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Some new oscillation criteria for the second-order neutral delay differential equation (r(t)z′(t))′ +
q(t)x(σ(t)) = 0, t ≥ t0 are established, where

∫∞
t0
(1/r(t))dt = ∞, z(t) = x(t) + p(t)x(τ(t)), 0 ≤ p(t) ≤

p0 < ∞, q(t) > 0. These oscillation criteria extend and improve some known results. An example is
considered to illustrate the main results.

1. Introduction

Neutral differential equations find numerous applications in natural science and technology.
For instance, they are frequently used for the study of distributed networks containing
lossless transmission lines; see Hale [1]. In recent years, many studies have been made on
the oscillatory behavior of solutions of neutral delay differential equations, and we refer to
the recent papers [2–23] and the references cited therein.

This paper is concernedwith the oscillatory behavior of the second-order neutral delay
differential equation

(
r(t)z′(t)

)′ + q(t)x(σ(t)) = 0, t ≥ t0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)).
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In what follows we assume that

(I1) p, q ∈ C([t0,∞), R), 0 ≤ p(t) ≤ p0 < ∞, q(t) > 0,

(I2) r ∈ C([t0,∞), R), r(t) > 0,
∫∞
t0
(1/r(t))dt = ∞,

(I3) τ, σ ∈ C([t0,∞), R), τ(t) ≤ t, σ(t) ≤ t, τ ′(t) = τ0 > 0, σ ′(t) > 0, limt→∞τ(t) =
limt→∞σ(t) = ∞, τ(σ(t)) = σ(τ(t)),where τ0 is a constant.

Some known results are established for (1.1) under the condition 0 ≤ p(t) < 1.
Grammatikopoulos et al. [6] obtained that if 0 ≤ p(t) ≤ 1, q(t) ≥ 0 and,

∫∞
t0
q(s)[1−p(s−σ)]ds =

∞, then the second-order neutral delay differential equation

[
y(t) + p(t)y(t − τ)

]′′ + q(t)y(t − σ) = 0 (1.2)

oscillates. In [13], by employing Riccati technique and averaging functions method, Ruan
established some general oscillation criteria for second-order neutral delay differential
equation

[
a(t)

(
x(t) + p(t)x(t − τ)

)′]′ + q(t)f(x(t − σ)) = 0. (1.3)

Xu and Meng [18] as well as Zhuang and Li [23] studied the oscillation of the second-order
neutral delay differential equation

[
r(t)

(
y(t) + p(t)y(τ(t))

)′]′ +
n∑

i=1

qi(t)fi
(
y(σi(t))

)
= 0. (1.4)

Motivated by [11], we will further the investigation and offer some more general new
oscillation criteria for (1.1), by employing a class of function Y, operator T, and the Riccati
technique and averaging technique.

Following [11], we say that a function φ = φ(t, s, l) belongs to the function class Y,
denoted by φ ∈ Y if φ ∈ C(E,R), where E = {(t, s, l) : t0 ≤ l ≤ s ≤ t < ∞}, which satisfies
φ(t, t, l) = 0, φ(t, l, l) = 0, and φ(t, s, l) > 0, for l < s < t, and has the partial derivative ∂φ/∂s
on E such that ∂φ/∂s is locally integrable with respect to s in E. By choosing the special
function φ, it is possible to derive several oscillation criteria for a wide range of differential
equations.

Define the operator T[·; l, t] by

T
[
g; l, t

]
=
∫ t

l

φ(t, s, l)g(s)ds, (1.5)

for t ≥ s ≥ l ≥ t0 and g ∈ C1[t0,∞). The function ϕ = ϕ(t, s, l) is defined by

∂φ(t, s, l)
∂s

= ϕ(t, s, l)φ(t, s, l). (1.6)
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It is easy to see that T[·; l, t] is a linear operator and that it satisfies

T
[
g ′; l, t

]
= −T[gϕ; l, t], for g(s) ∈ C1[t0,∞). (1.7)

2. Main Results

In this section, we give some new oscillation criteria for (1.1). We start with the following
oscillation criteria.

