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We discuss a general n-species discrete Kolmogorov system with time lags. We build some new
results about the sufficient conditions for permanence, extinction, and balancing survival. When
applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for
the permanence as well as profitless delay for balancing survival.

1. Introduction

Difference equations are frequently used in modelling the interactions of populations with
nonoverlapping generations (see, e.g., May and Oster [1] for the one-species difference
equations; [2] for how populations regulate; Hassel [3], Basson and Fogarty [4] and
Beddington et al. [5] for predator-prey models). Since one of the most important ecological
problems associated with the populations dynamical system is to study the long-term
coexistence of all the involved species, such problem in the nondelayed discrete systems
had already attracted much attention and thereby many excellent results had appeared
([6–11]). However, recent studies of the natural populations indicated that the interactions
of populations, for example, the density-dependent population regulation sometimes takes
place over many generations (see [12–29] and the references therein). Turchin [28] evaluated
the evidence for delayed density dependence in discrete population dynamics of 14-forest
insects, and finded strong evidence for that eight cases exhibited clear evidence for delayed
density dependent and lags induce oscillations. And he pointed out that delayed density
dependence can arise in natural populations as a result of interactions with other members of
the community such as natural enemies, or because high population density may adversely
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affect the fecundity of the next generation. Furthermore, Turchin and Taylor in [27] proposed
the following general delayed discrete populations model:

Nt = F
(
Nt−1,Nt−2, . . . ,Nt−p, εt

)
, (1.1)

where Nt = (N1
t ,N

2
t , . . . ,N

k
t ) and Ni

t is the density of species i at time t. Recently, Crone
[16] showed that inclusion of effects of parental density on offspring mass fundamentally
changes population dynamics models by making recruitment a function of population size in
two previous generations. Wikan andMjølhus [30] showed general delay may have different
effects on species. By the above conclusions, it is realistic for us to consider the time-delayed
discrete population models.

There have been some excellent works devoted to the delayed discrete models
([11, 17, 22, 31–37]). In 1976, Levin and May [31] showed that, similar to the differential-
delay equations, those obey nonoverlapping generations with explicit time lags in the density
dependent regulatory mechanisms also lead to stable limit cycle behavior. Ginzburg and
Taneyhill [17] developed a two-dimensional model of delayed difference equation which
relates the average quality of individuals to patterns of abundance. The delayed density
dependence was caused by transmission of quality between generations through maternal
effects. They proved that the delayed model can produce patterns of population fluctuations.
Later, Crone [32] presented a nondelayed model and revealed that the inclusion of delays
changes the shape of population cycles (flip versus Hopf bifurcations) and decreases the
range of parameters which were used to predict stable equilibria. In [22], Keeling et al.
proposed that delayed density dependence should be one of the reasons for what stabilizes
the natural enemy-victim interactions and allows the long-term coexistence of the two
species. For more mathematical results, Saito et al. [33, 34], Tang and Xiao [35], Kon [11], and
Liu et al. [37] proved that time delays are harmless to the coexistence of two-species Lotka-
Volterra difference systems. Tang and Xiao [35] studied the two-species Kolmogorov-type
delayed discrete system and obtained the sufficient conditions for its permanence. Recently,
Liu et al. [37] focused on a general n-species discrete competitive Lotka-Volterra system with
delayed density dependence and delayed interspecific competition which takes the following
form:

xi(m + 1) = xi(m) · exp
⎧
⎨

⎩
bi −

n∑

j=1

p∑

k=1

a
(k)
ij xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭
, i = 1, 2, . . . , n. (1.2)

Liu et al. [37] showed that under some conditions, the inclusion, exclusion and change of
time-delays cannot change the permanence, extinction and balancing survival of species. That
is, time-delays maybe harmless for both the permanence and balancing survival of species,
in addition to being profitless to the extinction of species. In particular, when n = 2, the
extinction and permanence of this system were corresponding to some inequalities that only
involve the coefficients therein, that is, permanence and extinction in this two-species system
are determined only by three elements: growth rate, density dependence and interspecific
competition rate.

These papers, while containing many new and significant results, are far from
answering the questions on the effects of time delays upon long time behaviors of discrete
system. For example, what will be the long-time behaviors for the general nonautonomous
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delayed discrete Kolmogorov systems? Following the previous works in delay differential
models (see [38–46]), in this paper, we study the n-species nonautonomous discrete
Kolmogorov-type system with time delays, which takes the following form:

xi(m + 1) = xi(m) · fi(m,xm), i = 1, 2, . . . , n, (1.3)

where xi(m) represents the density of population i at the mth generation; C = C([−τ, 0], Rn)
is the space of continuous mapping [−τ, 0] to Rn with the uniform norm; and f = (f1, . . . , fn) :
R × C → Rn is a given function with fi(m,xm) > 0 with some positive below bounds for all
m ∈ Z+, x1(m), . . . , xn(m) > 0. We define Rn

+ = {(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n}.
Suppose 0 ≤ τ < +∞ is a given integer. We denoteC+ = C([−τ, 0], Rn

+)with the uniform
norm ‖ · ‖ on [τ, 0], that is, for φ ∈ C+, ‖φ‖ = sup−τ≤j≤0,j∈Z|φ(j)|,where ‖ · ‖ is a given norm on
Rn. For any function x : [−τ, 0] → Rn

+ with τ > 0 and any m ∈ [0, τ], we define xm(·) ∈ C+ as
xm(θ) = x(m+ θ) form ∈ Z+, θ ∈ Z and θ ∈ [−τ, 0]. For the purpose of convenience, we write
x(m,φ) = x(0, φ)(m).

