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Yu. V. Nesterenko has proved that ζ(3) = b0 + a1|/|b1 + · · · + aν |/|bν + · · · , b0 = b1 = a2 = 2,
a1 = 1, b2 = 4, b4k+1 = 2k + 2, a4k+1 = k(k + 1), b4k+2 = 2k + 4, and a4k+2 = (k + 1)(k + 2) for k ∈ N;
b4k+3 = 2k + 3, a4k+3 = (k + 1)2, and b4k+4 = 2k + 2, a4k+4 = (k + 2)2 for k ∈ N0. His proof is based
on some properties of hypergeometric functions. We give here an elementary direct proof of this
result.

1. Foreword

Applications of difference equations to the Number Theory have a long history. For example,
one can find in this journal several articles connected with the mentioned applications (see
[1–8]). The interest in this area increases after Apéry’s discovery of irrationality of the number
ζ(3). This paper is inspired by Yu. V. Nesterenko’s work [9]. My goal is to give an elementary
direct proof of his expansion of the number ζ(3) in continued fraction. Let us consider a
difference equation

xν+1 − bν+1xν − aν+1xν−1 = 0, (1.1)

with ν ∈ N0. We denote by

{Pν(b0, a1, b1, . . . , aν, bν)}+∞ν=−1, {Qν(b0, a1, b1, . . . , aν, bν)}+∞ν=−1 (1.2)

the solutions of this equation with initial values

P−1 = 1, Q−1 = 0, P0(b0) = b0, Q0(b0) = 1. (1.3)
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Then

{
Pν(b0, a1, b1, . . . , aν, bν)
Qν(b0, a1, b1, . . . , aν, bν)

}+∞

ν=0
(1.4)

is a sequence of convergents of the continued fraction

b0 +
a1|
|b1 + · · · + aν|

|bν + . . . . (1.5)

Accoding to the famous result of R. Apéry [10],

ζ(3) = lim
ν→∞

vν

uν
, (1.6)

where {uν}+∞ν=0 and {vν}+∞ν=0 are solutions of difference equation

(ν + 1)3xν+1 −
(
34ν3 + 51ν2 + 27ν + 5

)
xν + ν3xν−1 = 0 (1.7)

with initial values u0 = 1, u1 = 5, v1 = 0, v1 = 6. The equality (1.6) is equivalent to the
equality

ζ(3) = b∨0 +
a∨
1

∣∣∣∣b∨1 +
a∨
2

∣∣∣∣b∨2 + · · · + a∨
ν |

|b∨ν
+ . . . (1.8)

with

b∨0 = 0, b∨1 = 5, a∨
1 = 6, b∨ν+1 = 34ν3 + 51ν2 + 27ν + 5, a∨

ν+1 = −ν6, (1.9)

where ν ∈ N. Nesterenko in [9] has offered the following expansion of the number 2ζ(3) in
continued fraction:

2ζ(3) = 2 +
1|
|2 +

2|
|4 +

1|
|3 +

4|
|2 ..., (1.10)

with

b0 = b1 = a2 = 2, a1 = 1, b2 = 4, (1.11)

b4k+1 = 2k + 2, a4k+1 = k(k + 1), b4k+2 = 2k + 4, a4k+2 = (k + 1)(k + 2) (1.12)

for k ∈ N;

b4k+3 = 2k + 3, a4k+3 = (k + 1)2, b4k+4 = 2k + 2, a4k+4 = (k + 2)2 (1.13)

for k ∈ N0.



Advances in Difference Equations 3

The halved convergents of continued fraction (1.10) compose a sequence containing
convergents of continued fraction (1.8). I give an elementary proof of Yu. V. Nesterenko
expansion in Section 2 .