Theorem 2.1. If

∫∞

t0

Q(t)dt = ∞, (2.1)

where Q(t) := min{q(t), q(τ(t))}, then (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Then there exists t1 ≥ t0 such that x(t)/= 0, for
all t ≥ t1. Without loss of generality, we assume that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0,
for all t ≥ t1. From (1.1), we have

(
r(t)z′(t)

)′ = −q(t)x(σ(t)) < 0, t ≥ t1. (2.2)

Therefore r(t)z′(t) is a decreasing function. We claim that z′(t) > 0 for t ≥ t1. Otherwise, there
exists t2 ≥ t1 such that z′(t2) < 0. Then from (2.2)we obtain

r(t)z′(t) ≤ r(t2)z′(t2), t ≥ t2, (2.3)

and hence,

z(t) ≤ z(t2) −
[−r(t2)z′(t2)

]
∫ t

t2

ds
r(s)

. (2.4)

Taking t → ∞,we get z(t) → −∞, t → ∞. This contradiction proves that z′(t) > 0 for t ≥ t1.
Using definition of z(t) and applying (1.1), we get for sufficiently large t

(
r(t)z′(t)

)′ + q(t)x(σ(t)) + p0q(τ(t))x(σ(τ(t))) +
p0
τ ′(t)

(
r(τ(t))z′(τ(t))

)′ = 0, (2.5)

and thus,

(
r(t)z′(t)

)′ +Q(t)z(σ(t)) +
p0
τ ′(t)

(
r(τ(t))z′(τ(t))

)′ ≤ 0. (2.6)
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Integrating (2.6) from t3 (≥ t1) to t, we obtain

∫ t

t3

(
r(s)z′(s)

)′ds +
∫ t

t3

Q(s)z(σ(s))ds + p0

∫ t

t3

1
τ ′(s)

(
r(τ(s))z′(τ(s))

)′ds ≤ 0. (2.7)

Noting that τ ′(t) = τ0 > 0, we have

∫ t

t3

Q(s)z(σ(s))ds ≤ −
∫ t

t3

(
r(s)z′(s)

)′ds − p0

∫ t

t3

1

(τ ′(s))2
(
r(τ(s))z′(τ(s))

)′d(τ(s))

= −
∫ t

t3

(
r(s)z′(s)

)′ds − p0

τ20

∫ τ(t)

τ(t3)

(
r(u)z′(u)

)′du

= r(t3)z′(t3) − r(t)z′(t) +
p0

τ20
r(τ(t3))z′(τ(t3)) −

p0

τ20
r(τ(t))z′(τ(t)).

(2.8)

Since z′(t) > 0 for t ≥ t1,we can find a constant c > 0 such that z(σ(t)) ≥ c for t ≥ t3 ≥ t1. Then
from (2.8) and the fact that r(t)z′(t) is eventually decreasing, we have

∫∞

t3

Q(t)dt < ∞, (2.9)

which is a contradiction to (2.1). This completes the proof.

Theorem 2.2. Assume that σ(t) ≤ τ(t), and there exist functions φ ∈ Y and k ∈ C1([t0,∞), R+)
such that

lim sup
t→∞

T

[

k(s)Q(s) −
(
1 +

(
p0/τ0

))(
ϕ + (k′(s)/k(s))

)2

4
r(σ(s))k(s)

σ ′(s)
; l, t

]

> 0, (2.10)

whereQ(t) is defined as in Theorem 2.1, the operator T is defined by (1.5), and ϕ = ϕ(t, s, l) is defined
by (1.6). Then every solution x of (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Then there exists t1 ≥ t0 such that x(t)/= 0 for
all t ≥ t1. Without loss of generality, we assume that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0, for
all t ≥ t1. Define

ω(t) = k(t)
r(t)z′(t)
z(σ(t))

, t ≥ t1. (2.11)

Then w(t) > 0 and

ω′(t) = k′(t)
r(t)z′(t)
z(σ(t))

+ k(t)
(r(t)z′(t))′z(σ(t)) − r(t)z′(t)z′(σ(t))σ ′(t)

z2(σ(t))
. (2.12)
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By (2.2) and the fact z′(t) > 0, we get

z′(σ(t))
z′(t)

≥ r(t)
r(σ(t))

. (2.13)

From (2.11), (2.12), and (2.13), we have

ω′(t) ≤ k(t)
(r(t)z′(t))′

z(σ(t))
+
k′(t)
k(t)

ω(t) − σ ′(t)
r(σ(t))k(t)

ω2(t). (2.14)

Similarly, define

ν(t) = k(t)
r(τ(t))z′(τ(t))

z(σ(t))
, t ≥ t1. (2.15)

Then ν(t) > 0 and

ν′(t) = k′(t)
r(τ(t))z′(τ(t))

z(σ(t))
+ k(t)

(r(τ(t))z′(τ(t)))′z(σ(t)) − r(τ(t))z′(τ(t))z′(σ(t))σ ′(t)
z2(σ(t))

.

