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We study the existence and uniqueness of mild solution of a class of nonlinear fractional
integrodifferential equations dqu(t)/dtq + Au(t) = f(t, u(t)) +

∫ t
0 a(t − s)g(s, u(s))ds, t ∈ [0, T],

u(0) = u0, in a Banach space X, where 0 < q < 1. New results are obtained by fixed point theorem.
An application of the abstract results is also given.

1. Introduction

An integrodifferential equation is an equation which involves both integrals and derivatives
of an unknown function. It arises in many fields like electronic, fluid dynamics, biological
models, and chemical kinetics. A well-known example is the equations of basic electric circuit
analysis. In recent years, the theory of various integrodifferential equations in Banach spaces
has been studied deeply due to their important values in sciences and technologies, andmany
significant results have been established (see, e.g., [1–11] and references therein).

On the other hand, many phenomena in Engineering, Physics, Economy, Chemistry,
Aerodynamics, and Electrodynamics of complex medium can be modeled by fractional
differential equations. During the past decades, such problem attracted many researchers
(see [1, 12–21] and references therein).

However, among the previous researches on the fractional differential equations, few
are concerned with mild solutions of the fractional integrodifferential equations as follows:

dqu(t)
dtq

+Au(t) = f(t, u(t)) +
∫ t

0
a(t − s)g(s, u(s))ds, t ∈ [0, T], u(0) = u0, (1.1)

where 0 < q < 1, and the fractional derivative is understood in the Caputo sense.
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In this paper, motivated by [1–27] (especially the estimating approaches given in [4, 6,
10, 24, 27]), we investigate the existence and uniqueness of mild solution of (1.1) in a Banach
space X: −A generates a compact semigroup S(·) of uniformly bounded linear operators on
a Banach space X. The function a(·) is real valued and locally integrable on [0,∞), and the
nonlinear maps f and g are defined on [0, T] × X into X. New existence and uniqueness
results are given. An example is given to show an application of the abstract results.

2. Preliminaries

In this paper, we set I = [0, T], a compact interval in R. We denote by X a Banach space with
norm ‖ · ‖. Let −A : D(A) → X be the infinitesimal generator of a compact semigroup S(·) of
uniformly bounded linear operators. Then there exists M ≥ 1 such that ‖S(t)‖ ≤ M for t ≥ 0.

According to [22, 23], a mild solution of (1.1) can be defined as follows.

Definition 2.1. A continuous function u : I → X satisfying the equation

u(t) = Q(t)u0 +
∫ t

0
R(t − s)

[
f(s, u(s)) +K(u)(s)

]
ds (2.1)

for t ∈ I is called a mild solution of (1.1), where

Q(t) =
∫∞

0
ξq(σ)S(tqσ)dσ,

R(t) = q

∫∞

0
σtq−1ξq(σ)S(tqσ)dσ,

K(u)(t) =
∫ t

0
a(t − s)g(s, u(s))ds,

(2.2)

and ξq is a probability density function defined on (0,∞) such that its Laplace transform is
given by

∫∞

0
e−σxξq(σ)dσ =

∞∑

j=0

(−x)j
Γ
(
1 + qj

) , 0 < q ≤ 1, x > 0. (2.3)

Remark 2.2. Noting that
∫∞
0 σξq(σ)dσ = 1 (cf., [23]), we can see that

‖R(t)‖ ≤ qMtq−1, t > 0. (2.4)

In this paper, we use ‖f‖p to denote the Lp norm of f whenever f ∈ Lp(0, T) for some
p with 1 ≤ p < ∞. C([0, T], X) denotes the Banach space of all continuous functions [0, T] →
X endowed with the sup-norm given by ‖u‖∞ := supt∈I‖u‖ for u ∈ C([0, T], X). Set aT :=
∫T
0 |a(s)|ds.

The following well-known theorem will be used later.
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Theorem 2.3 (Krasnosel’skii). Let Ω be a closed convex and nonempty subset of a Banach space X.
Let A,B be two operators such that

(i) Ax + By ∈ Ω whenever x, y ∈ Ω,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then there exists z ∈ Ω such that z = Az + Bz.

3. Main Results

We will require the following assumptions.

