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This paper concerns the oscillation of solutions to the second sublinear dynamic equation with
damping x22 () + q(H)x2° (t) + p(H)x*(c(t)) = 0, on an isolated time scale T which is unbounded
above. In 0 < a < 1, a is the quotient of odd positive integers. As an application, we get the
difference equation A%x(n) + n ¥ Ax(n +1) + [(1/n(In n)ﬂ) +b((-1)"/(n n)ﬂ)]x”‘(n +1) =0, where
y >0, f >0, and b is any real number, is oscillatory.

1. Introduction

During the past years, there has been an increasing interest in studying the oscillation
of solution of second-order damped dynamic equations on time scale which attempts to
harmonize the oscillation theory for continuousness and discreteness, to include them in
one comprehensive theory, and to eliminate obscurity from both. We refer the readers to the
papers [1-4] and the references cited therein.

In [5], Bohner et al. consider the second-order nonlinear dynamic equation with
damping

A8 (1) + ()X (1) + pt) (f o x(t)) =0, (1.1)

where p and g are real-valued, right-dense continuous functions on a time scale T C R, with
supT = oo. f : R — Ris continuously differentiable and satisfies f'(x) > 0 and x f(x) > 0 for
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x#0. When f(x) = x*, where 0 < a < 1, a > 0 is the quotient of odd positive integers, (1.1) is
the second-order sublinear dynamic equation with damping

X224 (1) + q(H)x™ (1) + p()x* (o (t)) = 0. (1.2)

When g(t) = 0, (1.2) is the second-order sublinear dynamic equation
x28(t) + p(H)x*(o(t)) = 0. (1.3)

When T = Ny, (1.3) is the second-order sublinear difference equation
A%x(n) + p(H)x*(n+1) = 0. (1.4)

In [6], under the assumption of T being an isolated time scale, we prove that, when p(t) is
allowed to take on negative values, ft°1° t*p(t)At = oo is sufficient for the oscillation of the
dynamic equation (1.3). As an application, we get that, when p(n) is allowed to take on
negative values, X.»7; n“p(n) = oo is sufficient for the oscillation of the dynamic equation
(1.4), which improves a result of Hooker and Patula [7, Theorem 4.1] and Mingarelli [8].

In this paper, we extend the result of [6] to dynamic equation (1.1). As an application,
we get that the difference equation with damping

1 e

A? TA 1
x(n) +n"Ax(n+1) + [n(lnn)ﬂ (Inn)’

]x“(n+1) =0, (1.5)

where 0 < a <1,y >0, >0, and b is any real number, is oscillatory.

For completeness (see [9, 10] for elementary results for the time scale calculus), we
recall some basic results for dynamic equations and the calculus on time scales. Let T be a
time scale (i.e., a closed nonempty subset of R) with sup T = co. The forward jump operator
is defined by

o(t) =inf{s e T:s>t}, (1.6)
and the backward jump operator is defined by
p(t) =sup{seT:s<t}, (1.7)

where sup @ = inf T, where @ denotes the empty set. If o(t) > ¢, we say t is right scattered,
while, if p(t) < t, we say t is left scattered. If o(t) = t, we say t is right dense, while, if p(t) = ¢
and t # inf T, we say ¢ is left-dense. Given a time scale interval [¢,d]; := {t e T: c <t < d} in
T the notation [c,d]"; denotes the interval [c,d] in case p(d) = d and denotes the interval
[¢,d)rincase p(d) < d. The graininess function y for a time scale T is defined by pu(t) = o(t)-t,
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and for any function f : T — R the notation f“(t) denotes f(o(t)). We say that x : T — Riis
differentiable at t € T provided

x2(F) = mw (1.8)

exists when o(t) = t (here, by s — ¢, it is understood that s approaches t in the time scale)
and when x is continuous at t and o (t) > ¢

x(0(t) = x(t)

=15

(1.9)

Note that if T = R, then the delta derivative is just the standard derivative, and when T = 7Z
the delta derivative is just the forward difference operator. Hence, our results contain the
discrete and continuous cases as special cases and generalize these results to arbitrary time
scales (e.g., the time scale g™ := {1,q,4%, ...} which is very important in quantum theory

(11]).

