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1. Introduction

Let p be a fixed prime number. Throughout this paper Zp,Qp,C, and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Qp. Let vp be the normalized
exponential valuation of Cp with |p|p = p−vp(p) = 1/p. When one talks of q-extension, q is
variously considered as an indeterminate, a complex number q ∈ C or p-adic numbers q ∈ Cp.
If q ∈ C, one normally assumes |q| < 1. If q ∈ Cp, one normally assumes |1 − q|p < 1. In this
paper, we use the notations of q-number as follows (see [1–37]):

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

The ordinary Euler numbers are defined as (see [1–37])

∞∑

k=0

Ek
tk

k!
=

2
et + 1

, |t| < π, (1.2)
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where 2/(et + 1) is written as eEt when Ek is replaced by Ek. From the definition of Euler
number, we can derive

E0 = 1, (E + 1)n + En = 0, if n > 0, (1.3)

with the usual convention of replacing Ei by Ei.

Remark 1.1. The second kind Euler numbers are also defined as follows (see [25]):

sech t =
2

et + e−t
=

2et

e2t + 1
=

∞∑

k=0

E∗
k

tk

k!

(
|t| < π

2

)
. (1.4)

The Euler polynomials are also defined by

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
, |t| < π. (1.5)

Thus, we have

En(x) =
n∑

k=0

(
n

k

)

Ekx
n−k. (1.6)

In [7], q-Euler numbers, Ek,q, can be determined inductively by

E0,q = 1, q
(
qEq + 1

)k + Ek,q = 0 if k > 0, (1.7)

where Ek
q must be replaced by Ek,q, symbolically. The q-Euler polynomials Ek,q(x) are given

by (qxEq + [x]q)
k, that is,

Ek,q(x) =
(
qxEq + [x]q

)k
=

k∑

i=0

(
k

i

)

Ei,qq
ix[x]k−iq . (1.8)

Let d be a fixedodd positive integer. Then we have (see [7])

[2]q
[2]qd

[d]nq
d−1∑

a=0

qa(−1)aEn,q

(x + a

d

)
= En,q(x), for n ∈ Z+. (1.9)

We use (1.9) to get bounded p-adic q-Euler measures and finally take the Mellin transform to
define p-adic q-�-series which interpolate q-Euler numbers at negative integers.
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2. p-adic q-Euler Measures

Let d be a fixed odd positive integer, and let p be a fixed odd prime number. Define

X = Xd = lim
←−
N

(
Z

dpNZ

)
, X1 = Zp,

X∗ =
⋃

0<a<dp,
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(2.1)

where a ∈ Z lies in 0 ≤ a < dpN , (see [1–37]).

Theorem 2.1. Let μ(E)
k,q be given by

μ
(E)
k,q

(
a + dpNZp

)
=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)aEk,qdp

N

(
a

dpN

)
, for k ∈ Z+, N ∈ N. (2.2)

Then μ
(E)
k,q

extends to a Q(q)-valued measure on the compact open sets U ⊂ X. Note that μ(E)
0,q = μ−q,

where μ−q(a + dpNZp) = (−q)a/[dpN]−q is fermionic measure on X (see [7]).

Proof. It is sufficient to show that

p−1∑

i=0

μ
(E)
k,q

(
a + idpN + dpN+1

Zp

)
= μ

(E)
k,q

(
a + dpNZp

)
. (2.3)

By (1.9) and (2.2), we see that

p−1∑

i=0

μ
(E)
k,q

(
a + idpN + dpN+1

Zp

)

=

[
dpN+1]k

q
[
dpN+1

]
−q

p−1∑

i=0

qa+idp
N

(−1)a+idpNEk,qdp
N+1

(
a + idpN

dpN+1

)

=

[
dpN+1]k

q
[
dpN

]
−q

qa(−1)a
p−1∑

i=0

(
qdp

N
)i
(−1)iE

k,(qdpN )
p

(
a/dpN + i

p

)

=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)a

[2]qdpN

[2]qdpN+1

[
p
]k
qdp

N

p−1∑

i=0

(
qdp

N
)i
(−1)iE

k,(qdpN )
p

(
a/dpN + i

p

)
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=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)a

[2]qdpN

[2](qdpN )
p

[
p
]k
qdp

N

p−1∑

i=0

(
qdp

N
)i
(−1)iE

k,(qdpN )
p

(
a/dpN + i

p

)

=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)aEk,qdp

N

(
a

dpN

)
= μ

(E)
k,q

(
a + dpNZp

)
,

(2.4)

and we easily see that |μ(E)
k,q |p ≤ M for some constant M.

