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Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential
systems in Banach space are established. The results are obtained by using fixed point theorems.
We also give an application for integropartial differential equations of fractional order.

1. Introduction

Let E and U be a pair of real Banach spaces with norms ‖ · ‖ and | · |, respectively. Let σ be a
linear closed and densely defined operator with D(σ) ⊆ E and let τ ⊆ X be a linear operator
withD(σ) and R(τ) ⊆ X, a Banach space. In this paper we study the boundary controllability
of nonlinear fractional integrodifferential systems in the form

dαx(t)
dtα

= σx(t) + f(t, x(t)) +
∫ t

0
g(t, s, x(s))ds, t ∈ J = [0, b],

τx(t) = B1u(t),

x(0) = x0,

(1.1)

where 0 < α ≤ 1 and B1 : U → X is a linear continuous operator, and the control function u
is given in L1(J,U), a Banach space of admissible control functions. The nonlinear operators
f : J × E → E and g : Δ × E → E are given and Δ : (t, s); 0 ≤ s ≤ t ≤ b.

Let A : E → E be the linear operator defined by

D(A) = {x ∈ D(σ); τx = 0}, Ax = {σx, for x ∈ D(A)}. (1.2)

The controllability of integrodifferential systems has been studied by many authors (see [1–
6]). This work may be regarded as a direct attempt to generalize the work in [7, 8].
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2. Main Result

Definition 2.1. System (1.1) is said to be controllable on the interval J if for every x0, x1 ∈ E
there exists a control u ∈ L2(J,U) such that x(·) of (1.1) satisfies x(b) = x1.

To establish the result, we need the following hypotheses.

(H1) D(σ) ⊂ D(τ) and the restriction of τ to D(σ) is continuous relative to the graph
norm of D(σ).

(H2) The operatorA is the infinitesimal generator of a compact semigroup T(t) and there
exists a constant M1 > 0 such that ‖T(t)‖ ≤ M1.

(H3) There exists a linear continuous operator B : U → E such that σB ∈
L(U,E), τ(Bu) = B1u, for all u ∈ U. Also Bu(t) is continuously differentiable and
‖Bu‖ ≤ C‖B1u‖ for all u ∈ U, where C is a constant.

(H4) For all t ∈ (0, b] and u ∈ U, T(t)Bu ∈ D(A). Moreover, there exists a positive
constant K1 > 0 such that ‖AT(t)‖ ≤ K1.

(H5) The nonlinear operators f(t, x(t)) and g(t, s, x(s)), for t, s ∈ J, satisfy

‖f(t, x(t))‖ ≤ L1, ‖g(t, s, x(s))‖ ≤ L2, (2.1)

where L1 ≥ 0 and L2 ≥ 0.

(H6) The linear operator W from L2(J,U) into E defined by

Wu = α

∫b

0

∫∞

0
θ(t − s)α−1ξα(θ)

[
T
(
(b − s)αθ

)
σ −AT

(
(b − s)αθ

)]
Bu(s)dθ ds, (2.2)

where ξα(θ) is a probability density function defined on (0,∞) (see [9, 10]) and
induces an invertible operator W̃−1 defined on L2(J,U)/kerW, and there exists a
positive constant M2 > 0 and M3 > 0 such that ‖B‖ ≤ M2 and ‖W̃−1‖ ≤ M3. Let
x(t) be the solution of (1.1). Then we define a function z(t) = x(t) − Bu(t) and from
our assumption we see that z(t) ∈ D(A). Hence (1.1) can be written in terms of A
and B as

dαx(t)
dtα

= Az(t) + σBu(t) + f(t, x(t)) +
∫ t

0
g(t, s, x(s))ds, t ∈ J,

x(t) = z(t) + Bu(t), x(0) = x0.

