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Sufficient conditions are obtained for the uniform stability and global attractivity of the zero
solution of nonlinear scalar delay impulsive difference equation, which extend and improve the
known results in the literature. An example is also worked out to verify that the global attractivity
condition is a sharp condition.

1. Introduction and Main Results

Let R, N, and Z be the sets of real numbers, natural numbers, and integers, respectively. For
any a, b ∈ Z, define Z(a) = {a, a + 1, . . .} and Z(a, b) = {a, a + 1, . . . , b}when a ≤ b.

It is well known that the theory of impulsive differential equations is emerging as an
important area of investigation, since it is not only richer than the corresponding theory of
differential equations without impulse effects but also represents a more natural framework
for mathematical modeling of many world phenomena [1]. Moreover, such equations may
exhibit several real-world phenomena, such as rhythmical beating, merging of solutions, and
noncontinuity of solutions. And hence ordinary differential equations and delay differential
equations with impulses have been considered by many authors, and numerous papers have
been published on this class of equations and good results were obtained (see, e.g., [1–10]
and references therein).

Since the behavior of discrete systems is sometimes sharply different from the behavior
of the corresponding continuous systems and discrete analogs of continuous problems may
yield interesting dynamical systems in their own right (see [11–13]), many scholars have
investigated difference equations independently. However, there are few concerned with the
impulsive difference equations or delay impulsive difference equations (see [14–19]). On the
other hand, stability is one of the major problems encountered in applications, but, to the
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best of our knowledge, very little has been done with the stability of impulsive difference
equations (see [15, 20]). Motivated by this, the aim of this paper is devoted to studying the
uniform stability and global attractivity of the zero solution of the following nonlinear scalar
delay impulsive difference equation:

Δx(n) = f(n, xn), n ∈ Z(0), n /=nj,

Δx
(
nj

)
= Ij

(
x
(
nj

))
, j ∈ Z(1),

(1.1)

where Δ denotes the forward difference operator defined by Δx(n) = x(n + 1) − x(n), f :
(Z(0) − {nj}) × S → R, S is the set of all functions φ : Z(−k, 0) → R for some k ∈ N, and
xn ∈ S is defined by xn(m) = x(n +m) for m ∈ Z(−k, 0), Ij : R → R, and 0 ≤ n1 < n2 < · · · <
nj < nj+1 < · · · , with nj → ∞ as j → ∞. By a solution of (1.1), we mean a sequence {x(n)} of
real numbers which is defined for all n ∈ Z(n0 − k) and satisfies (1.1) for n ∈ Z(n0) for some
n0 ∈ Z(0). It is easy to see that, for any given n0 ∈ Z(0) and a given initial function φ ∈ S,
there is a unique solution of (1.1), denoted by x(n, n0, φ) such that

x
(
n0 +m,n0, φ

)
= φ(m), for m ∈ Z(−k, 0). (1.2)

We assume that f(n, 0) ≡ 0 and Ij(0) ≡ 0, so that x(n) ≡ 0 is a solution of (1.1), which we call
the zero solution.

For φ ∈ S, define the norm of φ as

∥∥φ
∥∥ = max

{∣∣φ
(
j
)∣∣ : j ∈ Z(−k, 0)}, (1.3)

and for anyH > 0, define

SH =
{
φ ∈ S :

∥∥φ
∥∥ < H

}
. (1.4)

Definition 1.1. The zero solution of (1.1) is stable, if, for any ε > 0 and n0 ∈ Z(0), there exists a
δ = δ(n0, ε) > 0 such that φ ∈ Sδ implies that |x(n, n0, φ)| < ε for n ∈ Z(n0). If δ is independent
of n0, we say that the zero solution of (1.1) is uniformly stable.

Definition 1.2. The zero solution of (1.1) is globally attractive, if every solution of (1.1) tends
to zero as n → ∞.

