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We consider the Bernstein polynomials on Zp and investigate some interesting properties of
Bernstein polynomials related to Stirling numbers and Bernoulli numbers.

1. Introduction

Let C[0, 1] denote the set of continuous function on [0, 1]. Then, Bernstein operator for f ∈
C[0, 1] is defined as
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)
Bk,n(x), (1.1)

for k, n ∈ Z, where Bk,n(x) = ( n
k )x

k(1−x)n−k is called Bernstein polynomial of degree n. Some
researchers have studied the Bernstein polynomials in the area of approximation theory (see
[1–6]).

Let p be a fixed prime number. Throughout this paper Zp, Qp, C, and Cp will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers,
the complex number field, and the completion of algebraic closure of Qp. Let UD(Zp) be the
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set of uniformly differentiable function on Zp. For f ∈ UD(Zp), the p-adic q-integral on Zp is
defined by

∫

Zp

f(x)dµ(x) = lim
N→∞

1
pN

pN−1∑

x=0

f(x) (1.2)

(see [4, 7–15]).
In the special case, if we set f(x) = xn in (1.2), we have

Bn =
∫

Zp

xndµ(x). (1.3)

In this paper, we consider Bernstein polynomials on Zp and we investigate some
interesting properties of Bernstein polynomials related to Stirling numbers and Bernoulli
numbers.

2. Bernstein Polynomials Related to Stirling Numbers and
Bernoulli Numbers

In this section, for f ∈ UD(Zp), we consider Bernstein type operator on Zp as follows:
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Bk(x), (2.1)

for n ∈ Z+, where Bk,n(x) = ( n
k )x

k(1 − x)n−k is called Bernstein polynomial of degree n. We
consider Newton’s forward difference operator as follows:

Δf(x) = f(x + 1) − f(x),

Δnf(x) =
n∑

k=0

(
n
k

)
(−1)n − kf(x + k) =

n∑

k=0

(
n
k

)
(−1)kf(x + n − k).

(2.2)

For x = 0,
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Then, we have
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From (2.4), we note that
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where
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The Stirling number of the first kind is defined by
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and the Stirling number of the second kind is also defined by
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By (2.5), (2.6), (2.7), and (2.8), we see that
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where Δn0m =
∑n

k=0(
n
k )(−1)k(n − k)m. Note that, for k ∈ Z+ and x ∈ [0, 1],
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(2.10)

Thus, we note that tke(1−x)txk/k! is the generating function of Bernstein polynomial. It is easy
to show that

1
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By (2.11), we obtain the following theorem.
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Theorem 2.1. For n, k ∈ Z+ with n ≥ k, one has
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where Bn are the nth Bernoulli numbers.

In [12], it is known that
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for i ∈ N. By (1.1) and (2.14), we see that
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for i ∈ N. By (2.15), we obtain the following theorem.

Theorem 2.2. For n, k ∈ Z+, and i ∈ N, one has
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From (2.13) and (2.14), we note that
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In [16], it is known that
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By (2.17), (2.18), and Theorem 2.2, we have
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m∑

k=0

k!
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From the definition of the Stirling numbers of the first kind, we drive that
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By (2.17), (2.19), and (2.20), we obtain the following theorem.

Theorem 2.3. For k, n ∈ Z+ and i ∈ N, one has
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By Theorems 2.2 and 2.3, we obtain the following corollary.

Corollary 2.4. For k ∈ N, one has

Bi(x) =
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where Bi are the ith Bernoulli numbers.
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