(2.3)

If u is continuously differentiable on [0, b], then z can be defined as a mild solution to be the
Cauchy problem

dαz(t)
dtα

= Az(t) + σBu(t) − B
dαu(t)
dtα

+ f(t, x(t)) +
∫ t

0
g(t, s, x(s))ds, t ∈ J,

z(0) = x0 − Bu(0),

(2.4)
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and the solution of (1.1) is given by

x(t) =
∫∞

0
ξα(θ)T(tαθ)[x0 − Bu(0)]dθ + Bu(t)

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s, x(s))dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[
σBu(s) − B

dαu(s)
dsα

]
dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[∫ s

0
g(s, τ, x(τ))dτ

]
dθ ds

(2.5)

(see [11–13]).
Since the differentiability of the control u represents an unrealistic and severe

requirement, it is necessary of the solution for the general inputs u ∈ L1(J,U). Integrating
(2.5) by parts, we get

x(t) =
∫∞

0
ξα(θ)T(tαθ)x0dθ+α

∫ t

0

∫∞

0
θ(t−s)α−1ξα(θ)

[
T
(
(t−s)αθ)σ−AT

(
(t−s)αθ)]Bu(s)dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s, x(s))dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds.

(2.6)

Thus (2.6) is well defined and it is called a mild solution of system (1.1).

Theorem 2.2. If hypotheses (H1)–(H6) are satisfied, then the boundary control fractional integrodif-
ferential system (1.1) is controllable on J .

Proof. Using assumption (H6), for an arbitrary function x(·) define the control

u(t) = W̃−1
{
x1 −

∫∞

0
ξα(θ)T(bαθ)x0dθ − α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
f(s, x(s))dθ ds

− α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)[∫ s

0
g(s, τ, x(τ))dτ

]
dθ ds

}
(t).

(2.7)
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We shall now show that, when using this control, the operator defined by

(Φx)(t) =
∫∞

0
ξα(θ)T(tαθ)x0dθ

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)

[
T
(
(t − s)αθ

)
σ −AT

(
(t − s)αθ

)]
Bu(s)dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s, x(s))dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

(2.8)

has a fixed point. This fixed point is then a solution of (1.1). Clearly, (Φx)(b) = x1, which
means that the control u steers the nonlinear fractional integrodifferential system from the
initial state x0 to x1 in time T , provided we can obtain a fixed point of the nonlinear operator
Φ.

Let Y = C(J,X) and Y0 = {x ∈ Y : ‖x(t)‖ ≤ r, for t ∈ J}, where the positive constant r
is given by

r = M1‖x0‖ + bα[M1‖σ‖ +K1]M2M3

[
‖x1‖ +M1‖x0‖ +M1L1b

α +M1L2b
α+1

]

+M1L1b
α +M1L2b

α+1.

(2.9)

Then Y0 is clearly a bounded, closed, and convex subset of Y . We define a mapping Φ : Y →
Y0 by

(Φx)(t) =
∫∞

0
ξα(θ)T(tαθ)x0dθ + α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)

[
T
(
(t − s)αθ

)
σ −AT

(
(t − s)αθ

)]
BW̃−1

×
{
x1 −

∫∞

0
ξα(θ)T(bαθ)x0dθ − α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
f(s, x(s))dθ ds

− α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

}
(s)dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s, x(s))dθ ds

+ α

∫ t

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[∫ s

0
g(s, τ, x(τ))dτ

]
dθ ds.

(2.10)
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Consider

‖(Φx)(t)‖

≤
∥∥∥∥
∫∞

0
ξα(θ)T(tαθ)x0dθ

∥∥∥∥+α
∫ t

0

∥∥∥∥
∫∞

0
θ(t−s)α−1ξα(θ)

[
T
(
(t − s)αθ

)
σ−AT

(
(t−s)αθ)]dθ

∥∥∥∥‖B‖

×
∥∥∥W̃−1

∥∥∥
{
‖x1‖ −

∥∥∥∥
∫∞

0
ξα(θ)T(bαθ)x0dθ

∥∥∥∥ − α

∫b

0

∥∥∥∥
∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
dθ

∥∥∥∥

× ∥∥f(s, x(s))∥∥ds − α

∫b

0

∥∥∥∥
∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
dθ

∥∥∥∥

×
∥∥∥∥
[∫ s

0
g(s, τ, x(τ))dτ

]∥∥∥∥ds
}
(s)ds

+ α

∫ t

0

∥∥∥∥
∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
dθ

∥∥∥∥
∥∥f(s, x(s))∥∥ds

+ α

∫ t

0

∥∥∥∥
∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
dθ

∥∥∥∥
∥∥∥∥
[∫ s

0
g(s, τ, x(τ))dτ

]∥∥∥∥ds

≤ M1‖x0‖ + bα[M1‖σ‖ +K1]M2M3

[
‖x1‖ +M1‖x0‖ +M1L1b

α +M1L2b
α+1

]

+M1L1b
α +M1L2b

α+1 ≤ r.