(H1) The function f : [0, T] ×X → X is continuous, and there exists L > 0 such that

‖f(t, u) − f(t, v)‖ ≤ L‖u − v‖, u, v ∈ C([0, T], X). (3.1)

(H2) The function Lq : I → R
+, 0 < q < 1, satisfies

Lq(t) = Mtq · (L + L aT ) ≤ ω < 1, t ∈ [0, T]. (3.2)

Theorem 3.1. Let −A be the infinitesimal generator of a strongly continuous semigroup {S(t)}t≥0
with ‖S(t)‖ ≤ M, t ≥ 0. If the maps f and g satisfy (H1), Lq(t) satisfies (H2), and

L ≤ γ[M · Tq · (1 + aT )]
−1, 0 < γ < 1, (3.3)

then (1.1) has a unique mild solution for every u0 ∈ X.

Proof. Define the mapping F : C([0, T], X) → C([0, T], X) by

(Fu)(t) = Q(t)u0 +
∫ t

0
R(t − s)

[
f(s, u(s)) +K(u)(s)

]
ds. (3.4)

Set supt∈[0,T]‖f(t, 0)‖ = M1, supt∈[0,T]‖g(t, 0)‖ = M2.
Choose r such that

r ≥ M

1 − γ
[Tq(M1 +M2 aT ) + ‖u0‖]. (3.5)

Let Br be the nonempty closed and convex set given by

Br = {u ∈ C([0, T], X) | ‖u‖∞ ≤ r}. (3.6)
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Then for u ∈ Br , we have

‖(Fu)(t)‖ ≤ ‖Q(t)u0‖ +
∫ t

0
‖R(t − s)‖ · ‖f(s, u(s)) +K(u)(s)‖ds

≤ M‖u0‖ + qM

∫ t

0
(t − s)q−1

[‖f(s, u(s))‖ + ‖K(u)(s)‖]ds

≤ M‖u0‖ + qM

∫ t

0
(t − s)q−1

[‖f(s, u(s)) − f(s, 0)‖ + ‖f(s, 0)‖]ds

+ qM

∫ t

0
(t − s)q−1‖K(u)(s)‖ds.

(3.7)

Noting that

‖K(u)(s)‖ =
∥∥∥∥

∫ s

0
a(s − τ)g(τ, u(τ))dτ

∥∥∥∥

≤
∫s

0
|a(s − τ)| · [‖g(τ, u(τ)) − g(τ, 0)‖ + ‖g(τ, 0)‖]dτ

≤ (Lr +M2)aT ,

(3.8)

we obtain

‖(Fu)(t)‖ ≤ M‖u0‖ +MTq[(Lr +M1) + (Lr +M2)aT ] ≤ r, (3.9)

for t ∈ [0, T]. Hence F : Br → Br .
Let u and v be two elements in C([0, T], X). Then

‖(Fu)(t) − (Fv)(t)‖

≤ qM

∫ t

0
(t − s)q−1

∥∥f(s, u(s)) − f(s, v(s)) +K(u)(s) −K(v)(s)
∥
∥ds

≤ qM

∫ t

0
(t − s)q−1

[
‖f(s, u(s)) − f(s, v(s))‖ +

∫ s

0
|a(s − τ)|‖g(τ, u(τ)) − g(τ, v(τ))‖dτ

]
ds

≤ Mtq · (L + LaT )‖u − v‖
= Lq(t)‖u − v‖.

(3.10)

So

‖(Fu)(t) − (Fv)(t)‖∞≤ Lq(T)‖u − v‖∞. (3.11)

The conclusion follows by the contraction mapping principle.
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We assume the following.

(H3) The function f : I × X → X is continuous, and there exists a positive function
μ(·) ∈ L

p

loc(I,R
+) (p > 1/q > 1) such that

‖f(t, u(t))‖ ≤ μ(t), the function s �−→ μ(s)

(t − s)1−q
belongs to L1([0, t],R+), (3.12)

and set Tp,q := max{Tq−1/p, Tq}.
Let −A be the infinitesimal generator of a compact semigroup S(·) of uniformly

bounded linear operators. Then there exists a constant M ≥ 1 such that ‖S(t)‖ ≤ M for
t ≥ 0.

Theorem 3.2. If the maps g and f satisfy (H1), (H3), respectively, and

L ≤ λ
(
M · Tp,q · aT

)−1
, 0 < λ < 1, (3.13)

then (1.1) has a mild solution for every u0 ∈ X.