In this paper, we assume that system (1.3) always satisfies the following positive initial
conditions:

xi(θ) = φi(θ) ≥ 0, φi(0) > 0, θ ∈ [−τ, 0], i = 1, 2, . . . , n, (1.4)

where φi (i = 1, . . . , n) is continuous. Then we have xi(m) > 0 for all i = 1, . . . , n, m ≥ 0.
Consequently, we get the general discrete Kolmogorov system (1.3) which embodies

both the overlapping interactions among its species and the time-varying environments. Our
model extends and joint those models in [11, 33–37].

Definition 1.1. Species xi, (i = 1, . . . , n) is called permanent if there exists a positive interval
such that xi will ultimately enter and stay in this interval. A population system is called a
permanent one (uniformly persistent) if all of its species are permanent.

Definition 1.2. Species xi is called extinct if limt→+∞xi = 0. An n-species population system
is called r-balancing survival (1 ≤ r < n) if n − r species in the system go extinct while the
remaining r being permanent.

The above definitions on permanence and balancing survival in difference systems are
equivalent to those usually for differential case (see, e.g., [41–43, 45, 47, 47, 48]).

The purpose of this paper is to construct some general results for the long-time
behaviors (permanence and balancing survival) of system (1.3) and study the effects of time
delays on the asymptotical behaviors.We get the sufficient conditions for the permanence and
balancing survival of system (1.3), which directly extend those in [35]. We also apply themain
results for (1.3) to the n-species Lotka-Volterra systems of competitive type, which are one of
the theoretical interests in population biology since they involve Ricker type (exponential)
nonlinearities—one of the standard nonlinearities used in the business. And we obtain the
sufficient conditions for system (1.3)’s permanence and balancing survival. These results are
applied into the nonautonomous competitive delayed discrete Lotka-Volterra systems and
directly generalize some relative results in [33–35, 37]. Moreover, we show the delays do
not affect the permanence and balancing survival of the n-species Lotka-Volterra discrete
systems. Biologically speaking, that is, time delays are both harmless for permanence and
profitless to the balancing survival of the system.
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Our paper is organized as follows, in the next section we present and prove our main
results. In Section 3, we apply themain results into the competitive Lotka-Volterra system and
get the corresponding results for its permanence and balancing survival. Discussion follows
at the last section.

2. Permanence and Balancing Survival

In ecosystems, the natural resources are limited, so are the species that live in them, therefore,
during this paper we always assume that system (1.3) is dissipative, namely system (1.3) is
ultimately bounded. Hence there exist a positive constantM and positive integer N(φ) such
that |xi(m,φ)| ≤ M for all m ≥ N(φ).

Definition 2.1. A continuous function D(x) = (D1(x), . . . , Dn(x)) : intRn
+ → intRn

+ is said to
be a boundary function, if for any M,δ > 0, there exist two positive constants δ1, δ2 > 0 such
that the following properties hold:

(i) whenever j ∈ {1, . . . , n}, x ∈ intRn
+ and |x| ≤ M, Dj(x) ≤ δ1 implies that xj ≤ δ,

(ii) whenever x ∈ intRn
+, |x| ≤ M and Dj(x) ≥ δ for all j = 1, . . . , n imply that xj ≥ δ2

for all j = 1, 2, . . . , n.

Definition 2.2. We define V (x(m,φ)) = (V1(x(m,φ)), V2(x(m,φ))), . . . , Vn(x(m,φ)), x ∈ intRn
+

a vector Liapunov boundary function of system (1.3), if

(i) there is a boundary function B(x) and n continuous functions Gi : Z ×C+ → intR+

such that for all m ∈ Z,M > 0 and i ∈ {1, 2, . . . , n},

0 < inf
‖φ‖≤M

Gi(m,xm) ≤ sup
‖φ‖≤M

Gi(m,xm) < +∞, (2.1)

and for all m, k ∈ Z+, there is a constant α1 > 0 such that

inf‖φ‖≤MGi(m,xm)
sup‖φ‖≤MGi(k, xk)

> α1, (2.2)

(ii) in addition, for xm = xm(0, φ), the solution of (1.3) with x(0) = φ and Vi(m,x) =
B(x) ·Gi(m,xm), we have

Vi(m + 1, x) ≥ Vi(m,x) · Pi(xi), (2.3)

where Pi : R+ → R, and there exist some constants x0
i > 0, λ1 > 1 such that Pi(xi) >

λ1 > 1 whenever 0 < xi < x0
i .

Theorem 2.3. System (1.3) is permanent if it admits a vector Liapunov boundary function V (m,x) =
(V1(m,x), V2(m,x), . . . , Vn(m,x)).

Remark 2.4. In [35, Theorem 2.1], Tang and Xiao constructed the sufficient conditions for
the permanence of an autonomous two-species Kolmogorov system. Theorem 2.3 directly
generalizes their results.
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Remark 2.5. Noting Theorem 2.3 does not need any sign conditions on ∂fi/∂xi. Thus we can
study several population models simultaneously: competitive, predator-prey, mutual, and so
forth.

Using the arguments similar to Lemma 1 in [34], we have the following.

Lemma 2.6. Assume positive initial conditions hold for system (1.3), then each of its solution is
positive with upper and lower bound.

Proof of Theorem 2.3. We divide the arguments into the following several steps.

Step 1. Constructing a bounded subset Ω ⊂ intRn
+.