(2.11)

Since f and g are continuous and ‖(Φx)(t)‖ ≤ r, it follows thatΦ is also continuous and maps
Y0 into itself. Moreover, Φmaps Y0 into precompact subset of Y0. To prove this, we first show
that, for every fixed t ∈ J , the set Y0(t) = {(Φx)(t) : x ∈ Y0} is precompact in X. This is clear
for t = 0, since Y0(0) = {x0}. Let t > 0 be fixed and for 0 < ε < t define

(Φεx)(t) =
∫∞

0
ξα(θ)T(tαθ)x0dθ+α

∫ t−ε

0

∫∞

0
θ(t−s)α−1ξα(θ)

[
T
(
(t−s)αθ)σ−AT

(
(t−s)αθ)]BW̃−1

×
{
x1 −

∫∞

0
ξα(θ)T(bαθ)x0dθ − α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
f(s, x(s))dθ ds

− α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

}
(s)dθ ds

+ α

∫ t−ε

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s, x(s))dθ ds

+ α

∫ t−ε

0

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[∫ s

0
g(s, τ, x(τ))dτ

]
dθ ds.

(2.12)
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Since T(t) is compact for every t > 0, the set Yε(t) = {(Φεx)(t) : x ∈ Y0} is precompact
in X for every ε, 0 < ε < t. Furthermore, for x ∈ Y0, we have

‖(Φx)(t) − (Φεx)(t)‖

≤
∥∥∥∥∥α

∫ t

t−ε

∫∞

0
θ(t − s)α−1ξα(θ)

[
T
(
(t − s)αθ

)
σ −AT

(
(t − s)αθ

)]
BW̃−1

×
{
x1 −

∫∞

0
ξα(θ)T(bαθ)x0dθ − α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
f(s, x(s))dθ ds

−α
∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

}
(s)dθ ds

∥∥∥∥∥

+

∥∥∥∥∥α
∫ t

t−ε

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)
f(s, x(s))dθ ds

∥∥∥∥∥

+

∥∥∥∥∥α
∫ t

t−ε

∫∞

0
θ(t − s)α−1ξα(θ)T

(
(t − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

∥∥∥∥∥
≤ εα[M1‖σ‖ +K1]M2M3

[
‖x1‖ +M1‖x0‖ +M1L1b

α +M1L2b
α+1

]
+M1L1ε

α +M1L2ε
αb,

(2.13)

which implies that Y0(t) is totally bounded, that is, precompact in X. We want to show that
Φ(Y0) = {Φx : x ∈ Y0} is an equicontinuous family of functions. For that, let t2 > t1 > 0. Then
we have

‖(Φx)(t1) − (Φx)(t2)‖

≤
∥∥∥∥∥α

∫ t1

0

∫∞

0
θξα(θ)

[
(t1 − s)α−1

[
T
(
(t1 − s)αθ

)
σ −AT

(
(t1 − s)αθ

)]

− (t2 − s)α−1
[
T
(
(t2 − s)αθ

)
σ −AT

(
(t2 − s)αθ

)]

× BW̃−1
{
x1 −

∫∞

0
ξα(θ)T(bαθ)x0dθ − α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
f(s, x(s))dθ ds

−α
∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

}
(s)dθ ds

∥∥∥∥∥

+

∥∥∥∥∥α
∫ t2

t1

∫∞

0
θξα(θ)(t2 − s)α−1

[
T
(
(t2 − s)αθ

)
σ −AT

(
(t2 − s)αθ

)]
BW̃−1

×
{
x1 −

∫∞

0
ξα(θ)T(bαθ)x0dθ − α

∫b

0

∫∞

0
θ(b − s)α−1ξα(θ)T

(
(b − s)αθ

)
f(s, x(s))dθ ds

−α
∫b

0

∫∞

0
θ(b−s)α−1ξα(θ)T

(
(b−s)αθ)

[∫s

0
g(s, τ, x(τ))dτ

]
dθ ds

}
(s)dθ ds

∥∥∥∥∥
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+

∥∥∥∥∥α
∫ t1

0

∫∞

0
θξα(θ)

[
(t1 − s)α−1T

(
(t1 − s)αθ

) − (t2 − s)α−1T
(
(t2 − s)αθ

)]
f(s, x(s))dθ ds

∥∥∥∥∥

+

∥∥∥∥∥α
∫ t

0

∫∞

0
θξα(θ)

