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1. Introduction

During the last decades, neural networks such as Hopfield neural networks, cellular neural
networks, Cohen-Grossberg neural networks, and bidirectional associative memory neural
networks have been extensively studied. There have appeared a number of important results;
see [1–13] and references therein. It is well known that the properties of stability and
convergence are important in design and application of neural networks, for example, when
designing a neural network to solve linear programming problems and pattern recognition
problems, we foremost guarantee that the models of neural network are stable. However, it
may become unstable or even divergent because the model of a system is highly uncertain or
the nature of the problem itself. So it is necessary to investigate stability and convergence
of neural networks from the control point of view. It is known that impulses can make
unstable systems stable or, otherwise, stable systems can become unstable after impulse
effects; see [14–18]. The problem of stabilizing the solutions by imposing proper impulse
controls has been used in many fields such as neural network, engineering, pharmacokinetics,
biotechnology, and population dynamics [19–25]. Recently, several good impulsive control
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approaches for real world systems have been proposed; see [22–32]. In [26], Yang and
Xu investigate the global exponential stability of Cohen-Grossberg neural networks with
variable delays by establishing some impulsive differential inequalities. The criteria not
only present an approach to stabilize the unstable neural networks by utilizing impulsive
effects but also show that the stability still remains under certain impulsive perturbations
for some continuous stable neural networks. In [27], Li et al. consider the impulsive
control of Lotka-Volterra predator-prey system by employing the method of Lyapunov
functions. In [28], Wang and Liu investigate the impulsive stabilization of delay differential
systems via the Lyapunov-Razumikhin method. However, there are few results considering
the impulsive stabilization of neural networks with both time-varying and distributed
delays, which is very important in theories and applications and also is a very challenging
problem.

Motivated by the above discussion, in this paper, we will investigate the impulsive
stabilization for a class of neural networks with both time-varying and distributed delays.
Some exponential stability criteria are obtained by using Lyapunov functionals, stability
theory, and control by impulses. The organization of this paper is as follows. In the next
section, the problems investigated in this paper are formulated, and some preliminaries are
presented. We state and prove our main results in Section 3. Then, an illustrative example is
given to show the effectiveness of the obtained impulsive control method in Section 4. Finally,
concluding remarks are made in Section 5.

2. Model Description and Preliminaries

Let R denote the set of real numbers, Rn the n-dimensional real space equipped with the
Euclidean norm | · |, and Z+ the set of positive integral numbers.

Considering the following neural networks with both time-varying and distributed
delays:

ẋi(t) = −dixi(t) +
n∑

j=1

aijfj
(
xj

(
t − τj(t)

))
+

n∑

j=1

bijgj

(∫ω

0
Kij(s)xj(t − s)ds

)
+ Ii, t ≥ t0, i ∈ Λ,

(2.1)

where Λ = {1, 2, . . . , n}, n ≥ 2 corresponds to the number of units in a neural network, xi

is the state variable of the ith neuron, di > 0 denotes the passive delay rates, aij , bij denote
the connection weights of the unit j on the unit i, fj , gj are the activation functions of the
neurons, Ii is the input of the unit i, and τj(t) is the transmission delay of the jth neuron such
that 0 ≤ τj(t) ≤ τ , τ̇j(t) ≤ ρ < 1, j ∈ Λ, t ≥ t0, where τ , ρ and ω are some constants. And the
system (2.1) is supplemented with initial values given by the form

xi(t0 + θ) = φi(θ), −max{τ,ω} ≤ θ ≤ 0, (2.2)

where φi ∈ C, C denotes piecewise continuous functions defined on [−max{τ,ω}, 0]. For
x ∈ R

n, φ ∈ C
n, let ||u|| =

∑n
i=1|ui|, ||φ|| = sup−max{τ,ω}≤s≤0(

∑n
i=1|φi|).
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We also consider the impulses at times tk, k ∈ Z+,

Δxi(tk) = xi(tk) − xi

(
t−k
)
= γikxi

(
t−k
)
, i ∈ Λ, (2.3)

where γik ≥ −1 are some undetermined constants.
Throughout this paper, we assume the following.

(H1) fj , gj are bounded and satisfy the following property:

∣∣fj(s1) − fj(s2)
∣∣ ≤ L

f

j |s1 − s2|,
∣∣gj(s1) − gj(s2)

∣∣ ≤ L
g

j |s1 − s2|, ∀s1, s2 ∈ R, j ∈ Λ, (2.4)

where L
f

j , Lg

j are constants for j ∈ Λ.

(H2) The delay kernels Kij : [0, ω) → R+, i, j ∈ Λ, are piecewise continuous and satisfy
Kij(s) ≤ K(s) for all i, j ∈ Λ, s ∈ [0, ω), where K(s) : [0, ω) → R+ is continuous
and integrable.