Suppose M is defined as in Definition 2.2 and the vector Liapunov function
V (m,x(m,φ)) defined as in Definition 2.2. Let

δ0 ≤ 1
2
min
1≤i≤n

x0
i · sup

1≤i≤n, ‖φ‖≤M

{
1

∥∥fi(m,xm)
∥∥

}

. (2.4)

By Definition 2.2, there exists a positive constant δ1 such that for any i ∈ {1, 2, . . . , n} and
x ∈ intRn

+, the facts ‖x‖ ≤ M and Di(x) ≤ δ1 imply that xi < δ0. Further, one can choose the
sufficient small constant δ2 with

0 < δ2 < δ1 ·
inf‖φ‖≤MGi

(
m,x

(
m,φ

))

sup‖φ‖≤MGi

(
k, x

(
k, φ

)) ∀m, k ∈ Z+, i = 1, 2, . . . , n. (2.5)

Define a subset of Rn
+

Ω = {x = (x1, . . . , xn) ∈ Rn
+ : Di(x) ≥ δ2, xi ≤ M, i = 1, . . . , n}. (2.6)

Clearly the definition of Di(x) yields that Ω ⊂ intRn
+.

In the following we prove that each solution of system (1.3) will eventually enter and
stay in Ω, that is, system (1.3)will be permanent.

Step 2. For any i ∈ {i = 1, 2, . . . , n}, m0 ≥ 0, ‖x(m,φ)‖ ≤ M for m ≥ m0 and Di(x(m0, φ)) ≥ δ1
follows that Di(x(m1, φ)) ≥ δ2 for all m ≥ m0.

Suppose this false, then there exist some m2 > m1 ≥ m0 and some j ∈ {1, . . . , n} such
thatDj(x(m1, φ)) ≥ δ1 whileDj(x(m2, φ)) < δ2 and δ2 ≤ Dj(x(m,φ)) < δ1 for allm1 < m < m2

unless m2 = m1 + 1.
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Hence we have two cases to consider.

Case 1 (m2 = m1 + 1). By the definition of δ1, δ2, Dj(x(m2, φ)) < δ2 ≤ δ1 implies xj(m2) < δ0.
Then by system (1.3),

xj(m1) =
xj(m2)

fj(m1, xm1)

≤ δ0 · sup
1≤i≤n, ‖φ‖≤M

{
1

∥
∥fi(m,xm)

∥
∥

}

≤ 1
2
· x0

j .

(2.7)

Using Definition 2.2 we have Vj(m2, x) > Vj(m1, x).

Case 2 (m2 > m1 + 1). Since Dj(x(m,φ)) < δ1 for all m1 + 1 ≤ m ≤ m2, we have xj(m) < δ0.
Using the analogous arguments to Case (i), we have xj(m1) < (1/2) · x0

j . Then we have

Vj(m1, x) < Vj(m + 1, x) < · · · < Vj(m2, x). (2.8)

Thus we obtain Vj(m2, x) > Vj(m1, x).However, since

Vj(m2, x) = Dj

(
x
(
m2, φ

)) ·Gj(m2, x) ≤ δ2 · sup
‖φ‖≤M

Gj(m2, x)

≤ δ1 ·
inf‖φ‖≤MGi

(
m,x

(
m,φ

))

sup‖φ‖≤MGi

(
k, x

(
k, φ

)) · sup
‖φ‖≤M

Gj(m,x)

≤ δ1Gj

(
m1, x

(
m,φ

)) ≤ Dj

(
x
(
m1, φ

)) ·Gj

(
m,x

(
m1, φ

))

= Vj

(
m1, x

(
m1, φ

))
,

(2.9)

then we obtain a contradiction, which finishes Step 2.

Step 3. By Step 2 and the definition that Ω =
⋂n

i=1{x = (x1, . . . , xn) ∈ Rn
+ : Di(x) ≥ δ2, xi ≤

M, i = 1, 2, . . . , n},we obtain that if there exists an integerm0 ≥ 0 such thatDi(x(m0, φ)) ≥ δ1
for all i = 1, 2, . . . , n, then x(m,φ) ∈ Ω for all m ≥ m0.

Step 4. We claim that there exist δ3 = δ3(φ) > 0 and some integer m∗ ≥ 0 such that xi(m,φ) >
δ3 for m ≥ m∗, i = 1, 2, . . . , n.

Let m∗ ≥ 0 be sufficiently large such that |x(m,φ)| ≤ M for m ≥ m∗, let δ′
1 =

min1≤i≤n{Di(x(m∗, φ))}, that is, Di(x(m∗, φ)) ≥ δ′
1, i = 1, 2, . . . , n. Following Step 2, we can

find a δ′
2 ∈ (0, δ′

1) such that Di(x(m,φ)) > δ′
2 for all m ≥ m∗ and i = 1, 2, . . . , n. By Property

(ii) of Definition 2.2, we see that there is a desired δ3 > 0 such that xi(m,φ) ≥ δ3 for
m ≥ m∗, i = 1, 2, . . . , n. Here δ3 is dependent on φ.

Using Definition 2.2, we have Vi(m,xi), (i = 1, . . . , n) are bounded for all m ≥ m∗, i =
1, 2, . . . , n.

Step 5. We claim that solution x(m,φ) enters and stays in Ω for sufficiently large m. We have
two cases to consider.
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Case A. There exists an m0 ≥ 0 such that Di(x(m0, φ)) ≥ δ1 for all i = 1, . . . , n,; for this case,
Step 3 directly implies the claim.

Case B. x(m,φ) remains in S \Ω for all large integer m, where

S = {x = (x1, . . . , xn) ∈ Rn
+ : xi ≤ M, i = 1, . . . , n},

Ω1 = {x = (x1, . . . , xn) ∈ Rn
+ : Di(x) ≥ δ1, xi ≤ M, i = 1, . . . , n}.