2. Lemmas
We will need the following second mean value theorem (see [10, Theorem 5.45]).

Lemma 2.1. Let h be a bounded function that is integrable on [a,bly. Let my and My be the
infimum and supremum, respectively, of the function H(t) := f; h(s)As on [a,b]y. Suppose that
g is nonincreasing with g(t) > 0 on [a, b]r. Then, there is some number A with mg < A < My such
that

b
f h(t)g(t) At = g(a)A. (2.1)

Lemmas 2.2 and 2.4 give two lower bounds of definite integrals on time scale,
respectively.

Lemma 2.2. Assume that T = {t;}7,, where 1 =ty < t; < --- < t;---. If there exists a real number
K > 1 such that (tiq —t;)/(ti —tis1) = K > 1, forall i > 1, then, for u(t) > 0,t > T, one has

L) u(o(T)
Jwente e 22

Remark 2.3. 1t is easy to know that, when T =N, K =1 and, when T = qNO, K=q.
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Proof. For i > 1, using Theorem 1.75 of [9], we have

i, u(o(s)) T u(o(ti))

fti u®’(s) As (ti —tic)u (tiq)

(i —ti)ut (k)
- u*(t;)
2.3)
_ (ti—ti) [utin) —u(t)]
- (tiv1 — ti)u™(t;)

_ u(ti+1) - u(t,-)
- Kur(t)

We consider the two cases u(t;) < u(tiy1) and u(t;) > u(tiy1). First, if u(t;) < u(tiyq), then we
have that

u(tin) ~u(t) | f"“f*” 1

u*(t;) 5= [ul‘“(tm) - ul‘“(ti)]. (2.4)

wry S° 1-a

On the other hand, if u(t;) > u(t;11), then

u(t) —u(tia) _ ("9 1 1 [, n
< = —[utty) —u )], 2.5
ety 5] s — (k) - (k) (2.5)
u(tﬁ»l)
which implies that
u(tin) —u(t;) 1 14 1-
> |ul(t1) - 1) | 2.
RS el G RO (2.6)

From (2.3)-(2.6) and the additivity of the integral, we have

L ut(s) 1 » y
L u*(o(s)) Asz K(1-a) [”1 (o(t)) —u' (G(T))]
(2.7)

u'"*(o(T))

> Ki-a) .

Lemma 2.4. Assume that T = {t;};2,, where 1 =ty < t; < --- < tj---, with tx — oo. Then, for
u(t) >0,t>T, one has

L) u(s) e (T) 2.8)
T us(s)u*(o(s)) 1-a




Advances in Difference Equations 5

Proof. For i > 1, using Theorem 1.75 of [9], we have

A C) RO N 1
Li(u) = J.til WAS = m - Lﬂ“—(t‘i) u(t,-). (29)

Setting v(t;) := 1/u”(t;), we have that

v(ti-1) —o(t)

Bifan) = ol/a(t;)

(2.10)

We consider the two possible cases v(ti-1) > v(t;) and v(ti-1) < v(t;). First, if v(ti-1) > v(t;),
we have that

v(ti-1) —o(t) S J‘v(t”) 1 4

vl/u(ti) o(th) gl/a 211)
_ & 1-1/apgy _ o 1-1/ay,
= 1_a[v (t) - v (t,,l)].
On the other hand, if v(t;_1) < v(t;), then
o(ti) —o(tia) _ J‘v(ti) Lds
) Jot 81 (2.12)
__“a 1-1/agp, \ _ 1-1/ayy.
= [ k) - o),
which implies that
v(ti-1) —ov(t) a 1-1/a 1-1/a
> —— ) - 1) |- .
Ul/a(ti) “1_ax [U (tl) (4 (t1—1)] (2 13)
Hence, from (2.10)-(2.13), we have that
) a 1-1/ag N _ o 1-1/ary.
Li(u) 2 7— [v ) - v (tl_l)]. (2.14)
From (2.9), (2.10), (2.14), and the additivity of the integral, we have
t A
(u®(s))"u(s) a [ 1-1/ 1-1/
— A >—— *(t) - (T
o) 2 Tog [0 O -0 )] )
1-a
N P B s _au(T)
= [u W -] 2 - N
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3. Main Theorem

Theorem 3.1. Assume that T = {to, t1,...,tk...}, wherel =ty <ty <--- < t;---. Suppose that

(i) there exists a real number K > 1 such that (ti1 —t;)/ (i —tic1) = K> 1, forall i > 1;
(ii) there exists a Cl , function a(t) such that for t € [T, c0),

a(t)y>0, a(t)>0, a*®(t) <0, qt)>0, (gt)a’(H))" <o,

- - (3.1)
f a®(o(s))p(s)As = J. iAS = oo.
T

r a(s)

Then, (1.1) is oscillatory.