Proof. Define

(Φu)(t) :=
∫ t

0
R(t − s)f(s, u(s))ds,

(Ψu)(t) := Q(t)u0 +
∫ t

0
R(t − s)K(u)(s)ds.

(3.14)

Choose r such that

r ≥ M

1 − λ

[
Tp,q

(
q ·Mp,q

∥∥μ
∥∥
L
p

loc(I,R
+) + aTM2

)
+ ‖u0‖

]
, (3.15)

where Mp,q := ((p − 1)/(pq − 1))(p−1)/p.
Let Br = {u ∈ C([0, T], X) | ‖u‖∞ ≤ r} be the closed convex and nonempty subset of

the space C([0, T], X).
Letting u, v ∈ Br , we have

‖(Φv)(t) + (Ψu)(t)‖ ≤
∫ t

0
‖R(t − s)f(s, v(s))‖ds + ‖Q(t)u0‖

+
∫ t

0
‖R(t − s)K(u)(s)‖ds

≤ M‖u0‖ + qM

∫ t

0
(t − s)q−1‖f(s, v(s))‖ds

+ qM

∫ t

0
(t − s)q−1‖K(u)(s)‖ds.

(3.16)

Set supt∈[0,T]‖g(t, 0)‖ = M2.
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According to the Hölder inequality, (H1), and (3.8), for t ∈ [0, T], we have

‖(Φv)(t) + (Ψu)(t)‖ ≤ M‖u0‖ + qM

∫ t

0
(t − s)q−1‖f(s, v(s))‖ds

+ qM

∫ t

0
(t − s)q−1‖K(u)(s)‖ds

≤ M‖u0‖ +MTp,q
[
qMp,q‖μ‖Lp

loc(I,R
+) + (Lr +M2)aT

]

≤ r.

(3.17)

Thus, (Φv) + (Ψu) ∈ Br .
For u, v ∈ C([0, T], X) and t ∈ [0, T], using (H1), we obtain

‖(Ψu)(t) − (Ψv)(t)‖ ≤ qM

∫ t

0
(t − s)q−1‖K(u)(s) −K(v)(s)‖ds

≤ qM

∫ t

0
(t − s)q−1 ·

∥∥∥∥

∫ s

0
a(s − τ)

[
g(τ, u(τ)) − g(τ, v(τ))

]
dτ

∥∥∥∥ds

≤ MTq · aT · L‖u − v‖∞
≤ λ‖u − v‖∞.

(3.18)

So, we know that Ψ is a contraction mapping.
Set U(t) = {(Φu)(t) | u ∈ Br}.
Fix t ∈ (0, T]. For 0 < ε < t, set

(Φεu)(t) =
∫ t−ε

0
R(t − s)f(s, u(s))ds

= qS(εqσ)
∫ t−ε

0
(t − s)q−1f(s, u(s))

∫∞

0
σξq(σ)S

(
(t − s)qσ − εqσ

)
dσ ds.

(3.19)

Since S(t) is compact for each t ∈ (0, T], the sets Uε(t) = {(Φεu)(t) | u ∈ Br} are relatively
compact in X for each ε, 0 < ε < t. Furthermore,

‖(Φu)(t) − (Φεu)(t)‖ ≤ qM

∫ t

t−ε
(t − s)q−1‖f(s, u(s))‖ds

≤ qM ·Mp,q · ‖μ‖Lp

loc(I,R
+) · εq−1/p,

(3.20)

which implies that U(t) is relatively compact in X.
Next, we prove that (Φu)(t) is equicontinuous.
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For 0 < t2 < t1 < T , we have

‖(Φu)(t1) − (Φu)(t2)‖

=

∥
∥
∥
∥∥

∫ t1

0
R(t1 − s)f(s, u(s))ds −

∫ t2

0
R(t2 − s)f(s, u(s))ds

∥
∥
∥
∥∥

=

∥
∥
∥
∥
∥

∫ t2

0
[R(t1 − s) − R(t2 − s)]f(s, u(s))ds +

∫ t1

t2

R(t1 − s)f(s, u(s))ds

∥
∥
∥
∥
∥

≤ q

∥
∥
∥
∥
∥

∫ t2

0

∫∞

0
σ
[
(t1 − s)q−1 − (t2 − s)q−1

]
ξq(σ)S

(
(t1 − s)qσ

)
f(s, u(s))dσ ds

∥
∥
∥
∥
∥

+
∫ t1

t2

‖R(t1 − s)‖‖f(s, u(s))‖ds

+ q

∥∥∥∥∥

∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

[
S
(
(t1 − s)qσ

) − S
(
(t2 − s)qσ

)]
f(s, u(s))dσ ds

∥∥∥∥∥

= I1 + I2 + I3.