A simple example of (1.1) is given by

Δx(n) + C(n)x(n − k) = 0, n ∈ Z(0), n /=nj,

Δx
(
nj

)
= cjx

(
nj

)
, j ∈ Z(1),

(1.5)

where k ∈ N, C : Z(0) → R, and {cj} is a sequence of real numbers. In [15], the author
studied the stability of the zero solution of (1.5), where C(n) ≥ 0 for n ∈ Z(0) − {nj} and
cj ∈ (−1, 0], and obtained the following result.
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Theorem 1.3. If

n∑

i=n−k
C(i)

∏

nj∈Z(i−k,i−1)

(
1 + cj

)−1 ≤ 3
2
, for n ∈ Z(k), (1.6)

then the zero solution of (1.5) is stable.

In this paper, we assume that there exists a positive constantH and a sequence {P(n)}
of nonnegative real numbers such that

P(n)M
(
φ
) ≥ −f(n, φ) ≥ −P(n)M(−φ), for n ∈ Z(0), φ ∈ SH, (1.7)

where M(φ) = max{0,maxi∈Z(−k, 0)φ(i)}. Furthermore, we assume that there is a sequence
{bj} of positive numbers with bj ≤ 1 such that

bjx
2 ≤ x

[
x + Ij(x)

] ≤ x2, for j ∈ Z(1), |x| < H. (1.8)

The main purpose of this paper is to establish the following theorems.

Theorem 1.4. Assume that (1.7) and (1.8) hold and

n∑

i=n−k
P(i)

∏

nj∈Z(i−k,i−1)
b−1j ≤ 3

2
+

1
2(k + 1)

, for n ∈ Z(k). (1.9)

Then the zero solution of (1.1) is uniformly stable.

Remark 1.5. Theorem 1.4 generalizes and improves Theorem 1.3 greatly.

The next theorem provides a sufficient condition for every solution of (1.1) tends to zero as
n → ∞, that is, the zero solution of (1.1) is globally attractive.

Theorem 1.6. Assume that (1.7) and (1.8) hold and

n∑

i=n−k
P(i)

∏

nj∈Z(i−k,i−1)
b−1j ≤ α <

3
2
+

1
2(k + 1)

, for n ∈ Z(k), (1.10)

and assume that, for each bounded solution {x(n)}, either

lim
n→∞

x(n) > 0,
∞∑

n=0

f(n, xn) = −∞, for n ∈ Z(k), (1.11)

or

lim
n→∞

x(n) < 0,
∞∑

n=0

f(n, xn) = ∞, for n ∈ Z(k). (1.12)

Then every solution of (1.1) tends to zero as n → ∞.
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Remark 1.7. An example is worked out in Section 3 to verify that the upper bound 3/2 +
1/2(k + 1) in (1.10) is best possible, that is, the upper bound in (1.10) cannot be improved.

One special form of (1.1) is when

f(n, xn) =
m∑

j=1

pn,jx
(
n + kn,j

)
, (1.13)

where pn,j ≤ 0, and kn,j ∈ Z(−k, 0) for n ∈ Z(1), j ∈ Z(1, m). Then for any H > 0, (1.7) holds
with P(n) =

∑m
j=1 |pn,j |. As a consequence of Theorem 1.4, we have the following.

Corollary 1.8. Assume that (1.8) holds and

n∑

i=n−k

m∑

j=1

∣∣pi,j
∣∣

∏

nj∈Z(i−k, i−1)
bj

−1 ≤ 3
2
+

1
2(k + 1)

, for n ∈ Z(k). (1.14)

Then the zero solution of the equation

Δx(n) =
m∑

j=1

pn,jx
(
n + kn,j

)
, n ∈ Z(0), n /=nj ,

Δx
(
nj

)
= Ij

(
x
(
nj

))
, j ∈ Z(1),

(1.15)

is uniformly stable.

For the sake of convenience, throughout this paper, we will use the convention

j∑

n=i

P(n) = 0, whenever j ≤ i − 1,

∏

i∈A
P(i) = 1, whenever A is an empty set,

x(n) = x
(
n, n0, φ

)
.

