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This paper studies the problem of stabilization with optimal performance for dissipative DIHS
(discrete-time impulsive hybrid systems). By using Lyapunov function method, conditions are
derived under which the DIHS with zero inputs is GUAS (globally uniformly asymptotically
stable). These GUAS results are used to design feedback control law such that a dissipative DIHS is
asymptotically stabilized and the value of a hybrid performance functional can be minimized. For
the case of linear DIHSwith a quadratic supply rate and a quadratic storage function, sufficient and
necessary conditions of dissipativity are expressed in matrix inequalities. And the corresponding
conditions of optimal quadratic hybrid performance are established. Finally, one example is given
to illustrate the results.

1. Introduction

In many engineering problems, it is needed to consider the energy of systems. The energy of
a controlled system is often linked to the concept of dissipativity [1–4]. A dissipative system
here is one for which the energy dissipated inside the dynamical system is less than the
energy supplied from the external source. The “energy” storage function of a dissipative
system which can be viewed as generalization of energy function is often used to be a
Lyapunov function, and thus the stability of a dissipative system can be investigated. It is
also known that a dissipative system may be unstable. If one hopes that a dissipative but
unstable system will be stable, it is necessary to use the technique of stabilization.

Feedback stabilization and dissipativity theory as well as the connected Lyapunov
stability theory has been studied for systems possessing continuous motions. Byrnes et
al. started to study the dissipativity and stabilization of continuous systems based on
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geometric system theory in [5, 6] and relevant references cited therein. Recently, notions
of classical dissipativity theory have been extended for CIHS (continuous-time impulsive
hybrid systems; see [7–16]), switched systems, discrete-time systems, and discontinuous
systems, see [17–24]. But these reports include very few results of feedback stabilization
for dissipative CIHS. The traditional methods used in the study of feedback stabilization
of dissipative continuous-time systems are those based on the LaSalle invariance principle
[25]. But it is difficult to use it to analyze the feedback stabilization of dissipative CIHS
because solutions of impulsive hybrid systems are no longer continuous. In [14], feedback
stabilization of dissipative CIHS is studied by using Lyapunov-like function, which is derived
from the “energy” storage function of a dissipative CIHS. However, to the best of our
knowledge, no dissipativity and feedback stabilization results have been previously reported
for DIHS (discrete-time impulsive hybrid systems, see [26–28]), in which the impulses occur
in discrete-time systems. Recently, in [29, 30] and the relevant references cited therein, the
optimal control issue is also reported for CIHS and the Pontryagin-type Maximum Principle
for CIHS is established. However, there are fewer results reported for stabilization with
optimal performance for dissipative CIHS or DIHS.

The objective of this paper is to study the stabilization with optimal performance
problem for dissipative DIHS in the spirit of [14, 20]. By using the Lyapunov function and
dwell time method, we propose some GUAS results for DIHS. Then these GUAS results are
used to derive the conditions under which a dissipative DIHS is asymptotically stabilized
and the hybrid performance functional is minimized.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and definitions. In Section 3, we give the main results for DIHS. Then, we specialize the
results to linear DIHS. Finally, in Section 4, we discuss one example to illustrate our results.

2. Preliminaries

Let Rn denote the n-dimensional Euclidean space. Let R+ = [0,+∞) and N = {0, 1, 2, . . .}. A
function φ : R+ → R+ is of class-K (φ ∈ K) if it is continuous, zero at zero and strictly
increasing. It is of class-K∞ if it is of class-K and is unbounded. For k1, k2 ∈ N, satisfying
k1 ≤ k2, denote N[k1, k2] = {k : k ∈ N, k1 ≤ k ≤ k2}, N(k1, k2) = {k : k ∈ N, k1 < k < k2},
and N(k1, k2] = {k : k ∈ N, k1 < k ≤ k2}. X > 0 (X ≥ 0), X ∈ R

n×n, means that matrix
X is a positive definite (nonnegative definite) and symmetric matrix. Let ‖ · ‖ stand for the
Euclidean norm in R

n.
Consider the following controlled DIHS:

x(k + 1) = f(x(k), uc(k)), k ∈ Ii � N(Ni, Ni+1),

Δx(k) = Ii(x(k), ud(k)), k = Ni,

yc(k) = hc(x(k), uc(k)), k ∈ Ii,

yd(k) = hd(x(k), ud(k)), k = Ni, i ∈ N,

(2.1)

where x(k) ∈ R
n is the state; yc(k) ∈ R

lc , yd(k) ∈ R
ld are the outputs; f ∈ C[Rn ×R

nc ,Rn], Ii ∈
C[Rn × R

nd ,Rn] are known continuous functions with f(0, 0) ≡ 0, Ii(0, 0) ≡ 0; hc : Rn × R
nc →

