used the assumption (A2). As Λ < 1, therefore � is a contraction. Thus, the
conclusion of the theorem follows by the contraction mapping principle.

Now, we state Krasnoselskii’s fixed point theorem [17] which is needed to prove the
following result to prove the existence of at least one solution of (1.1).

Theorem 3.2. Let M be a closed convex and nonempty subset of a Banach space X. Let A,B be the
operators such that (i)Ax +By ∈ M whenever x, y ∈ M; (ii)A is compact and continuous; (iii) B is
a contraction mapping. Then there exists z ∈ M such that z = Az + Bz.

Theorem 3.3. Let f : [0, 1]×X ×X ×X → X be jointly continuous, and the assumptions (A1) and
(A3) hold with

Λ1 = λ1
(
1 + γ0 + δ0

)(
IqL

(
η
)
+ |a|I(q+1)/2L(1)

)
< 1. (3.8)

Then there exists at least one solution of the boundary value problem (1.1) on [0, 1].

Proof. Let us fix

r ≥ ∥∥μ
∥∥
L1

{
1 + λ1η

q

Γ
(
q + 1

) +
λ1|a|

Γ
((
q + 3

)
/2

)

}

, (3.9)

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Θ1 and Θ2 on Br as

(Θ1x)(t) = −
∫ t

0

(t − s)q−1

Γ
(
q
) f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)
ds,

(Θ2x)(t) =
Γ
((
q + 1

)
/2

)
tq−1

[
aΓ

(
q
)
+ η(q−1)Γ

((
q + 1

)
/2

)]

×
{∫η

0

(
η − s

)q−1

Γ
(
q
) f

(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)
ds

+a
∫1

0

(1 − s)(q−1)/2

Γ
((
q + 1

)
/2

)f
(
s, x(s),

(
φx

)
(s),

(
ψx

)
(s)

)
ds

}

.

(3.10)
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For x, y ∈ Br, we find that

∥
∥Θ1x + Θ2y

∥
∥ ≤ ∥

∥μ
∥
∥
L1

{
1 + λ1η

q

Γ
(
q + 1

) +
λ1|a|

Γ
((
q + 3

)
/2

)

}

≤ r. (3.11)

Thus, Θ1x + Θ2y ∈ Br. It follows from the assumption (A1) that Θ2 is a contraction mapping
for Λ1 < 1.

In order to prove that Θ1 is compact and continuous, we follow the approach used
in [6, 7]. Continuity of f implies that the operator (Θ1x)(t) is continuous. Also, (Θ1x)(t) is
uniformly bounded on Br as

‖Θ1x‖ ≤
∥
∥μ

∥
∥
L1

Γ
(
q + 1

) . (3.12)

Now, we show that (Θ1x)(t) is equicontinuous. Since f is bounded on the compact set
[0, 1] × Br × Br × Br , therefore, we define sup(t,x,φx,ψx)∈[0,1]×Br×Br×Br

‖f(t, x, φx, ψx)‖ = fmax.
Consequently, for t1, t2 ∈ [0, 1], we have

‖(Θ1x)(t1) − (Θ1x)(t2)‖

=

∥∥∥∥∥
1

Γ
(
q
)
∫ t1

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
f
(
s, x(s), φx(s), ψx(s)

)
ds

+
∫ t2

t1

(t2 − s)q−1f
(
s, x(s), φx(s), ψx(s)

)
ds

∥∥∥∥∥

≤ fmax

Γ
(
q + 1

)
∣∣∣2(t2 − t1)q + t

q

1 − t
q

2

∣∣∣,

(3.13)

which is independent of x. So, Θ1 is relatively compact on Br . Hence, By Arzela-Ascoli’s
Theorem, Θ1 is compact on Br . Thus all the assumptions of Theorem 3.2 are satisfied and the
conclusion of Theorem 3.2 implies that the boundary value problem (1.1) has at least one
solution on [0, 1].

Example. Consider the following boundary value problem:

cD3/2x(t) +
t

8
|x|

1 + |x| +
1
5

∫ t

0

e−(s−t)

5
x(s)ds +

1
5

∫ t

0

e−(s−t)/2

5
x(s)ds = 0, t ∈ [0, 1],

D1/4x(0) = 0, aD1/4x(1) + x

(
1
3

)
= 0.

(3.14)
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Here, q = 3/2, γ(t, s) = e−(s−t)/5, δ = e−(s−t)/2/5, a = 1, η = 1/3. With γ0 = (e − 1)/5, δ0 =
2(
√
e − 1)/5, we find that

Λ =
8
(
e + 2

(√
e + 1

))(
9
√
3π + Γ(1/4)

)

225
√
π
(
2
√
3π + Γ(1/4)

) < 1. (3.15)

Thus, by Theorem 3.1, the boundary value problem (3.14) has a unique solution on [0, 1].

4. Conclusions

This paper studies the existence and uniqueness of solutions for nonlinear integro-differential
equations of fractional order q ∈ (1, 2] with three-point nonlocal fractional boundary
conditions involving the fractional derivative D(q−1)/2x(·). Our results are based on a
generalized variant of Lipschitz condition given in (A1), that is, there exist positive functions
L1(t), L2(t), and L3(t) such that

∥∥f
(
t, x(t),

(
φx

)
(t),

(
ψx

)
(t)

) − f
(
t, y(t),

(
φy

)
(t),

(
ψy

)
(t)

)∥∥

≤ L1(t)
∥∥x − y

∥∥ + L2(t)
∥∥φx − φy

∥∥ + L3(t)
∥∥ψx − ψy

∥∥, ∀t ∈ [0, 1], x, y ∈ X.
(4.1)

In case L1(t), L2(t), and L3(t) are constant functions, that is, L1(t) = L1, L2(t) = L2, and L3(t) =
L3 (L1, L2, and L3 are positive real numbers), then Lipschitz-generalized variant reduces to
the classical Lipschitz condition and Λ in the assumption (A2) takes the form

Λ =
(
L1 + γ0L2 + δ0L3

)
{
1 + λ1η

q

Γ
(
q + 1

) +
λ1|a|

Γ
((
q + 3

)
/2

)

}

. (4.2)

In the limit q → 2, our results correspond to a second-order integro-differential equation
with fractional boundary conditions:

D2x(t) + f
(
t, x(t),

(
φx

)
(t),

(
ψx

)
(t)

)
= 0, 0 < t < 1,

D1/2x(0) = 0, aD1/2x(1) + x
(
η
)
= 0, 0 < η < 1.

(4.3)
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[16] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.

[17] D. R. Smart, Fixed Point Theorems, Cambridge University Press, London, UK, 1980.


	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusions
	Acknowledgment
	References