(1.16)

2. Proofs of Main Results

Define

gj(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

x + Ij(x)
, x /= 0,

1
bj
, x = 0

(2.1)
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for j ∈ Z(1). Then 1 ≤ gj(x) ≤ 1/bj for j ∈ Z(1) if |x| < H. Equation (1.1) can be rewritten as

Δx(n) = f(n, xn), n ∈ Z(0), n /=nj,

x
(
nj + 1

)
= gj

−1(x
(
nj

))
x
(
nj

)
, j ∈ Z(1).

(2.2)

Set

y(n) = x(n)
∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))
, n ∈ Z(−k), (2.3)

then (2.2) reduces to

Δy(n) = f(n, xn)
∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))
, n ∈ Z(0), n /=nj,

Δy
(
nj

)
= 0, j ∈ Z(1).

(2.4)

And it is easy to see that

|x(n)| ≤ ∣∣y(n)
∣∣ ≤ |x(n)|

∏

nj∈Z(0,n−1)
b−1j , for j ∈ Z(1), n ∈ Z(−k). (2.5)

To prove Theorems 1.4 and 1.6, we need the following lemma.

Lemma 2.1. Let {x(n)}, n ∈ Z(n0 − k), be a solution of (1.1), {y(n)} is defined by (2.3), n∗ ∈
Z(n0 + 2k + 2), and B(n∗) = max{|y(n)| : n ∈ Z(n∗ − 3k − 2, n∗ − 1)} < H. If

n∑

i=n−k
P(i)

∏

nj∈Z(i−k,i−1)
b−1j ≤ c +

k + 2
2(k + 1)

, for n ∈ Z(k) (2.6)

holds for some c ∈ [(k + 2)/2(k + 1), 1] and either

y(n∗) ≥ 0, y(n∗) > y(n∗ − 1) (2.7)

or

y(n∗) < 0, y(n∗) < y(n∗ − 1), (2.8)

then |y(n∗)| ≤ cB(n∗).



6 Advances in Difference Equations

Proof. We assume that y(n∗) ≥ 0 and y(n∗) > y(n∗ − 1). The case where y(n∗) < 0 and y(n∗) <
y(n∗ − 1) is similar and is omitted.

It is easy to see that Lemma 2.1 holds for y(n∗) = 0.
If k = 0, then c = 1 and P(n) ≤ 2 for all n ∈ Z(0) by (2.6). Thus we only need to prove

that |y(n∗)| ≤ B(n∗). Since y(n∗) > 0, y(n∗) > y(n∗ − 1), by (1.7)we have

−P(n∗ − 1)M(−xn∗−1) ≤ −f(n∗ − 1, xn∗−1) < 0, (2.9)

that is,

−P(n∗ − 1)max{0,−x(n∗ − 1)} ≤ −f(n∗ − 1, xn∗−1) < 0. (2.10)

So x(n∗ − 1) < 0 which admits that y(n∗ − 1) < 0. Hence

y(n∗) − y(n∗ − 1) = f(n∗ − 1, xn∗−1)
∏

nj∈Z(0,n∗−2)
gj
(
x
(
nj

))

≤ P(n∗ − 1)max{0,−x(n∗ − 1)}
∏

nj∈Z(0,n∗−2)
gj
(
x
(
nj

))

= −P(n∗ − 1)y(n∗ − 1) ≤ −2y(n∗ − 1),

(2.11)

which implies that y(n∗) ≤ −y(n∗ − 1), so |y(n∗)| ≤ |y(n∗ − 1)| ≤ B(n∗) by the definition of
B(n∗).