2. Elementary Proof of Yu. V. Nesterenko Expansion

Instead of expansion (1.10) with (1.11), it is more convenient for us to prove the equivalent
expansion

ζ(3) = 1 +
1|
|4 +

4|
|4 +

1|
|3 +

4|
|2 . . . , (2.1)

with

b0 = 1, a1 = 1, b1 = a2 = b2 = 4. (2.2)

Furthermore, to avoid confusion in notations, we denote below aν, bν for the fraction (2.1) by
a∧
ν , b

∧
ν . Let P

∨
−1 = 1, Q∨

−1 = 0,

P∨
ν = Pν

(
b∨0 , a

∨
1 , b

∨
1 , . . . , a

∨
ν , b

∨
ν

)
, Q∨

ν = Qν

(
b∨0 , a

∨
1 , b

∨
1 , . . . , a

∨
ν , b

∨
ν

)
, (2.3)

where values a∨
ν , b

∨
ν are specified in (1.9), and ν ∈ N0. Then

Q∨
0 = 1, P∨

0 = b∨0 = 0, Q∨
1 = b∨1 = 5, P∨

1 = a∨
1 = 6, b∨2 = 117, a∨

2 = −1,

P∨
2 = b∨2P

∨
1 + a∨

2P
∨
0 = 702, Q∨

2 = b∨2Q
∨
1 + a∨

2Q
∨
0 = 584.

(2.4)

Let P∧
−1 = 1, Q∧

−1 = 0,

P∧
ν = Pν

(
b∧0 , a

∧
1 , b

∧
1 , . . . , a

∧
ν , b

∧
ν

)
, Q∧

ν = Qν

(
b∧0 , a

∧
1 , b

∧
1 , . . . , a

∧
ν , b

∧
ν

)
, (2.5)

where ν ∈ N0, a
∧
ν := aν, b∧ν := bν, and values aν, bν are specified in (2.2), (1.12), and (1.13).

We calculate first P∧
k
and Q∧

k
for k = 0, ..., 6.
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Since P∧
−1 = 1, Q∧

−1 = 0, it follows from (2.2) that

P∧
0 = b0 = 1, Q∧

0 = 1,

P∧
1 = b∧1P

∧
0 + a∧

1P
∧
−1 = 5, Q∧

1 = b∧1Q
∧
0 + a∧

1Q
∧
−1 = 4,

P∧
2 = b∧2P

∧
1 + a∧

2P
∧
0 = 24 = 4P∨

1 ,

(2.6)

Q∧
2 = b∧2Q1 + a∧

2Q0 = 20 = 4Q∨
1 , (2.7)

P∧
3 = b∧3P

∧
2 + a∧

3P
∧
1 = 77, Q∧

3 = b∧3Q
∧
2 + a∧

3Q
∧
1 = 64,

P∧
4 = b∧4P

∧
3 + a∧

4P
∧
2 = 250, Q∧

4 = b∧4Q
∧
3 + a∧

4Q
∧
2 = 208,

P∧
5 = b∧5P

∧
4 + a∧

5P
∧
3 = 1154, Q∧

5 = b∧5Q
∧
4 + a∧

5Q
∧
3 = 960,

(2.8)

P∧
6 = b∧6P

∧
5 + a∧

6P
∧
4 = 12 × 702 = 12P∨

2 , (2.9)

Q∧
6 = b∧6Q

∧
5 + a∧

6Q
∧
4 = 12 × 584 = 12Q∨

2 . (2.10)

Let k ∈ N, k ≥ 2,

P ∗
k =

P∧
4k−2

2(k + 1)!
, Q∗

k =
Q∧

4k−2
2(k + 1)!

. (2.11)

We want to to prove that if k ∈ N, then

P ∗
k = P∨

k , Q∗
k = Q∨

k . (2.12)

Note that if k = 1, 2, then (2.12) follows from (2.6)–(2.10). Therefore, we can consider only
k ∈ [3,+∞) ∩ Z. Let us consider the following difference equations:

xν+1 − b∨ν+1xν − a∨
ν+1xν−1 = 0, (2.13)

xν+1 − b∧ν+1xν − a∧
ν+1xν−1 = 0, (2.14)

with ν ∈ N0. Then xν = P∨
ν , xν = Q∨

ν ,with ν ∈ (−1,+∞)∩Z representing a fundamental system
of solutions of (2.13), and xν = P∧