R
lc and satisfies hc(0, 0) = 0; hd : Rn × R

nd → R
ld and satisfies hd(0, 0) = 0; uc : R+ → Uc ⊂

R
nc , ud : R+ → Ud ⊂ R

nd are external control inputs with uc(0) = 0, ud(0) = 0, here U �
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(Uc,Ud) ⊂ R
nc ×R

nd is the class of admissible hybrid control inputs; Δx(k) = x(k + 1) − x(k);
and the impulsive sequence {Ni, i ∈ N} satisfie: Ni ∈ N and 0 ≤ N0 < N1 < · · · < Ni < · · · ,
with limi→∞Ni = ∞ and Δi+1 � Ni+1 − Ni, i ∈ N. Let x(k) � x(k, x0, uc, ud) be the solution
of system (2.1) with initial condition x(N0) = x0. For the impulsive sequence {Ni, i ∈ N}
and any k1, k2 ∈ N satisfying k1 ≤ k2, we denote S[k1, k2] the number of impulses during
N[k1, k2].

The hybrid performance functional of DIHS (2.1) is

Jkf (x0, uc, ud) =
S[k0,kf ]∑

i=0

Ni+1−1∑

k=Ni+1

Lc(x(k), uc(k)) +
S[k0,kf ]∑

i=0

Ld(x(Ni), ud(Ni)), (2.2)

where k0, kf ∈ Nwith k0 = N0, kf < ∞, or kf = ∞, and Lc, Ld are given and known functions.

Remark 2.1. (i) If there exists a positive integer k̂ such that Δk̂+1 = +∞, then (2.1) becomes
a normal discrete-time system with initial point (N0 = Nk̂, x0). In this paper, we study the
DIHS under the following assumption:

2 ≤ Δinf � inf
i∈N

{Δi} ≤ Δsup � sup
i∈N

{Δi} < ∞ (2.3)

(ii) By (2.3), we get the fact that for any k ∈ N(Ni,Ni+1], i ∈ N, k → ∞ if and only if
i → ∞.

Definition 2.2. A function (γc(uc, yc), γd(ud, yd)), where γc : Rmc ×Rlc → R, γd : Rmd ×Rld → R

with γc(0, 0) = 0 and γd(0, 0) = 0, is called a supply rate of (2.1) if γc(uc, yc) and γd(ud, yd)
are locally summable: for all input-output pairs (u, y) and any k1, k2 ∈ N with k1 ≤ k2, γc, γd
satisfy

∑
k1≤k<k2 |γc(uc(k), yc(k))| < ∞,

∑
k1≤k<k2 |γd(ud(k), yd(k))| < ∞.

Definition 2.3. DIHS (2.1) is said to be dissipative under supply rate (γc, γd) if there exists
a nonnegative continuous function V : Rn → R+ with V (0) = 0, called storage function,
such that for all (uc, ud) ∈ U the following dissipation inequality holds for any k̂, k ∈ N with
N0 ≤ k̂ ≤ k,

V (x(k)) ≤ V
(
x
(
k̂
))

+
k−1∑

i=S[k̂,k]

γc
(
uc

(
j
)
, yc

(
j
))

+
S[k̂,k]∑

i=0

Ni+1−1∑

j=Ni+1

γc
(
uc

(
j
)
, yc

(
j
))

+
S[k̂,k]∑

i=0

γd
(
ud(Ni), yd(Ni)

)
.