(2.10)

In this case, we first claim that there exists a sufficiently large m = m(i) for each i such that
Di(x(m,φ)) ≥ δ1. If it is not true, that is, Di(x(m,φ)) < δ1 for all m and for each 1 ≤ i ≤ n.
The definition of Di(x(m,φ)) implies that x(m,φ) < δ0 for all large m, and by the choice of
δ0 and the definition of Vi(m + 1, x), we have Vi(m + 1, x) ≥ ξ · Vi(m,x), where ξ is some
constant with ξ > 1. Hence Vi(m,x) → ∞ as m → ∞. A contradiction to the boundedness
of Vi(m,x) (see Step 4). Then for each i, there exists a sufficiently large integerm(i) such that
Di(x(m,φ)) ≥ δ1. By Step 2, Di(x(m,φ)) ≥ δ2 for all m ≥ m(i).

Selecting m1 = max1≤i≤n{m(i)}, then we have Di(x(m,φ)) ≥ δ2 for all m ≥ m1, i =
1, . . . , n, that is, x ∈ Ω for all m ≥ m1, proving Theorem 2.3.

Definition 2.7. E(x) = (E1(x), . . . , En(x)) is called an r-boundary function (1 ≤ r ≤ n), if for
any k > 0 and σ > 0, there exists σ1, σ2 > 0 such that the following properties hold true:

(i) whenever j ∈ {1, . . . , r}, x ∈ intRn
+, |x|/= k and Ej(x) ≤ σ1, then xj ≤ σ,

(ii) whenever x ∈ intRn
+ and Ei(x) ≤ σ for all i = 1, . . . , r, then xi ≥ σ2 for all i = 1, . . . , r.

Definition 2.8. The vector function U(m) = (U1(m), . . . , Un(m)) is called a vector r-balancing
survival function for system (1.3) if the following properties hold:

(1) Ui(m) = Ei(x(m,φ)) ·Hi(m,x(m,φ)), i = 1, . . . , n, where E(x(m,φ)) = (E1, . . . , En)
is an r-boundary function H(m,x(m,φ)) = (H1, . . . ,Hn) is a continuous function
withHi : Z × C+ → intR+ such that for M and allm ∈ Z+ and any i ∈ {1, . . . , n},

0 < inf
‖φ‖≤M

Hi

(
m,x

(
m,φ

)) ≤ sup
‖φ‖≤M

Hi

(
m,x

(
m,φ

))
< +∞, (2.11)

and for all m, s ∈ Z+, there exists α2 > 0 such that inf‖φ‖≤MHi(m,x(m,φ))/
sup‖φ‖≤MHi(s, x(s, φ)) > α2.

(2) Ui(m + 1, xm+1) ≥ Ui(m,xm) · Qi(m,xi) · Fi(m,xr+1, . . . , xn) for all i = 1, . . . , r while
Uj(m + 1, xm+1) ≤ Uj(m,xm) · Qj(m,x1, . . . , xj) · Fj(m,xj+1, . . . , xn) for all j = r +
1, . . . , n.

Here x(m,φ) is a solution of system (1.3)with x(0) = φ, Qi(m,xi) admits some xr
i > 0,

λ2 > 1 and α3 < 1 such that Qi(m,xi) > λ2 > 1 for all 0 < xi < xr
i , (i = 1, . . . , r) while

Qj(m,x1, . . . , xj) < α3 < 1 for sufficiently large m, (j = r + 1, . . . , n); Fi(m,xj+1, . . . , xn) → 1 as
maxj+1≤k≤n{|xk|} → 0.

We have the following theorem.
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Theorem 2.9. Assume there exists a vector r-balancing survival Liapunov function U(m,xm) for
system (1.3), then system (1.3) is r-balancing survival, that is, the species r + 1, . . . , n are extinct
while the rest r populations are permanent.

Proof. First we prove the extinction of species r + 1, . . . , n. Let Un(m + 1, x) be the vector
Liapunov boundary function for system (1.3). By Definition 2.7, for the m > N0, we have
the following inequality:

Un(m + 1, x) ≤ Un(m,x) · exp{−αρ}, (2.12)

then we get limm→∞Un(m + 1, x) = 0, which, by Definition 2.8, implies limm→∞xn(m) = 0.
Nowwe claim for all j ∈ {r +1, . . . , n−1} andm > N0, extinctions of species j +1, . . . , n

yield that of species j.
By Definition 2.8, there exist a positive constant α3 < 1 and a sufficiently integer m2

such that for all m ≥ m2, thus we have

Uj(m + 1, x) ≤ Uj(m,x) ·Qj

(
m,x1, . . . , xj

) · F(m,xj + 1, . . . , xn

)

≤ Uj(m,x) · α3 · 1 + α3

2α3
=

1 + α3

2
·Uj(m,x),

(2.13)

this yields limm→∞xj(m) = 0. Hence we get the extinctions of species r + 1, . . . , n.
Now we prove the permanence of species 1, . . . , r. Choose a σ0 ∈ (0, 1) with

δ0 ≤ 1
2
min
1≤i≤n

x0
i · sup

1≤i≤r, ‖φ‖≤M

{
1

∥∥fi(m,xm)
∥∥

}

, (2.14)

such that 0 < xi < δ0 implies that Pi(xi) ≥ ε0 for some ε0 > 1, (i = 1, 2, . . . , r). if 0 < xi < σ0,
then Qi(xi) > ε0 > 1 for all i = 1, . . . , r, where ε0 is a constant.