(2.16)

By (2.2) and the facting z′(t) > 0, noting that σ(t) ≤ τ(t),we get

z′(σ(t))
z′(τ(t))

≥ r(τ(t))
r(σ(t))

. (2.17)

From (2.15), (2.16), and (2.17), we have

ν′(t) ≤ k(t)
(r(τ(t))z′(τ(t)))′

z(σ(t))
+
k′(t)
k(t)

ν(t) − σ ′(t)
r(σ(t))k(t)

ν2(t). (2.18)

Therefore, from (2.14) and (2.18), we get

ω′(t) +
p0
τ0

ν′(t) ≤ k(t)
(r(t)z′(t))′

z(σ(t))
+
p0
τ0

k(t)
(r(τ(t))z′(τ(t)))′

z(σ(t))

+
k′(t)
k(t)

ω(t) − σ ′(t)
r(σ(t))k(t)

ω2(t) +
p0
τ0

k′(t)
k(t)

ν(t) − p0
τ0

σ ′(t)
r(σ(t))k(t)

ν2(t).

(2.19)

From (2.6), we obtain

ω′(t) +
p0
τ0

ν′(t) ≤ −k(t)Q(t) +
k′(t)
k(t)

ω(t) − σ ′(t)
r(σ(t))k(t)

ω2(t)

+
p0
τ0

k′(t)
k(t)

ν(t) − p0
τ0

σ ′(t)
r(σ(t))k(t)

ν2(t).

(2.20)
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Applying T[·; l, t] to (2.20), we get

T

[
ω′(s) +

p0
τ0

ν′(s); l, t
]

≤ T

[
−k(s)Q(s) +

k′(s)
k(s)

ω(s) − σ ′(s)
r(σ(s))k(s)

ω2(s) +
p0
τ0

k′(s)
k(s)

ν(s) − p0
τ0

σ ′(s)
r(σ(s))k(s)

ν2(s); l, t
]
.

(2.21)

By (1.7) and the above inequality, we obtain

T[k(s)Q(s); l, t]

≤ T

[(
ϕ +

k′(s)
k(s)

)
ω(s) − σ ′(s)

r(σ(s))k(s)
ω2(s) +

p0
τ0

(
ϕ +

k′(s)
k(s)

)
ν(s) − p0

τ0

σ ′(s)
r(σ(s))k(s)

ν2(s); l, t
]
.

(2.22)

Hence, from (2.22)we have

T[k(s)Q(s); l, t] ≤ T

[((
ϕ + (k′(s)/k(s))

)2

4
+

(
p0/τ0

)(
ϕ + (k′(s)/k(s))

)2

4

)
r(σ(s))k(s)

σ ′(s)
; l, t

]

,

(2.23)

that is,

T

[

k(s)Q(s) −
(
1 +

(
p0/τ0

))(
ϕ + (k′(s)/k(s))

)2

4
r(σ(s))k(s)

σ ′(s)
; l, t

]

≤ 0. (2.24)

Taking the super limit in the above inequality, we get

lim sup
t→∞

T

[

k(s)Q(s) −
(
1 +

(
p0/τ0

))(
ϕ + (k′(s)/k(s))

)2

4
r(σ(s))k(s)

σ ′(s)
; l, t

]

≤ 0, (2.25)

which contradicts (2.10). This completes the proof.

Remark 2.3. With the different choice of k and φ, Theorem 2.2 can be stated with different
conditions for oscillation of (1.1). For example, if we choose φ(t, s, l) = ρ(s)(t − s)σ(s − l)μ for
σ > 1/2, μ > 1/2, ρ ∈ C1([t0,∞), (0,∞)), then

ϕ(t, s, l) =
ρ′(s)
ρ(s)

+
μt − (

σ + μ
)
s + σl

(t − s)(s − l)
. (2.26)

By Theorem 2.2 we can obtain the oscillation criterion for (1.1), the details are left to the
reader.
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For an application, we give the following example to illustrate the main results.

Example 2.4. Consider the following equation:

(x(t) + 2x(t − π))′′ + x(t − π) = 0, t ≥ t0. (2.27)

Let r(t) = 1, p(t) = 2, q(t) = 1, and τ(t) = σ(t) = t − π, then by Theorem 2.1 every solution of
(2.27) oscillates; for example, x(t) = sin t is an oscillatory solution of (2.27).

Remark 2.5. The recent results cannot be applied in (2.27) since p(t) = 2 > 1; so our results are
new ones.
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