ν , xν = Q∧
ν with ν ∈ (−1,+∞)∩Z representing a fundamental
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system of solutions of (2.14). Making use of standard interpretation of a difference equation
as a difference system, we rewrite the equalities (2.13) and (2.14), respectively in the form

Xν+1 = A∨
νXν, (2.15)

Xν+1 = A∧
νXν, (2.16)

where

Xν =

(
xν−1

xν

)
, (2.17)

A∨
ν =

(
0 1

a∨
1+ν b∨1+ν

)
, A∧

ν =

(
0 1

a∧
1+ν b∧1+ν

)
, (2.18)

and ν ∈ N0. Let

U∨
ν =

(
P∨
ν−1 Q∨

ν−1
P∨
ν Q∨

ν

)
, (2.19)

U∧
ν =

(
P∧
ν−1 Q∧

ν−1
P∧
ν Q∧

ν

)
, (2.20)

with ν ∈ N0 be fundamental matrices of solutions of systems (2.15) and (2.16), respectively.
Therefore,

U∧
ν = A∧

ν−1U
∧
ν−1, U∨

ν = A∨
ν−1U

∨
ν−1 (2.21)

for ν ∈ N. In view of (2.18) and (2.21), det(Uν) = −aν det(Uν−1), and therefore,

det
(
U∧

ν

)
= (−1)ν det(U∧

0
) ν∏
k=1

a∧
k = (−1)ν

ν∏
k=1

a∧
k. (2.22)

Hence

P∧
ν−1

Q∧
ν−1

− P∧
ν

Q∧
ν

= (−1)ν
ν∏

k=1
a∧
k

Q∧
νQ

∧
ν−1

(2.23)

(see [11]).
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Further, we have

U∨
0 =

(
1 0

0 1

)
, U∨

1 =

(
0 1

6 5

)
, U∨

2 =

(
6 5

702 584

)
,

U∧
0 =

(
1 0

0 1

)
, U∧

1 =

(
1 1

5 4

)
, U∧

2 =

(
5 4

24 20

)
,

U∧
3 =

(
24 20

77 64

)
, U∧

4 =

(
77 64

250 208

)
,

U∧
5 =

(
250 208

1154 960

)
, U∧

6 =

(
1154 960

8424 7008

)
,

(2.24)

(
U∨

1

)(
U∧

2
)−1 = 1

4

(−24 5

0 1

)
, (2.25)

(
U∨

2
)(
U∧

6
)−1 = 1

96

(−36 5

0 8

)
. (2.26)

Let k ∈ N, k ≥ 2. Then, in view of (2.20),

A∧
4k−6 =

(
0 1

a∧
4(k−2)+3 b∧4(k−2)+3

)
=

(
0 1

(k − 1)2 2k − 1

)
,

A∧
4k−5 =

(
0 1

a∧
4(k−2)+4 b∧4(k−2)+4

)
=

(
0 1

k2 2k − 2

)
,

A∧
4k−4 =

(
0 1

a∧
4(k−1)+1 b∧4(k−1)+1

)
=

(
0 1

k2 − k 2k

)
,

A∧
4k−3 =

(
0 1

a∧
4(k−1)+2 b∧4(k−1)+2

)
=

(
0 1

k2 + k 2k + 2

)
.

(2.27)

Let Yk = X4k−6 for k ∈ [2,+∞) ∩ Z. In view of (2.16) and (2.18),

Yk+1 = B∧
kYk, (2.28)

U∧
4k−2 = B∧

kU
∧
4k−6, (2.29)

where, as before, k ∈ [2,+∞) ∩ Z,

B∧
k = A∧

4k−3A
∧
4k−4A

∧
4k−5A4k−6 =

(
5k(k − 1)3 k

(
12k2 − 15k + 5

)
12k(k + 1)(k − 1)3 k(k + 1)