Consider σ1 such that for any given i ∈ {1, . . . , r}, we have; whenever x is in the interior
of Rn

+, ‖x‖ ≤ M and Ei(m,x) ≤ σ1, then xi < σ0. Such a σ1 exists because of property (i) of
Definition 2.7. Further by Definition 2.8, we can choose

0 < σ2 < σ1 ·
inf‖φ‖≤MHi

(
m,φ

)

sup‖φ‖≤MHi

(
s, φ

) ∀m, s ∈ Z+, i = 1, . . . , r. (2.15)

Let

Ω′ =
{
y = (x1, . . . , xr) ∈ Rn

+ : Ei

(
m,y

) ≥ σ2, xi ≤ M, i = 1, . . . , r
}
. (2.16)

It is clear that the property (i) of Definition 2.7 yields Ω′ ⊂ intRr
+. In the following, we prove

that Ω′ is the desired permanent region for species x1, . . . , xr .
Definition 2.8 and extinctions of species xr+1, . . . , xn imply that there exist a positive

constant ε0 and some integer m∗ > 0 such that Fj(m,xr+1, . . . , xn) > (1 + ε0)/2 > 1 for all
j = r + 1, . . . , n and m > m∗.
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Now we claim that for each i ∈ {1, . . . , r}, ‖xi‖ ≤ M for m ≥ m∗ and Ei(x) ≥ σ1 imply
that Ei(x) ≥ σ2 for all m ≥ m∗.

For any i ∈ {i = 1, 2, . . . , n}, m0 ≥ 0, ‖x(m,φ)‖ ≤ M for m ≥ m0, and Ei(x(m0, φ)) ≥ δ1
follows that Ei(x(m1, φ)) ≥ δ2 for all m ≥ m0.

Suppose this false, then there exist some m′
2 > m′

1 ≥ m0 and some j ∈ {1, . . . , r} such
that Ej(x(m′

1, φ)) ≥ σ1 while Ej(x(m2, φ)) < σ2 and σ2 ≤ Ej(x(m,φ)) < σ1 for all m′
1 < m < m′

2
unless m′

2 = m′
1 + 1. We have the following two cases to consider.

Case 1 (m′
2 = m′

1 + 1). By the definition of σ1, σ2, Ej(x(m′
2, φ)) < σ2 ≤ σ1 implies xj(m′

2) < σ0.
Then by system (1.3),

xj

(
m′

1

)
=

xj

(
m′

2

)

fj
(
m′

1, xm′
1

)

≤ σ0 · sup
1≤i≤r, ‖φ‖≤M

{
1

∥∥fi(m,xm)
∥∥

}

≤ 1
2
· x0

j .

(2.17)

Using Definition 2.2 we have Vj(m′
2, x) > Vj(m′

1, x).

Case 2 (m′
2 > m′

1 + 1). Since Ej(x(m,φ)) < δ1 for all m′
1 + 1 ≤ m ≤ m′

2, we have xj(m) < σ0.
Using the analogous arguments to Case (i), we have xj(m′

1) < (1/2) · x0
j . Then we have

Vj

(
m′

1, x
)
< Vj(m + 1, x) < · · · < Vj

(
m′

2, x
)
. (2.18)

Thus we obtain Vj(m′
2, x) > Vj(m′

1, x). However, we also have

Vj

(
m′

2, x
)
= Ej

(
x
(
m′

2, φ
)) ·Hj

(
m′

2, x
) ≤ σ2 · sup

‖φ‖≤M
Hj

(
m′

2, x
)

≤ σ1 ·
inf‖φ‖≤MHi

(
m,x

(
m,φ

))

sup‖φ‖≤MHi

(
k, x

(
k, φ

)) · sup
‖φ‖≤M

Hj(m,x)

≤ σ1Hj

(
m′

1, x
(
m′

1, φ
))

≤ Ej

(
x
(
m′

1, φ
)) ·Hj

(
m′

1, x
(
m′

1, φ
))

= Vj

(
m′

1, x
(
m′

1, φ
))
,

(2.19)

a contradiction, which proves Ei(x) ≥ σ2 for all m ≥ m∗.

Then using the similar arguments to Step 3–5 for Theorem 2.3, we prove Theorem 2.9.
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3. Applications to Lotka-Volterra a System

Consider the following nonautonomous discrete competitive systems with time delays:

xi(m + 1) = xi(m) · exp
⎧
⎨

⎩
bi(m) −

n∑

j=1

p∑

k=1

a
(k)
ij (m)xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭
, i = 1, . . . , n, (3.1)

where xi(m) represents the density of population i at the mth generation; τ
(k)
ij is the

nonnegative integer delay to the competition between species i and species j.
Denote

f = sup
m∈Z+

f(m); f = inf
m∈Z+

f(m) (3.2)

for the bounded function f(m) with m ∈ Z+, and let aij(m) =
∑p

k=1 a
(k)
ij (m), i, j = 1, 2, . . . , n.

We assume 0 ≤ a
(k)
ij (m), bi(m) < +∞ and aii > 0 for all 1 ≤ i, j ≤ n, m ∈ Z+.

Denote

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a11 a12 · · · a1n

· · · · · · · · · · · ·
ai−11 ai−12 · · · ai−1n

ai1 ai2 · · · ain

ai+11 ai+12 · · · ai+1n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Bi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1

· · ·
bi−1

bi

bi+1

· · ·
bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.3)

Then we have the following.

Theorem 3.1. Assume

(H4) Ai is a nonsymmetric matrix; the vector equation AiX
(i) = Bi admits a positive solution

X(i) = (x(i)
1 , . . . , x

(i)
n )T .

(H5) Let (β
(i)
jk )n×n be the inverse matrix of A(i) with β

(i)
kk > 0 and βjk ≤ 0 for all j, k = 1, . . . , n,

j /= k.

Then system (3.1) is permanent.

Proof. Using the similar arguments to those in [37], we can prove system (3.1) is dissipative.
Let

Vl(m + 1) =
n∏

i=1

(xi(m + 1))β
(l)
li · exp

⎧
⎪⎨

⎪⎩
−

n∑

i,j=1

β
(l)
ij

p∑

k=1

m∑

s=m+1−τ (k)ij

a
(k)
ij

(
s + τ

(k)
ij

)
xj(s)

⎫
⎪⎬

⎪⎭
, l = 1, . . . , n,

(3.4)
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where βkij , (i, j = 1, . . . , n, k = 1, . . . , p) are defined in (H5). By Theorem 2.3, we only need
to prove the vector function (V1(m + 1), . . . , Vn(m + 1)) is a vector Liapunov boundary
function of system (3.1). With the similar arguments in [45], we can prove that (

∏n
i=1(xi(m +

1))β
(1)
1i , . . . ,

∏n
i=1(xi(m+ 1))β

(n)
ni ) is a boundary function. Hence we only need to prove the (ii) of

Definition 2.2.