(2.4)

Lemma 2.4. DIHS (2.1) is dissipative under the supply rate (γc, γd) if and only if there exists a
nonnegative continuous function V with V (0) = 0 such that

ΔV (x(k)) ≤ γc
(
uc(k), yc(k)

)
, k ∈ Ii,

ΔV (x(k)) ≤ γd
(
ud(k), yd(k)

)
, k = Ni, i ∈ N,

(2.5)

where ΔV (x(k)) = V (x(k + 1)) − V (x(k)), k ∈ N.
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Proof. By using Definition 2.3, it is easy to get that (2.4) is equivalent to (2.5). The details are
omitted here.

2.1. Stabilization with Optimal Performance Problem

For the dissipative DIHS (2.1) with hybrid performance functional (2.2), the stabilization
with optimal performance problem is to design the state feedback control law (uc, ud) =
(φc(x), φd(x)), where φc : Rn → R

nc , φd : Rn → R
nd with φc(0) = 0, φd(0) = 0, such that

the closed-loop system

x(k + 1) = f
(
x(k), φc(x(k))

)
, k ∈ Ii = N(Ni,Ni+1),

Δx = Ii
(
x(k), φd(x(k))

)
, k = Ni, i ∈ N,

x(N0) = x0

(2.6)

is GUAS. Moreover, (uc(k), ud(k)) = (φc(x(k)), φd(x(k))) can minimize Jkf (x0, uc, ud).

3. Main Results

In this section, by using the Lyapunov function method, some GUAS criteria are established
for DIHS. Then, these stability criteria are used to study the optimal stabilization issue for a
dissipative DIHS with hybrid performance functional.

Theorem 3.1. Let (uc, ud) ≡ 0. Suppose (2.3) holds and furthermore assume that there exists a
function V ∈ C[Rn,R+] such that

(i) there existK∞-functions c1, c2 such that for any x ∈ R
n,

c1(‖x‖) ≤ V (x) ≤ c2(‖x‖); (3.1)

(ii) there exists a φ1 ∈ K satisfying φ1 < 1 and

V (x(k + 1)) − V (x(k)) ≤ −φ1(V (x(k))), k ∈ Ii, i ∈ N, (3.2)

where 1 is the identity function: 1(s) = s for any s ∈ R+;

(iii) for k = Ni, i ∈ N, there existsK-function φ2 such that

V (x(Ni + 1)) ≤ φ2(V (x(Ni))); (3.3)

(iv) there exists a sufficient large Δinf > 1, such that

(1 − φ1)
Δinf−1 ◦ φ2 < 1. (3.4)

Then, DIHS (2.1) with (uc, ud) ≡ 0 is GUAS.
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Proof. Denote φ � (1−φ1)
Δinf−1◦φ2. By condition (ii), we get that, for any k ∈ Ii = N(Ni,Ni+1),

V (x(k + 1)) ≤ (
1 − φ1

)k−Ni−1(V (x(Ni + 1))). (3.5)

It follows from (3.5) and condition (iii) that

V (x(Ni+1)) ≤
(
1 − φ1

)Ni+1−Ni−1(V (x(Ni + 1)))

≤ (
1 − φ1

)Ni+1−Ni−1(φ2 (V (x(Ni))) ≤ φ(V (x(Ni))), i ∈ N.
(3.6)

For any k ∈ N, there exists an i ∈ N such that k ∈ N(Ni,Ni+1]. By (3.6) and conditions (i)–(iii),
we have

‖x(k)‖ ≤ c−11
(
φ2 (V (x(Ni))) ≤ c−11

(
φ2(c2(‖x0‖))

)
. (3.7)

Hence, for any ε > 0, let 0 < δ < c−12 (φ−1
2 (c1(ε))); then, when ‖x0‖ ≤ δ, we get from (3.7) that

‖x(k)‖ < ε for any k ∈ N. Thus, the system (2.1) is GUS (globally uniformly stable).
Denote ai = V (x(Ni)), i ∈ N. It follows from (3.6) that

ai+1 ≤ φ(ai), i ∈ N. (3.8)

Since by condition (iv), φ(s) < s for any s > 0, thus we get that the sequence {ai, i ∈ N} is
monotone decreasing and limi→∞ai = a exists. If a > 0, then, a = limi→∞ai+1 = limi→∞φ(ai) =
φ(a) < a. This contradiction implies a = 0, that is, limi→∞ai = 0.