Proof. For the sake of contradiction, assume that (1.1) is nonoscillatory. Then, without loss of
generality, there is a solution x(¢) of (1.1) and a T € T with x(¢) > 0, forall t € [T, 00);. Making
the substitution x(t) = a(t)u(t) in (1.1) and noticing that

x2(t) = a® (H)uC (t) + a(t)u? (1),
XA (1) = aA"(t)u(oz(t)> +a® (Hu (1), (3.2)
2281 = a2 OuC (1) + a® ) W (1)D + a® (D)ul () + a® (HulL (),
we get that

a (Hu () + a® () W (1) + a® (Oud () + a® B ub2 (t)
(3.3)
+q(t)a®’ (t)u<oz(t)> +q(t)a’ (Hu®’ (t) + a*(o(t))p(H)u(o(t)) = 0.

Multiplying both sides of (3.3) by 1/u%(o(t)), integrating from T to t, and using an integration
by parts formula, we get

f @ (u(s) , | f @ (5)(5) ()"

v u*(o(s)) T u*(o(s))

Cat(eut(s)  [auts)] (fals) ]
| o A“[ u(s) ]T J, [ieeg] wons -

As

L q(s)a®’ (s)u(o?(s)) ' q(s)a’(s)u’(s)
R R )

+ f a®(o(s))p(s)As = 0.
T
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Next, using the quotient rule and then Potzsche’s chain rule [9, Theorem 1.90] gives

f [a(s> * i (5)As = f at(s)us(s) o f a(s)[u*(s)1%u(s)

T Lu*(s) T u*(o(s)) T u*(s)u*(o(s))

= ft —aA(S)uA(S)As—aft —a(s) ()] f [un(s)]* 'dhAs  (3.5)
T

r u*(o(s)) ut(s)u(o(s))

< ft MAS,

r u*(o(s))

where we used the fact that u(s) := u(s) + hu(s)u®(s) = (1 — h)u(s) + hu®(s) > 0. Using this
last inequality in (3.4), we get

f B4 (u(s) f @ (5)(s) ()" | _

T u¥(o(s)) T ut(o(s))

As (3.6)

. a(tu®(t) ~ a(T)u”(T) +J‘t g(s)a®’ (s)u(o*(s))
u“(t) u*(T) u*(o(s))

" q(s)a’(s)u’ (s)

) M +L a*(0(s))p(s)As < 0.

Note that
fa o))t _[atewe]  ([ele] .
L 00 As-[ ) ]5=T L 2 (5) u’(s)As
_ a® (tu°(t) . a®(T)u°(T) (3.7)
u(t) u*(T)

- f a*t(s)u’(s) , I(uﬂ(s»%%s)ua(s) N

v ui(a(s) u*(s)u*(o(s))

Let us define A := a(T)u®(T)/u*(T), B := a®(T)u°(T)/u”(T). Then, we get from (3.6) and
(3.7) that

at(Bu’(t) (u*(s))*a® (s)u°(s)
T f (o)

(3.8)

 ahud a(s)a®" (s)u(0*(s))
ue (D Af wos) | o°

" q(s)a’(s)u(s)

r u%(o(s)) A“f a*(o(s))p(s)As <0,
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since a®(t) > 0, for t > T. So the first term of (3.8) is nonnegative. From (3.8), we get that

L (u(s))" a® (s)u(s) a(t)yu® (t)
P +L w@woE) ot T A

a®(o(s))p(s)As <0.
(3.9)

19©)a Ou(@®) (1 A (s) [

T u*(o(s)) T u*(o(s)) T

From a®2(t) < 0 and (q(f)a"(t))A < 0, using the second mean value theorem [10, Theorem
5.45] and Lemmas 2.2 and 2.4, we get that

T

u(s)u*(o(s)) - 1-a !
(3.10)
J‘t q(s)a’ (s)u™’ (s) As> _q(Ma°(T)u'"*(o(T))
v u*(o(s)) - K(1-a)

From a®(t) > 0 and q(t) > 0, the fifth term of (3.9) is nonnegative. From (3.9), and (3.10), we
get that

_aa®(T)u"(T) . a(hu(t)

B 1-a u*(t) A o)
3.11

qMa’(Mu'*(c(T) (' , As <0

- ) +La (o(s))p(s)As < 0.