Now, assume that y(n∗) > 0, y(n∗) > y(n∗ − 1), and k ≥ 1. By (1.7), we also have

−P(n∗ − 1)M(−xn∗−1) ≤ −f(n∗ − 1, xn∗−1) < 0. (2.12)

So,

max
{
0, max

i∈Z(−k,0)
− x(n∗ − 1 + i)

}
> 0. (2.13)

Hence, there is n1 ∈ Z(n∗ − k, n∗) such that x(n1 − 1) < 0 and x(n) ≥ 0 for all n ∈ Z(n1, n
∗). So,

y(n1 − 1) < 0 and y(n) ≥ 0 for all n ∈ Z(n1, n
∗). For n ∈ Z(n0, n

∗ − 1), by (1.7) and (2.4), one
has
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Δy(n) = f(n, xn)
∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))

≤ P(n)M(−xn)
∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))

= P(n)max
{
0, max

i∈Z(−k,0)
(−xn(i))

} ∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))

= P(n)max
{
0, max

i∈Z(−k,0)
(−x(n + i))

} ∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))

= P(n)max
{
0, max

i∈Z(n−k,n)
(−x(i))

} ∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))

= P(n)max

⎧
⎨

⎩
0, max

i∈Z(n−k,n)
(−y(i))

∏

nj∈Z(0,i−1)
g−1
j

(
x
(
nj

))
⎫
⎬

⎭

∏

nj∈Z(0,n−1)
gj
(
x
(
nj

))

≤ B(n∗)P(n) max
i∈Z(n−k,n)

∏

nj∈Z(i,n−1)
b−1j

≤ B(n∗)P(n)
∏

nj∈Z(n−k,n−1)
b−1j

(2.14)

provided that Z(n0, n
∗ − 1) contains no impulsive points. And since Δy(n) = 0 if n meets one

of impulsive points, we always have

Δy(n) ≤ B(n∗)P(n)
∏

nj∈Z(n−k,n−1)
b−1j

Δ= P(n)B(n∗) (2.15)

for n ∈ Z(n0, n
∗ − 1), where P(n) = P(n)

∏
nj∈Z(n−k,n−1)b

−1
j .

By the choice of n1, there is a real number ξ ∈ [n1 − 1, n1] such that

y(n1 − 1) +
[
y(n1) − y(n1 − 1)

]
(ξ − n1 + 1) = 0. (2.16)

Next, we will show that, for any l ∈ Z(0, k),

−y(n − l) ≤ B(n∗)

[
n1−1∑

i=n−k
P(i) − (n1 − ξ)P(n1 − 1)

]

, for n ∈ Z(n1 − 1, n∗ − 1). (2.17)
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In fact, for any l ∈ Z(0, k),

−y(n − l) = −y(n1 − 1) +
n1−2∑

i=n−l
Δy(i) = Δy(n1 − 1)(ξ − n1 + 1) +

n1−2∑

i=n−l
Δy(i)

≤ B(n∗)

[

(ξ − n1 + 1)P(n1 − 1) +
n1−2∑

i=n−l
P(i)

]

= B(n∗)

[
n1−1∑

i=n−l
P(i) − (n1 − ξ)P(n1 − 1)

]

≤ B(n∗)

[
n1−1∑

i=n−k
P(i) − (n1 − ξ)P(n1 − 1)

]

,

(2.18)

which shows that (2.17) holds.
Substituting (2.17) into (2.4), it is easy to get

Δy(n) ≤ B(n∗)P(n)

[
n1−1∑

i=n−k
P(i) − (n1 − ξ)P(n1 − 1)

]

, for n ∈ Z(n1 − 1, n∗ − 1). (2.19)

Let

β = c +
k + 2

2(k + 1)
, d =

n∗−1∑

n=n1

P(n) + (n1 − ξ)P(n1 − 1). (2.20)

There are two cases to consider.

Case 1 (d ≤ 1). We have by (2.6), (2.16), and (2.19)

y(n∗) = y(n1) +
n∗−1∑

n=n1

Δy(n) = (n1 − ξ)Δy(n1 − 1) +
n∗−1∑

n=n1

Δy(n)

≤ (n1 − ξ)P(n1 − 1)B(n∗)

[
n1−1∑

i=n1−k−1
P(i) − (n1 − ξ)P(n1 − 1)

]

+
n∗−1∑

n=n1

P(n)B(n∗)

[
n1−1∑

i=n−k
P(i) − (n1 − ξ)P(n1 − 1)

]