For any k ∈ N(Ni,Ni+1], by conditions (i)–(iii), we have ‖x(k)‖ ≤ c−11 (V (x(k))) ≤
c−11 (φ2(ai)). It follows from Remark 2.1(ii) that limk→∞‖x(k)‖ = 0. Hence, DIHS (2.1) with
(uc, ud) ≡ 0 is uniformly attractive and hence it is GUAS. The proof is complete.

Theorem 3.2. Let (uc, ud) ≡ 0 and suppose (2.3) holds and furthermore assume that there exists a
V (x) satisfying conditions (i) and (iii) of Theorem 3.1 and

(ii∗) there exists a φ1 ∈ K such that

V (x(k + 1)) − V (x(k)) ≤ φ1(V (x(k))), k ∈ Ii, i ∈ N; (3.9)

(iv∗) there exists a sufficient large Δsup > 1, such that

(
1 + φ1

)Δsup−1 ◦ φ2 < 1. (3.10)

Then, DIHS (2.1) with (uc, ud) ≡ 0 is GUAS.

Proof. By similar proof of Theorem 3.1 with φ � (1 + φ1)
Δsup−1 ◦ φ2, we obtain that the result

holds. The detailed is omitted here.

Corollary 3.3. Let (uc, ud) ≡ 0 and suppose (2.3) holds and assume that there exists a function
V ∈ C[Rn,R+] satisfying (3.1) and
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(i) there exists a constant a ∈ R satisfying a > −1 and

V (x(k + 1)) − V (x(k)) ≤ aV (x(k)), k ∈ Ii, i ∈ N; (3.11)

(ii) for k = Ni, i ∈ N, there exists a constant b > 0 such that

V (x(Ni + 1)) ≤ bV (x(Ni)); (3.12)

(iii) one of the following cases holds.

Case 1. There exists a sufficient large Δinf > 1, such that

(1 + a)Δinf−1b < 1 if − 1 < a < 0, b > 0. (3.13)

Case 2. There exists a sufficient large Δsup > 1, such that

(1 + a)Δsup−1b < 1 if a ≥ 0, 0 < b < 1. (3.14)

Then, DIHS (2.1)with (uc, ud) ≡ 0 is GUAS.

Proof. The result is the direct consequence of Theorems 3.1 and 3.2, where in Case 1, let φ1(s) =
−as, φ2(s) = bs, while in Case 2, let φ1(s) = as and φ2(s) = bs for any s ∈ R+.

Remark 3.4. Theorems 3.1 and 3.2 and Corollary 3.3 give two kinds of GUAS properties of
DIHS by using the method of Lyapunov function and maximal and minimal dwell times
Δsup,Δinf . For more detailed stability results of DIHS, please refer to the literature [26–28]
and relevant references cited therein.

Theorem 3.5. Suppose (2.3) holds and assume that under the given supply rate (γc, γd), DIHS (2.1)
is dissipative with a storage function V (x) satisfying (3.1), and that there exist functions φc : Rn →
R

nc and φd : Rn → R
nd with φc(0) = 0 andφd(0) = 0, such that

(i) there exist φ1, φ2 ∈ K with φ1 < 1 satisfying (3.4) and

γc
(
φc(x(k)), yc(k)

) ≤ −φ1(V (x(k))), k ∈ Ii, (3.15)

γd
(
φd

(
x(Ni), yd(Ni)

)) ≤ (
φ2 − 1

)
(V (x(Ni))); (3.16)

(ii) the following equations and inequalities are satisfied:

Hc(x, uc)|uc=φc(x) = 0, k ∈ Ii, i ∈ N,

Hdi(x, ud)|ud=φd(x) = 0, k = Ni, i ∈ N,

Hc(x, uc) ≥ 0, ∀uc ∈ Uc,

Hdi(x, ud) ≥ 0, ∀ud ∈ Ud, i ∈ N,

(3.17)

whereHc(x, uc) � Lc(x, uc) − V (x) + V (f(x, uc)) and Hdi(x, ud) � Ld(x, ud) + V (x +
Ii(x, ud)) − V (x).
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Then, under (uc(k), ud(k)) = (φc(x(k)), φd(x(k))), k ∈ N, the closed-loop system (2.6) is
GUAS, and

Jkf
(
x0, φc(x), φd(x)

) ≤ V (x0). (3.18)

Specially, J∞(x0, φc(x), φd(x)) = V (x0).