Since f;o a“(o(s))p(s)As = oo, from (3.11), there exists T1 > T such that, for t > T7, we have

a(tyu® ()
@ Sh (3.12)

Dividing both sides of this last inequality by a(t) and integrating from T to t, we get, using
inequality (2.11) in [12], that

—[ula(t)—ula(n)]sf ”A(S)A < f L As (3.13)

1-a 1, U%(s) 5= 7, a(s)

Since f;? (1/a(s))As = o, we get ul™(t) < 0, for large t, which is a contradiction. Thus, (1.1)
is oscillatory:. [l
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When T =N, g(t) =0, and a(t) = p(t), it is easy to get that a® (t) = 1, a®2(t) = 0. So we
have the following corollary (see Corollary 2.4 of [6]). Corollary 3.2 shows that, with no sign
assumption on p(n), the condition

Zn”‘p(n) = o0 (3.14)

is sufficient for the oscillation of the difference equation (1.4).

Corollary 3.2. Assume that T = N. If
Zn"‘p(n) = oo, (3.15)
n=1

then (1.4) is oscillatory.
By using the idea in Theorem 3.1, we can also consider the differential equation

X't +qt)x'(t) +pt)x* () =0, O0<a<l, (3.16)

where p(t), q(t) € C([1, 00), R). It is easy to get the following.

Theorem 3.3. Suppose that there exists a function a(t) € C*([1, o), R) such that

a(t) >0, gt <0, at)+q(t)a(t) >0, (d(t) +q(t)a(t)) <0,

® 1 w (3.17)
—dt:f a“(t)p(t)dt = oo.
[ = awpw
Then, the differential equation (3.16) is oscillatory.
Example 3.4. Consider the sublinear difference equation
2 — 1 (_1)" a
Ax(n)+n"Ax(n+1) + +b x*(n+1)=0, (3.18)
n(ln n)ﬂ (In n)ﬂ
where 0 <a <1,$ >0,y >0,and b is any real number.
Take a(n) = (In(n - 1))?’%, n > 2. We have
a(n)>0,  Aa(n)=(Inn)’*-(In(n-1))"*>0, forn>2,
(3.19)

A%a(n) = (In(n + 1)P* = 2(Inn)?* + (In(n - 1))P/*.
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Leth(t) = (In t)ﬂ /% Then, we have h” (t) <0, for large t. So h(t) is concave for large t. Therefore,
we have

h(n+1) +h(n-1)

5 < h(n), (3.20)

for large n. That means A%a(n) < 0. It is easy to get that 322, a*(n + V)p(n) = Yoo, (1/n +
b(-1)") = wand g(n)a(n+1) = n’(In )P’ is nonincreasing for large n. So from Theorem 3.1,
(3.18) is oscillatory.

Example 3.5. Let T = g"°, g > 1, and consider the g-difference equation

1+b(-1)"

BB (1) + XA () + t1—+ﬂx“ (gt) =0, (3.21)

where 0 <a<1,0<pf <a,y>p/a, b>1isany real number. Take a(t) = (t/q)ﬁ/“. We have

Bla _ 1)p/a-1 pla _q pB/a-1
(g ) >0, a2 (t) = (g )(q

p/a 2 ) 1) /e <0,
(9-1)q (g-1)"gP/=

a®(t) =

2B/« -1 (1-p/a)n
— § — 22
fl (1t) At = q <1 q > 1(] = oo, (3 )

0

["a@pimar= S0+ b-0m -1 =

n=1

and q(t)a°(t) = t#/*7 is nonincreasing. So from Theorem 3.1, (3.21) is oscillatory.

Example 3.6. Let T = [1, o), and consider the differential equation

x"(t) + 77X () + <t(lr1t)ﬂ + Z:g;)ﬂ(t) =0, (3.23)

where 0 <a <1,y >0, >0, and b is any real number.
Take a(t) = (In t)ﬂ/“. It is easy to know that

a(t) >0, q() <0, dt)+qt)at)>0, (d(t)+q(t)at)) <0, forlarget,

f ﬁdt = oo, f:o a®(Hp(t)dt = f(i . bSint>dt . (324)

So from Theorem 3.3, (3.23) is oscillatory.
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