≤ B(n∗)

{

(n1 − ξ)P(n1 − 1)
[
β − (n1 − ξ)P(n1 − 1)

]

+
n∗−1∑

n=n1

P(n)

[

β −
n∑

i=n1

P(i) − (n1 − ξ)P(n1 − 1)

]}
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= B(n∗)

[

βd −
n∗−1∑

n=n1

P(n)
n∑

i=n1

P(i) − (n1 − ξ)P(n1 − 1)
n∗−1∑

n=n1

P(n) − (n1 − ξ)2P
2
(n1 − 1)

]

= B(n∗)

[

βd − 1
2
d2 − 1

2

(
n∗−1∑

n=n1

P
2
(n) + (n1 − ξ)2P

2
(n1 − 1)

)]

.

(2.21)

Since

n∗−1∑

n=n1

P
2
(n) + (n1 − ξ)2P

2
(n1 − 1) ≥ 1

n∗ − n1 + 1

[
n∗−1∑

n=n1

P(n) + (n1 − ξ)P(n1 − 1)

]2

=
1

n∗ − n1 + 1
d2 ≥ 1

k + 1
d2,

(2.22)

we have

y(n∗) ≤ B(n∗)
[
βd − 1

2
d2 − 1

2(k + 1)
d2
]
= B(n∗)

[
βd − k + 2

2(k + 1)
d2
]

≤ B(n∗)
(
β − k + 2

2(k + 1)

)
= cB(n∗).

(2.23)

Case 2 (d > 1). In this case, there exists n2 ∈ Z(n1, n
∗ − 1) such that

n∗−1∑

n=n2

P(n) ≤ 1,
n∗−1∑

n=n2−1
P(n) > 1. (2.24)

Therefore, we may choose a real number η ∈ (n2 − 1, n2] such that

n∗−1∑

n=n2

P(n) +
(
n2 − η

)
P(n2 − 1) = 1. (2.25)

Notice that

y(n∗) =

[

Δy(n1 − 1)(n1 − ξ) +
n2−2∑

n=n1

Δy(n) +
(
η − n2 + 1

)
Δy(n2 − 1)

]

+

[
(
n2 − η

)
Δy(n2 − 1) +

n∗−1∑

n=n2

Δy(n)

]

.

(2.26)
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So, by (2.6), (2.15), (2.19), and (2.25), we have

y(n∗) ≤ B(n∗)

[

P(n1 − 1)(n1 − ξ) +
n2−2∑

n=n1

P(n) +
(
η − n2 + 1

)
P(n2 − 1)

]

×
[
n∗−1∑

n=n2

P(n) +
(
n2 − η

)
P(n2 − 1)

]

+ B(n∗)
(
n2 − η

)
P(n2 − 1)

×
[

n1−1∑

i=n2−k−1
P(i) − (n1 − ξ)P(n1 − 1)

]

+
n∗−1∑

n=n2

B(n∗)P(n)

[
n1−1∑

i=n−k
P(i) − (n1 − ξ)P(n1 − 1)

]

= B(n∗)

{
n∗−1∑

n=n2

P(n)

[
n2−1∑

i=n−k
P(i) − (

n2 − η
)
P(n2 − 1)

]

+
(
n2 − η

)
P(n2 − 1)

[
n2−1∑

i=n2−k−1
P(i) − (

n2 − η
)
P(n2 − 1)

]}

≤ B(n∗)

{
n∗−1∑

n=n2

P(n)

[

β −
n∑

i=n2

P(i) − (
n2 − η

)
P(n2 − 1)

]

+
(
n2 − η

)
P(n2 − 1)

[
β − (

n2 − η
)
P(n2 − 1)

]}

≤ B(n∗)
(
β − 1

2
− 1
2(k + 1)

)
= cB(n∗).

(2.27)

The proof is completed by combining Cases 1 and 2.