By (3.4) and system (3.1), we have

Vl(m + 1)
Vl(m)

∣
∣
∣
∣
(3)

= exp

⎧
⎪⎨

⎪⎩

n∑

i=1

⎡

⎣β(l)
li
bi(m) −

n∑

j=1

p∑

k=1

β
(l)
li
a
(k)
ij (m)xj

(
m − τ

(l)
ij

)
⎤

⎦

−
n∑

i,j=1

p∑

k=1

β
(l)
li

⎛

⎜
⎝

m∑

s=m+1−τ (k)ij

a
(k)
ij

(
s + τ

(k)
ij

)
xj(s) −

m−1∑

s=m−τ (k)ij

a
(k)
ij

(
s + τ

(k)
ij

)
xj(s)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= exp

⎧
⎨

⎩

n∑

i=1

n∑

i=1

β
(l)
li
bi(m) −

n∑

i,j=1

p∑

k=1

a
(k)
ij (m)xj

(
m − τ

(l)
ij

)

−
n∑

i,j=1

p∑

k=1

β
(l)
li a

(k)
ij

(
m + τ

(k)
ij

)
xj(m) +

n∑

i,j=1

p∑

k=1

β
(l)
li ma

(k)
ij (m)xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭

= exp

⎧
⎨

⎩

n∑

i=1

n∑

i=1

β
(l)
li bi(m) −

n∑

i,j=1

p∑

k=1

β
(l)
li ma

(k)
ij

(
m + τ

(k)
ij

)
xj(m)

⎫
⎬

⎭

≥ exp

⎧
⎨

⎩
β
(l)
ll
bi +

n∑

i /= l

n∑

i=1

β
(l)
li
bi −

n∑

j=1

p∑

k=1

β
(l)
ll
a
(k)
lj

xj(m) −
n∑

i /= l

n∑

j=1

p∑

k=1

β
(l)
li
a
(k)
ij xj(m)

⎫
⎬

⎭

= exp

⎧
⎨

⎩
x
(l)
l

−
⎛

⎝β
(l)
ll
alj +

n∑

j /= l

β
(l)
li
aij

⎞

⎠ ·
n∑

j=1

xj(m)

⎫
⎬

⎭
.

(3.5)

By (H4), x
(l)
l > 0 for all l = 1, . . . , n. Noticing that (a1j , . . . , al−1j , alj , al+1j , . . . , anj)

T is the jth

column vector ofAl and (β(l)
l1 , . . . , β

(l)
ln
) the lth row vector of the matrixA−1

l
, respectively. Then

we have

β
(l)
ll alj +

n∑

j /= l

β
(l)
li aij =

⎧
⎨

⎩

1, j = l,

0, j /= l,
(3.6)
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which follows

Vl(m + 1)
Vl(m)

∣
∣
∣∣
(3)

≥ exp
{
x
(l)
l

− xl(m)
}
. (3.7)

This proves the (ii) of Definition 2.2. Thus we prove V (m,xm) is a Liapunov boundary
function, proving Theorem 3.1.

Let 2 ≤ q < n, Aq = (aij)q×q, Bq = (b1, . . . , bq)
T , Xq = (x1, . . . , xq)

T . Now, we consider the
balancing survival of the system (3.1). Denote

Ar
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a21 a12 · · · a1r

· · · · · · · · · · · ·
ai−11 ai−12 · · · ai−1r

ai1 ai2 · · · air

ai+11 ai+12 · · · ai+1r

· · · · · · · · · · · ·
ar1 ar2 · · · arr

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Br
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1

· · ·
bi−1

bi

bi+1

· · ·
br

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, i = 1, 2, . . . , r. (3.8)

Theorem 3.2. Assume

(H4) Ar
i is a nonsymmetric matrix and the vector equationAr

i Xi = Br
i admits a positive solution

vector Yi = (y(2)
1 , . . . , y

(r)
i )T with i = 1, . . . , r.

(H5) Let (γrij)r×r be the inverse matrix of Ar
i with γrii > 0 and γrij ≤ 0 for all i, j = 1, . . . , r and

j /= i.

(H6) For all r + 1 ≤ k ≤ n, there exists ik < k such that bkaikj − bikakj < 0 holds for all
j = 1, 2, . . . , k.

Then system (3.1) is r-balancing survival, that is, species 1, . . . , r are permanent while species
r + 1, . . . , n will go extinct.

Corollary 3.3. Assume

(H7) For each 2 ≤ r ≤ n, there exists a positive integer ir with ir < r such that brair j − bir arj < 0
holds for all j = 1, 2, . . . , r.

Then all species in system (3.1) except species 1 are going extinct while species 1 is permanent.

Remark 3.4. In [37], we considered permanence and balancing survive of system (1.1)—
the autonomous case of system (3.1). Theorems 3.1 and 3.2 in this paper generalize the
corresponding results in [37].

Remark 3.5. Kuang [40], Tang and Kuang [45], Liu and Chen [43] obtained the sufficient
conditions for the permanence in the delayed n-species Lotka-Volterra differential equations.
They also proved that time-delays are harmless for the permanence of the continuous Lotka-
Volterra system. Our results in Theorem 3.1 and Corollary 3.3 are analogous to theirs.
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Remark 3.6. Theorem 3.1 and Corollary 3.3 can be regarded as the two extreme cases of r-
balancing survival of system (3.1) with r = n and r = 1, respectively. Then Theorem 3.2
unifies Theorem 3.1 and Corollary 3.3.