Let χ be a Dirichlet character with conductor d ∈ N with d ≡ 1(mod 2). Then we
define the generalized q-Euler numbers attached to χ as follows:

Ek,χ,q =
[2]q
[2]qd

[d]kq =
d−1∑

x=0

qx(−1)xχ(x)Ek,qd

(x
d

)
. (2.5)

The locally constant function χ onX can be integrated by the p-adic bounded q-Euler measure
μ
(E)
k,q

as follows:

∫

X

χ(x)dμ(E)
k,q (x) = lim

N→∞

∑

0≤x<dpN
χ(x)μ(E)

k,q

(
x + dpNZp

)

= lim
N→∞

[
dpN

]k
q

[
dpN

]
−q

∑

0≤a<d

∑

0≤x<pN
χ(a + dx)qa+dx(−1)a+dxEk,qdp

N

(
a + xd

dpN

)

=
[2]q
[2]qd

[d]kq
∑

0≤a<d
χ(a)(−1)aqa lim

N→∞

[
pN

]k
qd

[
pN

]
−qd

×
∑

0≤x<pN

(
qd
)x

(−1)xE
k,(qd)p

N

(
a/d + x

pN

)

=
[2]q
[2]qd

[d]kq
∑

0≤a<d
χ(a)(−1)aqaEk,qd

(a
d

)
= Ek,χ,q,

∫

pX

χ(x)dμ(E)
k,q (x) =

[
p
]n
q

[2]q
[2]qp

[2]qp

[2]qpd
[d]nqp

∑

0≤a<d
χ
(
pa

)
qpa(−1)aEn,qdp

(a
d

)

= χ
(
p
)[
p
]n
q

[2]q
[2]qp

{
[2]qp

[2]qpd
[d]nqp

∑

0≤a<d
χ(a)qpa(−1)aEn,qdp

(a
d

)}

= χ
(
p
)[
p
]n
q

[2]q
[2]qp

En,χ,qp .

(2.6)

Therefore, we obtain the following theorem.
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Theorem 2.2. Let χ be the Dirichlet character with conductor d ∈ N with d ≡ 1(mod 2). Then one
has

∫

X

χ(x)dμ(E)
k,q (x) = Ek,χ,q,

∫

pX

χ(x)dμ(E)
k,q (x) = χ

(
p
)[
p
]k
q

[2]q
[2]qp

Ek,χ,qp ,

∫

X∗
χ(x)dμ(E)

k,q (x) = Ek,χ,q − χ
(
p
)[
p
]k
q

[2]q
[2]qp

Ek,χ,qp .

(2.7)

Let k ∈ Z+. From (2.2), we note that

μ
(E)
k,q

(
a + dpNZp

)
=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)aEk,qdp

N

(
a

dpN

)

=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)a

k∑

i=0

(
k

i

)

Ei,qdp
N qai

[
a

dpN

]k−i

qdp
N

=

[
dpN

]k
q

[
dpN

]
−q
qa(−1)a

k∑

i=0

(
k

i

)

Ei,qdp
N qai

[a]k−iq
[
dpN

]k−i
q

=

(−q)a
[
dpN

]
−q
[a]kq +

[
dpN

]k
q

[
dpN

]
−q
qa(−1)a

k∑

i=1

(
k

i

)

Ei,qdp
N qai

[a]k−iq
[
dpN

]k−i
q

.

(2.8)

Thus, we have

dμ
(E)
k,q (x) = [x]kqdμ−q(x). (2.9)

Therefore, we obtain the following theorem and corollary.

Theorem 2.3. For k ≥ 0, one has

dμ
(E)
k,q (x) = [x]kqdμ−q(x). (2.10)

Corollary 2.4. For k ≥ 0, one has

∫

X

dμ
(E)
k,q (x) =

∫

X

[x]kqdμ−q(x) = Ek,q. (2.11)
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3. p-adic q-�-Series

In this section, we assume that q ∈ Cp with |1 − q|p < p−1/(p−1). Let ω denote the Teichmüller
character mod p. For x ∈ X∗, we set 〈x〉q = [x]q/ω(x). Note that |〈x〉q − 1|

p
< p−1/(p−1), and

〈x〉sq is defined by exp(s logp 〈x〉q), for |s|p ≤ 1. For s ∈ Zp,we define

�p,q
(
s, χ

)
=
∫

X∗
〈x〉−sq χ(x)dμ−q(x). (3.1)

Thus, we have

�p,q
(
−k, χωk

)
=
∫

X∗
[x]kqχ(x)dμ−q(x) =

∫

X∗
χ(x)dμ(E)

k,q (x)

= Ek,χ,q − χ
(
p
)[
p
]k
q

[2]q
[2]qp

Ek,χ,qp , for k ∈ Z+ .

(3.2)

Since |〈x〉q − 1|
p
< p−1/(p−1) for x ∈ X∗, we have 〈x〉pn ≡ 1(mod pn). Let k ≡ k

′
(mod pn(p −

1)). Then we have

�p,q
(
−k, χωk

)
≡ �p,q

(
−k′

, χωk
′)(

mod pn
)
. (3.3)

Therefore, we obtain the following theorem.

Theorem 3.1. Let k ≡ k′(mod (p − 1)pn). Then one has

Ek,χ,q −
[2]q
[2]qp

χ
(
p
)[
p
]k
qEk,χ,qp ≡ Ek′ ,χ,q −

[2]q
[2]qp

χ
(
p
)[
p
]k′

q Ek′ ,χ,qp
(
mod pn

)
. (3.4)
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