Proof of Theorem 1.4. By Lemma 2.1, (1.9) implies that (2.6) holds with c = 1. For any ε ∈
(0,H), assume that Z(n0, n0 + 2k + 1) contains m = m(n0, k) impulsive points: n0 ≤ nl+1 <
nl+2 < · · · < nl+m ≤ n0 + 2k + 1. Set

β′ =
3
2
+

1
2(k + 1)

, δ =
ε

(
1 + β′

)2k . (2.28)

We will prove that φ ∈ Sδ implies that

|x(n)| = ∣∣x
(
n, n0, φ

)∣∣ < ε, for n ∈ Z(n0). (2.29)

To this end, we first prove that

|x(n)| < δ
(
1 + β′

)2k(< ε), for n ∈ Z(n0, n0 + 2k + 1). (2.30)
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If nl+1 = n0, then |x(nl+1 + 1)| = |x(n0) + I0(x(n0))| ≤ |x(n0)| < δ < ε. If nl+1 > n0, then, for
n ∈ Z(n0, nl+1), we claim that

|x(n)| < δ
(
1 + β′

)nl+1−n0 < ε. (2.31)

In fact,

|x(n0 + 1)| ≤ |x(n0)| +
∣
∣f(n0, xn0)

∣
∣ < δ + P(n0)δ ≤ δ

(
1 + β′

)
< ε,

|x(n0 + 2)| ≤ |x(n0 + 1)| + ∣∣f(n0 + 1, xn0+1)
∣∣

< δ
(
1 + β′

)
+ β′‖xn0+1‖ ≤ δ

(
1 + β′

)
+ β′δ

(
1 + β′

)

= δ
(
1 + β′

)2
< ε.

(2.32)

In general, we can obtain (2.31) by induction. And so |x(n)| < δ(1 + β′)nl+1−n0(< ε < H) for
either case with n ∈ Z(n0, nl+1). For n ∈ Z(nl+1 + 1, nl+2), we have

|x(nl+1 + 1)| ≤ |x(nl+1)| + |Il+1(x(nl+1))| ≤ |x(nl+1)| < δ
(
1 + β′

)nl+1−n0 ,

|x(nl+1 + 2)| ≤ |x(nl+1 + 1)| + ∣∣f(nl+1 + 1, xnl+1+1)
∣∣

< δ
(
1 + β′

)nl+1−n0 + β′‖xnl+1+1‖

≤ δ
(
1 + β′

)nl+1−n0 + β′δ
(
1 + β′

)nl+1−n0

= δ
(
1 + β′

)nl+1−n0+1 < ε.

(2.33)

And so

|x(n)| < δ
(
1 + β′

)nl+2−n0−1, for n ∈ Z(nl+1 + 1, nl+2), (2.34)

In general, we have

|x(n)| < δ
(
1 + β′

)nl+i+1−n0−1, for n ∈ Z(nl+i + 1, nl+i+1), i = 1, 2, . . . , m − 1. (2.35)

Now for n ∈ Z(nl+m + 1, n0 + 2k + 1),

|x(nl+m + 1)| ≤ |x(nl+m)| + |Il+m(x(nl+m))| ≤ |x(nl+m)| < δ
(
1 + β′

)nl+m−n0−1,

|x(nl+m + 2)| ≤ |x(nl+m + 1)| + ∣∣f(nl+m + 1, xnl+m+1)
∣∣

< δ
(
1 + β′

)nl+m−n0−1 + β′‖xnl+m+1‖

≤ δ
(
1 + β′

)nl+m−n0−1 + β′δ
(
1 + β′

)nl+m−n0−1

= δ
(
1 + β′

)nl+m−n0 < ε.

(2.36)
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And so

|x(n)| < δ
(
1 + β′

)2k−1
, for n ∈ Z(nl+m + 1, n0 + 2k + 1) (2.37)

which has proved that (2.30) holds. Now, we will prove that

|x(n)| < ε, for n ∈ Z(n0 + 2k + 2). (2.38)

Thus we only need to prove that

∣
∣y(n)

∣
∣ < ε, for n ∈ Z(n0 + 2k + 2). (2.39)

For any n∗ ∈ Z(n0 + 2k + 2) and B(n∗) < H, we claim that

∣∣y(n∗)
∣∣ ≤ B(n∗). (2.40)

In fact, we can assume that y(n∗) ≥ 0. The case where y(n∗) < 0 is similar and is omitted.
If y(n∗) ≤ y(n∗ − 1), by the definition of B(n∗), (2.40) holds. If y(n∗) > y(n∗ − 1), then by
Lemma 2.1 we have that (2.40) holds.