Proof. Since system (2.1) is dissipative under the supply rate (γc, γd), then, for (uc, ud) =
(φc(x), φd(x)), we get

ΔV (x(K))|uc=φc(x) ≤ γc
(
φc(x(k)), yc(k)

)
, k ∈ Ii,

ΔV (x(Ni))|ud=φd(x) ≤ γd
(
φd(x(Ni)), yd(Ni)

)
, i ∈ N.

(3.19)

From condition (i) and (3.19), we derive that

ΔV (x(K))|uc=φc(x) ≤ −φ1(V (x(k))), k ∈ Ii,

V (x(Ni + 1))|ud=φd(x) ≤ φ2(V (x(Ni))), i ∈ N.
(3.20)

Thus, from (3.20) and Theorem 3.1, we obtain that the closed-loop system (2.6) is GUAS.
By condition (ii), for k ∈ N(Ni,Ni+1], i ∈ N, we get

Lc

(
x(k), φc(x(k))

)
= −ΔV (x(k)), k ∈ Ii,

Ld

(
x(k), φd(x(k))

)
= −ΔV (x(k)), k = Ni.

(3.21)

Denote xf = x(NS[k0,kf ]). From (3.21), we have

Jkf
(
x0, φc, φd

)
=

S[k0,kf ]∑

i=0

Ni+1−1∑

k=Ni+1

Lc(x(k), uc(k)) +
S[k0,kf ]∑

i=0

Ld(x(Ni), ud(Ni))

=
S[k0,kf ]∑

i=0

Ni+1−1∑

k=Ni+1

−ΔV (x(k)) −
S[k0,kf ]∑

i=0

ΔV (x(Ni))

= −
S[k0,kf ]∑

i=0

Ni+1−1∑

k=Ni+1

(V (x(Ni+1)) − V (x(Ni + 1)))

−
S[k0,kf ]∑

i=0
(V (x(Ni + 1)) − V (x(Ni)))

=
S[k0,kf ]∑

i=0
(V (x(Ni)) − V (x(Ni+1)))

= V (x0) − V
(
xf

) ≤ V (x0).

(3.22)
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Thus, from (3.22) condition (i), and the fact that the closed-loop system is GUAS, we obtain
that

Jkf
(
x0, φc, φd

) ≤ V (x0), J∞
(
x0, φc, φd

)
= V (x0). (3.23)

Now, we prove that (uc, ud) = (φc(x), φd(x)) minimizes Jkf (x0, uc, ud). From condition (ii),
we have

Lc(x(k), uc(k)) = −ΔV (x(k)) +Hc(x(k), uc(k)),

Ld(x(k), ud(k)) = −ΔV (x(k)) +Hdi(x(k), ud(k)).
(3.24)

Thus, using (3.24), (3.22), and Hc ≥ 0,Hdi ≥ 0, we have

Jkf (x0, uc,ud) =
S[k0,kf ]∑

i=0

Ni+1−1∑

k=Ni+1

(−ΔV (x(k)) +Hc(x(k), uc(k)))

+
S[k0,kf ]∑

i=0
(−ΔV (x(Ni)) +Hdi(x(Ni), ud(Ni)))

≥ V (x0) − V
(
xf

)
= Jkf

(
x0, φc(x), φd(x)

)
.

(3.25)

Hence, (3.18) holds and all the results hold.

Theorem 3.6. Suppose (2.3) holds and assume that under the supply rate (γc, γd), system (2.1) is
dissipative with a storage function V (x) satisfying (3.1), and that there exist functions φc, φd with
φc(0) = 0, φd(0) = 0, such that (ii) of Theorem 3.5 holds while (i) of Theorem 3.5 is replaced by the
following:

(i∗) there exist φ1, φ2 ∈ K with φ2 < 1 satisfying (3.10) and

γc
(
φc(x(k)), yc(k)

) ≤ φ1(V (x(k))), k ∈ Ii, (3.26)

γd
(
φd

(
x(Ni), yd(Ni)

)) ≤ (
φ2 − 1

)
(V (x(Ni))). (3.27)

Then, all results of Theorem 3.5 still hold.