(
29k2 − 36k + 12

)
)
. (2.30)
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In view of (2.22), (2.2), (1.12), (1.13), (2.29), and (2.28), the matrix U∧
4k−6 is a fundamental

matrix of solutions of system (2.28). The substitution Zk = CkYk, with det(Ck)/= 0 for k ∈
[2,+∞) ∩ Z, transforms the system (2.28) into the system

Zk+1 = DkZk, (2.31)

with Dk = Ck+1B
∧
k
(Ck)

−1 for k ∈ [2,+∞) ∩ Z. We prove now that if we take k ∈ [3,+∞) ∩ Z,
and Ck = Hk−1, where

H1 =
1
4

(−24 5

0 1

)
, (2.32)

Hk =

(
12(k + 2)(k + 1)c(k + 1) −5(k + 2)c(k + 1)

0 −(k − 1)3c(k)

)
, (2.33)

with k ∈ [2,+∞)∩Z and c(k) = (−2(k − 1)3(k + 1)!)
−1
, then we obtain the equalityDk = A∨

k−1.
So, let k ∈ [3,+∞) ∩ Z. Then, in view of (2.33),

Hk−1 =

(
12(k + 1)kc(k) −5(k + 1)c(k)

0 −(k − 2)3c(k − 1)

)
. (2.34)

In view of(1.9)

b∨k = 34(k − 1)3 + 51(k − 1)2 + 27(k − 1) + 5 = 34k3 − 51k2 + 27k − 5, a∨
k = −(k − 1)6, (2.35)

where k ∈ [3,+∞) ∩ Z.Hence, in view of (2.19),

A∨
k−1 =

(
0 1

−(k − 1)6 34k3 − 51k2 + 27k − 5

)
. (2.36)

In view of (2.34)–(2.36),

A∨
k−1Hk−1 =

(
0 1

−(k − 1)6 34k3 − 51k2 + 27k − 5

)
×
(
12(k + 1)kc(k) −5(k + 1)c(k)

0 −(k − 2)3c(k − 1)

)

=

(
0 −(k − 2)3c(k − 1)

−(k − 1)612(k + 1)kc(k) (k − 1)65(k + 1)c(k) − b∨k(k − 2)6c(k − 1).

)
.

(2.37)



8 Advances in Difference Equations

In view of (2.30) and (2.33),

HkB
∧
k =

(
12(k + 2)(k + 1)c(k + 1) −5(k + 2)c(k + 1)

0 −(k − 1)3c(k)

)

×
(

5k(k − 1)3 k
(
12k2 − 15k + 5

)
12k(k + 1)(k − 1)3 k(k + 1)

(
29k2 − 36k + 12

)
)

=

(
0 (k + 2)c(k + 1)k(k + 1)

(−k2)
−c(k)12k(k + 1)(k − 1)6 −(k − 1)3c(k)k(k + 1)

(
29k2 − 36k + 12

)
)
.

(2.38)

Since

− (k + 2)(k + 1)c(k + 1)k3 = −c(k − 1)(k − 2)3,

− (k − 1)3c(k)k(k + 1)
(
29k2 − 36k + 12

)
− (k − 1)65(k + 1)c(k)

= −
(
34k3 − 51k2 + 27k − 5

)
(k − 1)3(k + 1)c(k)

= −
(
34k3 − 51k2 + 27k − 5

)
(k − 2)3c(k − 1),

(2.39)

it follows from (2.35), (2.37), and (2.38) that

A∨
k−1Hk−1 = HkB

∧
k (2.40)

for k ∈ [3,+∞) ∩ Z.We prove by induction now the following equality:

U∨
k = HkU

∧
4k−2, (2.41)

for any k ∈ N. In view of (2.25) and (2.32), the equality (2.41) holds for k = 1. In view of (2.26)
and (2.33), the equality (2.41) hold for k = 2. Let k ∈ [3,+∞) ∩ Z and (2.41) holds for k − 1.
Then, in view of (2.29), (2.40), and (2.21),

HkU
∧
4k−2 = HkBkU

∧
4k−6 = A∨

k−1Hk−1U∧
4k−6 = A∨

k−1U
∨
k−1 = U∨

k . (2.42)