Since

B(n0 + 2k + 2) = max
{∣∣y(n)

∣∣ : n ∈ Z(−k, n0 + 2k + 1)
}
< ε < H, (2.41)

by (2.40) we have

∣∣y(n0 + 2k + 2)
∣∣ < ε. (2.42)

By repeatedly using (2.40)we get that (2.39) holds.
Combining (2.30) and (2.39), we find that (2.29) holds and the proof of Theorem 1.4 is

complete.

Proof of Theorem 1.6. In view of Theorem 1.4, we see that the zero solution of (1.1) is uniformly
stable. Therefore, for any n0 ∈ Z(0), there exists δ > 0 such that φ ∈ Sδ implies that

|x(n)| = ∣∣x
(
n, n0, φ

)∣∣ <
1
2
H, for n ∈ Z(n0). (2.43)

Next, we will prove that

lim
n→∞

x(n) = 0. (2.44)

There are two cases to consider.
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Case 1. {x(n)} is eventually positive, that is, there exists n1 ∈ Z(n0) such that x(n) > 0 for all
n ∈ Z(n1). Hence, by (1.7) and (1.8), we have Δx(n) ≤ 0 for n ∈ Z(n1 + k). That is, {x(n)}
is eventually nonincreasing and hence limn→∞x(n) ≥ 0. Thus, by (1.11) we see that (2.44)
holds. The case when {x(n)} is eventually negative is similar and will be omitted.

Case 2. {x(n)} is oscillatory in the sense that {x(n)} is neither eventually positive nor
eventually negative, so {y(n)} is also oscillatory. To prove (2.44), we only need to prove that

lim
n→∞

y(n) = 0. (2.45)

By the proof of Theorem 1.4, we have

∣
∣y(n)

∣
∣ <

1
2
H, for n ∈ Z(n0). (2.46)

Let

lim
n→∞

supy(n) = p, lim
n→∞

infy(n) = q, (2.47)

then q ≤ 0 ≤ p. It suffices to show that

p = q = 0. (2.48)

In fact, if (2.48) does not hold, we assume that p ≥ −q and p > 0. The case where p < −q
and q < 0 is similar and is omitted.

Let 0 < ε0 < ((1 − c)/2)p, where c < 1 is given in Lemma 2.1. Then there exists an
integer m0 ∈ Z(2k) such that

q − ε0 ≤ y(n) ≤ p + ε0, for n ∈ Z(m0). (2.49)

Since limn→∞ supy(n) = p > 0 and {y(n)} is oscillatory, there must exist an integer
m1 ∈ Z(m0 + 3k + 2) such that

y(m1) > p − ε0, y(m1) > y(m1 − 1). (2.50)

By Lemma 2.1 and (2.49) we have

p − ε0 < y(m1) =
∣∣y(m1)

∣∣ ≤ cB(m1) ≤ c
(
p + ε0

)
, for n ∈ Z(m0). (2.51)

Equations (2.49) and (2.51) imply that p − ε0 < c(p + ε0), which contradicts the fact that
ε0 < ((1 − c)/2)p; thus (2.48) holds and the proof is complete.
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3. Example

In this section we will give a result which guarantees that the upper bound 3/2 + 1/2(k + 1)
is best possible in Theorem 1.6.