Proof. By similar proof of Theorem 3.5 and using the result of Theorem 3.2, we obtain that all
results are true.

Remark 3.7. (i) For a dissipative DIHS (2.1) with supply rate (γc, γd) and “energy” storage
function V , if γc or γd is negative during some time interval or at some time instance, then it
implies that the “energy” of system will be decreasing during this period or at this instance.
These two kinds of dissipativity properties all help to achieve the stability for whole DIHS. In
Theorem 3.5, the negative supply rate γc leads to the decreasing of “energy” of system during
two consecutive impulses (see (3.15)) and thus it permits to some extend the increasing of
“energy” at impulsive instances (see (3.16))while the stability property of whole system will
be kept. On the other hand, in Theorem 3.6, the negative supply rate γd leads to the decreasing
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of “energy” of system at impulse instances (see (3.27)) and thus it permits to some extend
of increasing of “energy” during two consecutive impulses (see (3.26)) while the stability
property of whole system can still be guaranteed.

In the literature, if the stability property is derived from the dissipativity of system, it
often needs the condition of negative supply rate. But one can see from Theorems 3.5 and 3.6
that this condition is relaxed for DIHS.

(ii) By (3.17), if Hc(x, uc) and Hdi(x, ud) are continuously differential in uc and ud,
respectively, then, for i ∈ N,

∂Hc(x, uc)
∂uc

∣∣∣∣
uc=φc(x)

= 0,
Hdi(x, ud)

∂ud

∣∣∣∣
ud=φd(x)

= 0, (3.28)

which can be used to derive the hybrid state feedback control law (uc, ud) = (φc(x), φd(x)).
At the end of section, we specialize the results obtained to the case of linear DIHS with

a quadratic supply rate.
Consider the following linear DIHS:

x(k + 1) = Acx(k) + Bcuc(k), k ∈ Ii,

Δx(k) = (Ad − In)x(k) + Bdud(k), k = Ni,

yc(k) = Ccx(k) +Dcuc(k), k ∈ Ii,

yd(k) = Cdx(k) +Ddud(k), k = Ni, i ∈ N,

(3.29)

with the hybrid quadratic performance functional:

Jkf (x0, uc, ud) =
S[k0,kf ]∑

i=0

Ni+1−1∑

k=Ni+1

[
xT (k)Pcx(k) + uT

c (k)Tcuc(k)
]

+
S[k0,kf ]∑

i=0

[
x(Ni)TPdx(Ni) + uT

d(Ni)Tdud(Ni)
]
,

(3.30)

where Ac, Bc, Cc,Dc,Ad, Bd, Cd,Dd, Pc, Pd, Tc, and Td are matrices with appropriate dimen-
sions and Tc > 0 and Td > 0.

The quadratic supply rate (γc, γd) is given by

γc
(
uc, yc

)
= yc

TRcyc + 2yc
TScuc + uc

TQcuc,

γd
(
ud, yd

)
= yd

TRdyd + 2yd
TSdud + ud

TQdud,
(3.31)

where Rc, Sc,Qc, Rd, Sd, and Qd are matrices with appropriate dimensions and Rc, Rd,
Qc, and Qd are symmetric matrices.

Denote Xc � Qc + ScDc +Dc
TSc +Dc

TRcDc and Xd � Qd + SdDd +Dd
TSd +Dd

TRdDd.
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Theorem 3.8. Assume that Xc ≥ 0, Xd ≥ 0, and for (γc, γd), the linear DIHS (3.29) is dissipative
with storage function V (x) = xTXx, where X > 0, if and only if the following LMIs are satisfied:

Ψz �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−X − CT
zRzCz −CT

z (RzDz + Sz)
1
2
AT

zX 0

−(Sz +DT
zRz

)
Cz −Xz 2BT

zX
1
2
BT
zX

1
2
XAz 2XBz −X 0

0
1
2
XBz 0 −X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0, z = c, d. (3.32)

Moreover, if Kc = −(Tc + BT
c XBc)