(3.21)

By (H3), we get

I1 ≤ qM

∫ t2

0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣‖f(s, u(s))‖ds

≤ qM

∫ t2

0

∣∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣∣μ(s)ds.

(3.22)

In view of the assumption of μ(s), we see that I1 tends to 0 as t2 → t1, and one

I2 ≤ qM

∫ t1

t2

(t1 − s)q−1‖f(s, u(s))‖ds ≤ qM

∫ t1

t2

(t1 − s)q−1μ(s)ds. (3.23)

Clearly, the last term tends to 0 as t2 → t1. Hence I2 → 0 as t2 → t1, and

I3 = q

∥∥∥∥∥

∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

[
S
(
(t1 − s)qσ

) − S
(
(t2 − s)qσ

)]
f(s, u(s))dσ ds

∥∥∥∥∥

≤ q

∫ t2

0
(t2 − s)q−1μ(s)

∫∞

0
σξq(σ)‖S

(
(t1 − s)qσ

) − S
(
(t2 − s)qσ

)‖dσ ds.

(3.24)

The right-hand side of (3.24) tends to 0 as t2 → t1 as a consequence of the continuity of S(t)
in the uniform operator topology for t > 0 by the compactness of S(t). So I3 → 0 as t2 → t1.
Thus, ‖(Φu)(t1) − (Φu)(t2)‖ → 0, as t2 → t1, which is independent of u. Therefore Φ is
compact by the Arzela-Ascoli theorem.
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Next we show that Φ is continuous.
Let {un} be a sequence of Br such that un → u in Br . By the continuity of f on I × X,

we have

f(s, un(s)) −→ f(s, u(s)), n −→ ∞. (3.25)

Noting the continuity of f , we get

‖(Φun)(t) − (Φu)(t)‖ =

∥
∥
∥
∥
∥

∫ t

0
R(t − s)

[
f(s, un(s)) − f(s, u(s))

]
ds

∥
∥
∥
∥
∥

≤ qM

∫ t

0
(t − s)q−1‖f(s, un(s)) − f(s, u(s))‖ds

≤ MTq‖f(·, un(·)) − f(·, u(·))‖∞ −→ 0 asn −→ ∞.

(3.26)

Thus, we have

lim
n→∞

‖Φun −Φu‖∞ = 0. (3.27)

So Φ is continuous.
By Krasnosel’skii’s theorem, we have the conclusion of the theorem.

Remark 3.3. In Theorem 3.2, if we furthermore suppose that the hypothesis
(H4)

‖f(t, u(t)) − f(t, v(t))‖ ≤ L′‖u − v‖, L′ > 0, (3.28)

holds, then we can obtain the uniqueness of the mild solution in Theorem 3.2.

Actually, from what we have just proved, (1.1) has a mild solution u(t) and

u(t) = Q(t)u0 +
∫ t

0
R(t − s)

[
f(s, u(s)) +K(u)(s)

]
ds. (3.29)

Let v(t) be another mild solution of (1.1). Then

‖u(t) − v(t)‖ ≤
∫ t

0
‖R(t − s)‖(‖f(s, u(s)) − f(s, v(s))‖ + ‖K(u)(s) −K(v)(s)‖)ds

≤ qM

∫ t

0
(t − s)q−1

(
LaT + L′)‖u(s) − v(s)‖ds,

(3.30)

which implies by Gronwall’s inequality that (1.1) has a unique mild solution u(t).
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Example 3.4. Let X = L2([0, 1], ‖ · ‖2). Define

D(A) = H2(0, 1) ∩H1
0(0, 1),

Au = −u′′.
(3.31)

Then −A generates a compact, analytic semigroup S(·) of uniformly bounded linear
operators.

Let (t, s) ∈ [0, T] × [0, 1], ξ ∈ X, and let C, r0 be positive constants. We set

g(t, ξ)(s) = C sin|ξ(s)|,

f(t, ξ)(s) =
1√
t + r0

|ξ(s)|
1 + |ξ(s)| ,

a(t) = t,

(3.32)

q = 1/2, and p = 3.
It is not hard to see that g and f satisfy (H1), (H3), respectively, and if

C · Tp,q · T2

2
≤ λ < 1, (3.33)

then (1.1) has a unique mild solution by Theorem 3.2 and Remark 3.3.
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