So, the equality (2.41) holds for any k ∈ N. In view of (2.41),

P∨
k = (2(k + 1)!)−1P∧

4k−2, Q∨
k = (2(k + 1)!)−1Q∧

4k−2 (2.43)

for k ∈ [2,+∞) ∩ Z. Since

P∨
ν = (ν!)3vν, Q∨

ν = (ν!)3uν (2.44)
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for vν and uν in (1.6) and ν ∈ N0, it follows from (2.43) and (2.44), that

P∧
4k−2 = 2(k + 1)(k!)4vk, Q∧

4k−2 = 2(k + 1)(k!)4uk. (2.45)

As it is well known, for any ε > 0 there exist C1(ε) > 0 and C2(ε) > 0 such that

C1(ε)
(
1 +

√
2
)4k(1−ε)

< |uk| < C2(ε)
(
1 +

√
2
)4k(1+ε)

, (2.46)

C1(ε)
(
1 +

√
2
)4k(1−ε)

< |vk| < C2(ε)
(
1 +

√
2
)4k(1+ε)

, (2.47)

C1(ε)(
1 +

√
2
)8k(1+ε)

<

∣∣∣∣ζ(3) − vk

uk

∣∣∣∣ < C2(ε)(
1 +

√
2
)8k(1−ε) . (2.48)

We apply (2.23) now. Let k ∈ [2,+∞)∩Z. In view of (2.2), (1.12)–(1.13), and (2.45), if η = 1, 2, 3,
then

0 ≤
4k−2+η∏
κ=1

aκ ≤
4k+1∏
κ=1

aκ ≤ a4k−1a4ka4k+1 × k3(k + 1)3
4k−2∏
κ=1

aκ

= 4k3(k + 1)3
k∏

κ=2

a4κ−5a4κ−4a4κ−3a4κ−2

= 4k3(k + 1)3
k∏

κ=2
(κ − 1)2κ2(κ − 1)κκ(κ + 1) = 2(k!)8(k + 1)4,

(2.49)

4(k + 1)2(k!)8u2
k = (Q4k−2)2 < Q4k−3+ηQ4k−2+η. (2.50)

In view of (2.23), (2.50), and (2.49), if θ = 1, 2, 3

∣∣∣∣ P4k−2
Q4k−2

− P4k−2+θ
Q4k−1+θ

∣∣∣∣ ≤
θ∑

η=1

∣∣∣∣∣
P4k−3+η
Q4k−3+η

− P4k−2+η
Q4k−2+η

∣∣∣∣∣

≤
3∑

η=1

∣∣∣∣∣
P4k−3+η
Q4k−3+η

− P4k−2+η
Q4k−2+η

∣∣∣∣∣ ≤ 3
(k + 1)2

2u2
k

≤
(
1 +

√
2
)8k(−1+o(1))

,

(2.51)
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when k → +∞. In view of (2.45), (2.48), and (2.51), there exist C3(ε) > 0 and C4(ε) > 0 such
that

C3(ε)(
1 +

√
2
)8k(1+ε)

<

∣∣∣∣∣ζ(3) −
P∧
4k−2+θ
Q∧

4k−2

∣∣∣∣∣ <
C4(ε)(

1 +
√
2
)8k(1−ε) , (2.52)

where θ = 0, 1, 2, 3. So, the equality (2.1) is proved. In view of (2.23),

ζ(3) − P∧
0

Q∧
0
=

∞∑
ν=1

(−1)ν−1dν, (2.53)

where

0 < dν =

ν∏
k=1

a∧
k

(Q∧
νQν−1)

∧

.
(2.54)

Further, we have

dν+1

dν
=

aν+1 ∧Qν−1∧
b∧ν+1Q

∧
ν + a∧

ν+1Q
∧
ν−1

< 1. (2.55)

Hence, the series (2.53) is the series of Leibnitz type. Therefore, P∧
2k−1/Q

∧
2k−1 decreases, when

k increases in N, and P∧
2k/Q

∧
2k increases, when k increases in N.
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