−1BT
c XAc and Kd = −(Td + BT

dXBd)
−1BT

dXAd satisfy

Kc
TXcKc +Kc

T
(
Sc +Dc

TRc

)
Cc + Cc

T (Sc + RcDc)Kc + Cc
TRcCc − a ·X ≤ 0,

Kd
TXdKd +Kd

T
(
Sd +Dd

TRd

)
Cd + Cd

T (Sd + RdDd)Kd + Cd
TRdCd − (b − 1) ·X ≤ 0,

(3.33)

AT
cXAc + Pc −X −AT

cXBcKc = 0,

AT
dXAd + Pc −X −AT

dXBdKd = 0,
(3.34)

where a, b satisfy a > −1, b ≥ 0, and the condition (iii) of Corollary 3.3, then, the state feedback control
law

(uc, ud) = (Kcx,Kdx) (3.35)

can stabilize system (3.29), and minimizes Jkf (x0, uc, ud), that is,

Jtf (x0, Kcx,Kdx) ≤ xT
0Xx0 = J∞(x0, Kcx,Kdx). (3.36)

Proof. By (3.29), it is not difficult to get that

ΔV (x(k)) − γc
(
uc(k), yc(k)

)
=
(
xT , uT

c

)
Λc

(
xT , uT

c

)T
,

ΔV (x(k)) − γd
(
ud(k), yd(k)

)
=
(
xT , uT

d

)
Λd

(
xT , uT

d

)T
,

(3.37)

where for z = c, d, Λz =
(

Λz1 Λz2

ΛT
z2 Λz3

)
, and Λz1 = Az

TXAz − X − Cz
TRzCz, Λz2 = Az

TXBz −
Cz

T (RzDz + Sz), Λz3 = Bz
TXBz −Xz.

Thus, by Lemma 2.4, we get that system (3.29) is dissipative if and only if Λc ≤
0 and Λd ≤ 0. By Schur Complement Theorem [31], for z = c, d, it is not hard to get that
Λz ≤ 0 if and only if LMI Ψz ≤ 0 holds. Hence, we obtain that system (3.29) is dissipative if
and only if LMIs (3.32) Ψz ≤ 0, z = c, d, hold.
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Let uc(t) = Kcx(t) and (t) = Kdx(t), where Kc = −(Tc + BT
c XBc)

−1BT
c XAc and Kd =

−(Td + BT
d
XBd)

−1BT
d
XAd; then, it follows from (3.33) that for i ∈ N,

ΔV (x(k))|uc=Kcx
≤ γc

(
uc, yc(k)

)∣∣
uc=Kcx

≤ a · V (x(k)), k ∈ Ii,

ΔV (x(k)) ≤ γd
(
ud, yd

)∣∣
ud=Kdx

≤ (b − 1) · V (x(k)), k = Ni.
(3.38)

Thus, by Corollary 3.3, the closed-loop system given by (3.29) and (3.35) is GUAS.
Now, we show that (3.35) also minimizes Jkf (x0, uc, ud).
Denote: Lc(x, uc) � xT (k)Pc(k)x(k) + uT

c (k)Tc(k)uc(k) and Ld(x, ud) �
xT (k)Pd(k)x(k) + uT

d(k)Td(k)ud(k). Then, by (3.34), we obtain

Hc(x, uc) � Lc(x, uc) + V (Acx + Bcuc) − V (x)

=
(
x
uc

)T(
AT

cXAc + Pc −X AT
cXBc

BT
c XAc Tc + BT

c XBc

)(
x
uc

)

=
[(

Tc + BT
c XBc

)−1
BT
c XAcx + uc

]T(
Tc + BT

c XBc

)

·
[(

Tc + BT
c XBc

)−1
BT
c XAcx + uc

]
,

Hd(x, ud) � Ld(x, ud) + V (Adx + Bdud) − V (x)

=
[(

Td + BT
dXBd

)−1
BT
dXAdx + ud

]T(
Td + BT

dXBd

)

·
[(

Td + BT
dXBd

)−1
BT
dXAdx + ud

]
.

(3.39)

Hence, by Tc > 0, Td > 0, we get

Hc(x, uc) ≥ 0, uc ∈ Uc; Hd(x, ud) ≥ 0, ud ∈ Ud. (3.40)

Clearly, if uc = Kcx, ud = Kdx, then, by (3.39), we have

Hc(x, uc)|uc=Kcx
= 0, Hd(x, ud)|ud=Kdx

= 0. (3.41)

Then, by Theorem 3.5, the result of this theorem follows readily. The proof is complete.