Remark 3.7. Noting all conditions in Theorems 3.1 and 3.2 and Corollary 3.3 are independent
of the delays τ

(k)
ij , then once conditions for this propositions are satisfied, the inclusion,

exclusion or the variations of the time-delays will not affect the conclusions any more.

Proof of Theorem 3.2. Let W(m,xm) = (W1(m,xm), . . . ,Wn(m,xm)) with Wi(m,xm) =
Ei(x(m)) ·Hi(m,xm), where

El(m) =
r∏

i=1

(xi(m))γ
l
li , Hl(m,xm) = exp

⎧
⎪⎨

⎪⎩
−

r∑

i,j=1

p∑

k=1

γ lli

m∑

s=m−τ (k)ij

a
(k)
ij

(
s + τ

(k)
ij

)
xj(s)

⎫
⎪⎬

⎪⎭
(3.9)

as l = 1, 2, . . . , r, and

El(x(m)) = xl(m + 1)
−bil xil(m + 1)bl

Hl(m,xm) = exp

⎧
⎪⎨

⎪⎩
−bil

l∑

j=1

p∑

k=1

m∑

s=m+1−τ (k)
lj

a
(k)
lj

(
s + τ

(k)
lj

)
xj(s)

+ bl
l∑

j=1

p∑

k=1

m∑

s=m+1−τ (k)il j

a
(k)
ilj

(
s + τ

(k)
ilj

)
xj(s)

⎫
⎪⎬

⎪⎭
,

(3.10)

when l = r + 1, . . . , n.
By Theorem 2.9, we only need to prove that W(m,xm) is a vector r-balancing

survival function for system (3.1). With the similar arguments to Theorem 2 in [37],
we can prove E(x(m) = (E1(x(m)), . . . , En(x(m))) is an r-boundary function for system
(3.1); by the dissipative property of system (3.1), we can prove that H(m,xm) =
(H1(m,xm), . . . ,Hn(m,xm)) satisfies conditions for part (1) in Definition 2.8.

For l = r + 1, . . . , n, we have

Wl(m + 1, xm+1)
Wl(m,xm)

∣∣∣∣
(3)

= exp

⎧
⎪⎨

⎪⎩
bilbk(m) − blbil(m) − bil

l∑

j=1

p∑

k=1

a
(k)
lj (m)xj

(
m − τ

(k)
lj

)

+ bl
l∑

j=1

p∑

k=1

a
(k)
ilj

(m)xj

(
m − τ

(k)
ilj

)
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− bil

n∑

j=l+1

p∑

k=1

a
(k)
lj (m)xj

(
m − τ

(k)
lj

)
+ bl

n∑

j=l+1

p∑

k=1

a
(k)
ilj

(m)xj

(
m − τ

(k)
ilj

)

− bil

l∑

j=1

p∑

k=1

⎛

⎜
⎝

m∑

s=m+1−τ (k)
lj

a
(k)
lj

(
s + τ

(k)
lj

)
xj(s) −

m−1∑

s=m−τ (k)
lj

a
(k)
lj

(
s + τ

(k)
lj

)
xj(s)

⎞

⎟
⎠

+ bl
l∑

j=1

p∑

k=1

⎛

⎜
⎝

m∑

s=m+1−τ (k)il j

a
(k)
ilj

(
s + τ

(k)
ilj

)
xj(s) −

m−1∑

s=m−τ (k)il j

a
(k)
ilj

(
s + τ

(k)
ilj

)
xj(s)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

≤ exp

⎧
⎨

⎩
−αl

4
− bil

l∑

j=1

p∑

k=1

a
(k)
lj (m)xj

(
m − τ

(k)
lj

)
+ bl

l∑

j=1

p∑

k=1

a
(k)
ilj

(m)xj

(
m − τ

(k)
ilj

)

− bil

l∑

j=1

p∑

k=1

(
a
(k)
lj

(
m + τ

(k)
lj

)
xj(m) − a

(k)
lj (m)xj

(
m − τ

(k)
lj

))

+ bl
l∑

j=1

p∑

k=1

(
a
(k)
ilj

(
m + τ

(k)
ilj

)
xj(m) − a

(k)
ilj

(m)xj

(
m − τ

(k)
ilj

))
⎫
⎬

⎭
.

(3.11)

Thus we have

Wl(m + 1, xm+1)
Wl(m,xm)

∣∣∣∣
(3)

≤ exp

⎧
⎨

⎩
−αl

4
− bil

l∑

j=1

p∑

k=1

a
(k)
lj

(
m + τ

(k)
lj

)
xj(m) + bl

l∑

j=1

p∑

k=1

a
(k)
ilj

(
m + τ

(k)
ilj

)
xj(m)

⎫
⎬

⎭

≤ exp

⎧
⎨

⎩
−αl

4
−

l∑

j=1

(
bilaljxj(m) − blailj

)
xj(m)

⎫
⎬

⎭

≤ exp

⎧
⎨

⎩
−αl

4
−min

1≤j≤l

{
bilaljxj(m) − blailj

} l∑

j=1

xj(m)

⎫
⎬

⎭

≤ exp
{
−αl

4

}
< 1.