Example 3.1. Consider the delay impulsive difference equation

Δx(n) + P(n)x(n − k) = 0, n ∈ Z(0), n /= (6k + 1)i,

Δx(ni) = bix(ni), i ∈ Z(0), ni = (6k + 1)i,
(3.1)

where bi = −1/(i + 2)2, i ∈ Z(0), k ∈ Z(1), and {P(n)} is a sequence of nonnegative real
numbers defined by

P(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, n ∈ Z((6k + 1)i, k + (6k + 1)i)
⋃

Z(3k + 2 + (6k + 1)i, 6k + (6k + 1)i),

1
k + 1

, n ∈ Ž(k + 1 + (6k + 1)i, 2k + (6k + 1)i)
⋃

Z(2k + 2 + (6k + 1)i, 3k + 1 + (6k + 1)i),

c, n = 2k + 1 + (6k + 1)i,

(3.2)

where i ∈ Z(0) and c > 0 is an undetermined constant. In view of Theorem 1.6, if

n∑

i=n−k
P(i)

∏

nj∈Z(i−k,i−1)

(
1 + bj

)−1 ≤ c +
k

k + 1
<

3
2
+

1
2(k + 1)

, for n ∈ Z(k), (3.3)

or equivalently

c <
k + 4

2(k + 1)
, (3.4)

then every solution of (3.1) tends to zero as n → ∞.

The following theorem shows that if (3.4) does not hold, then there is a solution of (3.1)
which does not tend to zero as n → ∞. This shows that the upper bound 3/2 + 1/2(k + 1)
cannot be improved.

Theorem 3.2. Assume that

c ≥ k + 4
2(k + 1)

. (3.5)

Then there exists a solution of (3.1) which does not tend to zero as n → ∞.
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Proof. Let {x(n)} be a solution of (3.1) with initial condition of the form

x(n) = ε, for n ∈ Z(−k, 0), (3.6)

where ε > 0 is a given constant. Then by (3.1) and the definition of {P(n)}, we have

x(n) = (1 + b0)ε, for n ∈ Z(1, k + 1),

Δx(n) = − 1
k + 1

(1 + b0)ε, for n ∈ Z(k + 1, 2k).
(3.7)

And hence

x(n) = (1 + b0)ε
(
2 − n

k + 1

)
, for n ∈ Z(k + 1, 2k + 1), (3.8)

x(2k + 2) = x(2k + 1) − cx(k + 1) = (1 + b0)ε
(

1
k + 1

− c

)
. (3.9)

By virtue of (3.1) and (3.8) we get

Δx(n) = −(1 + b0)ε
1

k + 1

(
2 − n − k

k + 1

)
, for n ∈ Z(2k + 2, 3k + 1). (3.10)

Summing up from 2k + 2 to 3k + 1 and using (3.9), we have

x(3k + 2) = x(2k + 2) − (1 + b0)ε
k + 1

3k+1∑

n=2k+2

(
2 − n − k

k + 1

)

= (1 + b0)ε
(

1
k + 1

− c

)
− (1 + b0)ε

k

2(k + 1)

= −(1 + b0)ε
(
c +

k − 2
2(k + 1)

)
def≡ (1 + b0)ε1.

(3.11)

Furthermore, we have, by the definition of {P(n)},

x(n) = (1 + b0)ε1, for n ∈ Z(3k + 2, 6k + 1). (3.12)

Define the sequence {εi} as follows:

ε0 = ε, εi+1 = −εi
(
c +

k − 2
2(k + 1)

)
, for i ∈ Z(0). (3.13)
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Then we have by (3.5)

|εi+1| = |εi|
∣
∣
∣
∣c +

k − 2
2(k + 1)

∣
∣
∣
∣ ≥ |εi|, for i ∈ Z(0), (3.14)

which implies that {|εi|} is a non-decreasing sequence and does not tend to zero as n → ∞.
Repeating the above argument, we find that, for n ∈ Z(3k + 2 + i(6k + 1), (i + 1)(6k +

1)), i ∈ Z(0),

x(n) = (1 + b0)(1 + b1) · · · (1 + bi)εi+1. (3.15)

By the definition of {bi}, we know that
∏n

i=0(1 + bi) � 0 as n → ∞, so x(n) � 0 as n → ∞.
The proof is complete.
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