Corollary 3.9. Assume that Xc > 0, Xd > 0, and there exists a matrix X > 0 satisfying LMI (3.32),
(3.34), and the following matrix inequalities:

Φz �

⎛

⎝
Φz1

(
μ
)

Φz2

ΦT
z2 Φz3

⎞

⎠ ≤ 0, z = c, d, (3.42)
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where Φz1 = CT
zRzCz − μX, Φz2 = (Kz + X−1

z (Sz +DT
zRz)Cz)

T , Φz3 = −X−1
z , and μ = a if z = c,

μ = b − 1 if z = d; and Kz = −(Tz + BT
zXBz)

−1BT
zXAz for z = c, d; and where constants a, b satisfy

the condition (iii) of Corollary 3.3.
Then, all the results of Theorem 3.8 still hold.

Proof. By Schur Complement Theorem [31] and Theorem 3.8, the result of this corollary
follows.

4. Examples

In this section, one example is solved to illustrate the obtained results.

Example 4.1. Consider DIHS in form of (3.29)where

Ac =

⎛
⎜⎜⎝

−0.5 0 0

0 −1 −0.5
−1 0 −0.5

⎞
⎟⎟⎠, Bc =

⎛
⎜⎜⎝

0.1

0.1

0.2

⎞
⎟⎟⎠, Cc =

⎛
⎜⎜⎝

1 0 1

0 0 0

1 1 0

⎞
⎟⎟⎠,

Ad =

⎛
⎜⎜⎝

0.1 0 0.1

0 0.1 0

0.1 −0.2 0.1

⎞
⎟⎟⎠, Bd =

⎛
⎜⎜⎝

0

1

−1

⎞
⎟⎟⎠, Cd =

⎛
⎜⎜⎝

1 −0.2155 −0.0812
0.0385 0.1 −0.9713
1.3851 0.8964 0.1

⎞
⎟⎟⎠,

Dc = 0, Dd = 0.

(4.1)

The matrices appeared in (3.31) and (3.30) are given by Qc = 4, Sc = 0, Rc = 0.1I3; Qd =
4, Sd = 0, Rd = −I3; Tc = 10, Td = 1 and

Pc =

⎛

⎝
7.6 3.8 3.8
3.8 4.4 1.4
3.8 1.4 2.4

⎞

⎠, Pd =

⎛

⎝
2.96 1.01 −0.04
1.01 0.98 0.01
−0.04 0.01 0.96

⎞

⎠. (4.2)

By solving (3.32), we obtain

X =

⎛

⎝
3.00 1.00 0.00
1.00 1.00 0.00
0.00 0.00 1.00

⎞

⎠. (4.3)

Thus, by Theorem 3.8, this system is dissipative under the quadratic supply rate. Moreover,
we see that Xc = 4 > 0 and Xd = 4 > 0. And by solving (3.42), we get a = 0.169, b = 0.32, and

Kc = (0.0396 0.0198 0.0198), Kd = (0 − 0.1 0). (4.4)

Thus, by (3.14) of Corollary 3.3, if Δsup satisfies Δsup < ln b−1/ ln(1 + a) = 7.291, that is,
2 ≤ Δsup ≤ 7, then, all the conditions of Corollary 3.9 are satisfied. Therefore, (uc, ud) =
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(Kcx,Kdx) given by (4.4) can stabilize the closed-loop system and minimizes Jkf (x0, uc, ud),
that is, if x0 = (0.1 1 − 0.5)T , then

Jkf (x0, Kcx,Kdx) ≤ xT
0Xx0 = 1.48 = J∞(x0, Kcx,Kdx). (4.5)

5. Conclusions

In this paper, by establishing the GUAS results for DIHS, we have obtained the conditions
under which a dissipative DIHS with a hybrid performance functional can be asymptotically
stabilized by a feedback control law and meantime the hybrid performance functional is
optimized. For the case of linear DIHS with a quadratic supply rate and a quadratic hybrid
performance functional, the corresponding sufficient conditions are changed into matrix
inequalities. One example verifies the theoretic results obtained.
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