(3.12)
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While for l = 1, . . . , r, we have

Wl(m + 1, xm+1)
Wl(m,xm)

∣
∣
∣
∣
(3)

= exp

⎧
⎪⎨

⎪⎩

r∑

i=1

γ llibi(m) −
r∑

j=1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)

−
n∑

j=r+1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)

−
r∑

i,j=1

p∑

k=1

γ lli

⎛

⎜
⎝

m∑

s=m+1−τ (k)ij

a
(k)
ij

(
s + τ

(k)
ij

)
xj(s) −

m−1∑

s=m−τ (k)ij

a
(k)
ij

(
s + τ

(k)
ij

)
xj(s)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

≥ exp

⎧
⎨

⎩

r∑

i=1

γ llibi(m) −
r∑

j=1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)

−
r∑

i,j=1

p∑

k=1

γ lli

(
a
(k)
ij

(
m + τ

(k)
ij

)
xj(m) − a

(k)
ij (m)xj

(
s − τ

(k)
ij

))
⎫
⎬

⎭

· exp
⎧
⎨

⎩
−

n∑

j=r+1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭

= exp

⎧
⎨

⎩

r∑

i=1

γ llibi(m) −
r∑

i,j=1

p∑

k=1

γ llia
(k)
ij

(
m + τ

(k)
ij

)
xj(m)

⎫
⎬

⎭

· exp
⎧
⎨

⎩
−

n∑

j=r+1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭

≥ exp

⎧
⎨

⎩
γ lllbl +

r∑

i /= l

γ llibi −
r∑

j=1

γ lllaljxj(m) −
r∑

i /= l

r∑

j=1

γ lliaijxj(m)

⎫
⎬

⎭

= exp

⎧
⎨

⎩
γ lllbl +

r∑

i /= l

γ llibi −
⎛

⎝
r∑

j=1

γ lllalj +
r∑

i /= l

r∑

j=1

γ lliaij

⎞

⎠xj(m)

⎫
⎬

⎭

· exp
⎧
⎨

⎩
−

n∑

j=r+1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭
.

(3.13)
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By (H4), Ar
l · Yl = Br

l , then γ lllbl +
∑r

i /= l γ
l
libi = y

(l)
l > 0. Using (H5), we have

γ
(l)
ll
alj +

r∑

j /= l

γ
(l)
li
aij =

⎧
⎨

⎩

1, j = l,

0, j /= l,
(3.14)

which follows

Wl(m + 1, xm+1)
Wl(m,xm)

∣
∣
∣
∣
(3)

≥ exp
{
y
(l)
l − xl(m)

}
· exp

⎧
⎨

⎩
−

n∑

j=r+1

p∑

k=1

γ llia
(k)
ij (m)xj

(
m − τ

(k)
ij

)
⎫
⎬

⎭
. (3.15)

ThenW(m,xm) also satisfies conditions for part (2) in Definition 2.8, this proves Theorem 3.2.

4. Conclusions

Many authors have studied the effects of time delays on dynamics of population difference
systems. Levin and May [31] showed excessive time lags could lead to stable oscillations
behaviors. Crone [32] showed that the inclusion of time delays can dramatically change the
dynamics and lead to chaos and cyclical. Further, Crone and Taylor [15] proved that inclusion
of delays into the density dependence can destabilize the dynamics that may be stabilized by
the nondelayed density dependence. Ginzburg and Taneybill [17] obtained that delays can
produce patterns of population fluctuation. Keeling et al. [22, 45] showed that time delays
might be one of the causes to stabilize the natural enemy victim interactions and allow the
long term coexistence of the two species.

Harmless delays have been well-known for some continuous population since Wang
and Ma [46] proved that delays are “harmless” for the permanence of a continuous Lotka-
Volterra predator-prey system, similar conclusions can also be found in some competitive
Lotka-Volterra systems (see [43, 49, 50]). Recently, Liu and Chen [43] proved the existence
of “profitless delays”, that is, the delays do not affect on species’ extinction. For the discrete
system, to study the effects of time delays on permanence, Tang and Xiao [35], Saito et al. [33]
and Liu et al. [37] study the effects of time delays on the two-species competitive systems and
they prove that time delays are “harmless” for the uniform persistence or permanence. Saito
et al. [34] also discover the same conclusions for the two-species predator-prey systems.

Different from the above results, we consider the long-time behaviors of the discrete
nonautonomous Kolmogorov-type population systemwith delays.We obtained the sufficient
conditions for its permanence and balancing survival behaviors. These results have the
advantage that we do not assume any sign condition on ∂fi/∂xi. So, we can study
simultaneously several population models: competing species, predator-prey, mutualism,
and so forth. In this paper, we have only applied themain results to Lotka-Volterra competing
species.

When applying the results of Kolmogorov system into the nonautonomous the
competitive system of Lotka-Volterra type, we construct the sufficient conditions for the
permanence and balancing survival behaviors of these systems, with all the conditions
independent of the time-delays. Hence if the nondelayed system is permanent, its
corresponding delayed system will be permanent, too. If several species of the nondelayed
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systems are balancing survival, so will be in the corresponding delayed system. On the other
hand, under the corresponding conditions, if the delayed system is permanent or some of its
species go extinct (balancing survival), so will be in the relative nondelayed system.

Thus, under the proper conditions, neither can time delays break the permanence of
some species into extinction, nor can they save the extinction of some species. Therefore, time-
lags in the discrete competitive Lotka-Volterra system with time-varying environments are
both harmless for the permanence and profitless to the extinction of species in system (3.1),
these results confirm and improve our previous conclusions for the discrete autonomous
Lotka-Volterra systems [37].

Further, we show that the permanence and extinction of the discrete system (3.1) are
equivalent to their corresponding continuous systems (see [40, 43, 45]), where time delays
are also both harmless for the permanence and profitless to the extinction of species of the
system.

Time delays have been shown to dramatically change the dynamics of the discrete
populations systems (see [15, 17, 22, 32]) and they may even lead to some complicated
dynamical behaviors such as Crone [32]. Based on our results, it would be interesting to
consider the effects of time delay on the stability of discrete systems, we leave this as our
future work.
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