[
(t1−s)α−1 T

(
(t1−s)αθ

) − (t2−s)α−1T
(
(t2−s)αθ

)][∫s

0
g(s, τ, x(τ))dτ

]

× dθ ds

∥∥∥∥∥

+

∥∥∥∥∥α
∫ t2

t1

∫∞

0
θξα(θ)(t2 − s)α−1T

(
(t2 − s)αθ

)
f(s, x(s))dθ ds

∥∥∥∥∥

+

∥∥∥∥∥α
∫ t2

t1

∫∞

0
θξα(θ)(t2 − s)α−1 T

(
(t2 − s)αθ

)[∫ s

0
g(s, τ, x(τ))dτ

]
dθ ds

∥∥∥∥∥.
(2.14)

By using conditions (H2)–(H6), we get

‖(Φx)(t1) − (Φx)(t2)‖

≤ α

∫ t1

0

∥∥∥(t1 − s)α−1
[
T
(
(t1 − s)αθ

)
σ −AT

(
(t1 − s)αθ

)]

− (t2 − s)α−1
[
T
(
(t2 − s)αθ

)
σ −AT

(
(t2 − s)αθ

)]∥∥∥

×
[
M2M3

{
‖x1‖ +M1‖x0‖ +M1

(
L1b

α + L2b
α+1

)}]
ds

+ (t2 − t1)α[M1M2M3‖σ‖ +K1M2M3]
{
‖x1‖ +M1‖x0‖ +M1

(
L1b

α + L2b
α+1

)}

+ α

∫ t1

0

∥∥∥[(t1 − s)α−1T
(
(t1 − s)αθ

) − (t2 − s)α−1T
(
(t2 − s)αθ

)]∥∥∥

× [L1 + L2b
α]ds + (t2 − t1)αM1[L1 + L2b

α].
(2.15)

The compactness of T(t), t > 0, implies that T(t) is continuous in the uniform operator
topology for t > 0. Thus, the right hand side of (2.15) tends to zero as t2 → t1. So, Φ(Y0)
is an equicontinuous family of functions. Also, Φ(Y0) is bounded in Y , and so by the Arzela-
Ascoli theorem, Φ(Y0) is precompact. Hence, from the Schauder fixed point in Y0, any fixed
point of Φ is a mild solution of (1.1) on J satisfying

(Φx)(t) = x(t) ∈ X. (2.16)

Thus, system (1.1) is controllable on J .
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3. Application

Let Ω ⊂ Rn be bounded with smooth boundary Γ.
Consider the boundary control fractional integropartial differential system

∂αy(t, x)
∂tα

−Δy(t, x) = F
(
t, y(t, x)

)
+
∫ t

0
G
(
t, s, y(s, x)

)
ds, in Y = (0, b) ×Ω,

y(t, 0) = u(t, 0) on Σ = (0, b) × Γ, t ∈ [0, b],

y(0, x) = y0(x), for x ∈ Ω.

(3.1)

The above problem can be formulated as a boundary control problem of the form of (1.1) by
suitably taking the spaces E, X, U and the operators B1, σ, and τ as follows.

Let E = L2(Ω), X = H−1/2(Γ),U = L2(Γ), B1 = I, the identity operator andD(σ) = {y ∈
L2(Ω) : Δy ∈ L2(Ω)}, σ = Δ. The operator τ is the trace operator such that τy = y|Γ is well
defined and belongs to H−1/2(Γ) for each y ∈ D(σ) and the operator A is given by A = Δ,
D(A) = H1

0(Ω) ∪H2(Ω)whereHk(Ω),Hβ(Ω), andH1
0(Ω) are usual Sobolev spaces onΩ, Γ.

We define the linear operator B : L2(Γ) → L2(Ω) by Bu = wu wherewu is the unique solution
to the Dirichlet boundary value problem

Δwu = 0 in Ω,

wu = u in Γ.
(3.2)

We also introduce the nonlinear operator defined by

f(t, x(t)) = F
(
t, y(t, x)

)
, g(t, s, x(s)) = G

(
t, s, y(s, x)

)
. (3.3)

Choose b and other constants such that conditions (H1)–(H6) are satisfied. Consequently
Theorem 2.2 can be applied for (3.1), so (3.1) is controllable on [0, b].
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