(H3) The impulse times tk satisfy 0 ≤ t0 < t1 < · · · < tk < · · · , limk→+∞tk = +∞.

Since (H1) and (H2) hold, by employing the well-known Brouwer’s fixed point
theorem, one can easily prove that there exists a unique equilibrium point for system
(2.1).

Assume that x� is an equilibrium solution of system (2.1), then the transformation
ui = xi − x�

i , i ∈ Λ puts system (2.1) and (2.2) into the following form:

u̇i(t) = −diui(t) +
n∑

j=1

aijf
�
j

(
uj

(
t − τj(t)

))

+
n∑

j=1

bijg
�
j

(∫ω

0
Kij(s)uj(t − s)ds

)
, t ≥ t0,

ui(t0 + θ) = ϕi(θ), −max{τ,ω} ≤ θ ≤ 0, i ∈ Λ,

(2.5)

where f�
j (uj) = fj(uj + x�

j ) − fj(x�
j ), g

�
j (uj) = gj(uj + x�

j ) − gj(x�
j ), ϕi(s) = φi(s) − x�

i .

3. Impulsive Stabilization of the Equilibrium Solution

Theorem 3.1. Assume that (H1)–(H3) hold, then the equilibrium point of the system (2.1) can be
exponentially stabilized by impulses if one of the following conditions hold.

(H4) A < 0.
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(H5) A ≥ 0 and exp[Amax{τ,ω}] · B < 1, where

A = −min
i∈Λ

di +
1

1 − ρ

n∑

i=1

max
j∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)ds,

B =
τ

1 − ρ

n∑

i=1

max
j∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)s ds.

(3.1)

Proof. First, we consider the following positive definite Lyapunov functional:

V (t) =
n∑

i=1

|ui(t)| +
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣
∫ t

t−τj (t)

∣∣∣f�
j

(
uj(s)

)∣∣∣ds

+
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

∫ t

t−s

∣∣uj(v)
∣∣dvds.

(3.2)

Then we can compute that

n∑

i=1

|ui(t)| ≤ V (t)

≤
n∑

i=1

|ui(t)| +
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣Lf

j

∫ t

t−τj (t)

∣∣uj(s)
∣∣ds

+
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
K(s)

∫ t

t−s

∣∣uj(v)
∣∣dvds

≤
n∑

i=1

|ui(t)| +
1

1 − ρ

n∑

i=1

(
max
j∈Λ

∣∣aij

∣∣Lf

j

) n∑

j=1

∫ t

t−τj (t)

∣∣uj(s)
∣∣ds

+
n∑

i=1

(
max
j∈Λ

∣∣bij
∣∣Lg

j

)∫ω

0
K(s)

∫ t

t−s

n∑

j=1

∣∣uj(v)
∣∣dvds

≤
n∑

i=1

|ui(t)| +
1

1 − ρ

n∑

i=1

(
max
j∈Λ

∣∣aij

∣∣Lf

j

)∫ t

t−τ

n∑

j=1

∣∣uj(s)
∣∣ds

+
n∑

i=1

(
max
j∈Λ

∣∣bij
∣∣Lg

j

)∫ω

0
K(s)s ds sup

t−ω≤v≤t

⎛

⎝
n∑

j=1

∣∣uj(v)
∣∣
⎞

⎠

≤
{

1 +
τ

1 − ρ

n∑

i=1

(
max
j∈Λ

∣∣aij

∣∣Lf

j

)
+

n∑

i=1

max
j∈Λ

(∣∣bij
∣∣Lg

j

)∫ω

0
K(s)s ds

}

× sup
t−max{τ,ω}≤s≤t

(
n∑

i=1

|ui(s)|
)

≤ (1 + B) sup
t−max{τ,ω}≤s≤t

(
n∑

i=1

|ui(s)|
)
, t ≥ t0.

(3.3)
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The time derivative of V along the trajectories of system (2.5) is obtained as

D+V (t) ≤ −
n∑

i=1

di|ui(t)| +
n∑

i=1

n∑

j=1

∣∣aij

∣∣
∣∣∣f�

j

(
uj

(
t − τj(t)

))∣∣∣

+
n∑

i=1

n∑

j=1

∣∣bij
∣∣
∣∣∣∣g

�
j

(∫ω

0
Kij(s)uj(t − s)ds

)∣∣∣∣

+
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣
[∣∣∣f�

j

(
uj(t)

)∣∣∣ −
∣∣∣f�

j

(
uj

(
t − τj(t)

))∣∣∣
(
1 − τ̇j(t)

)]

+
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

[∣∣uj(t)
∣∣ −
∣∣uj(t − s)

∣∣]ds

≤ −
n∑

i=1

di|ui(t)| +
n∑

i=1

n∑

j=1

∣∣aij

∣∣
∣∣∣f�

j

(
uj

(
t − τj(t)

))∣∣∣ +
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

∣∣uj(t − s)
∣∣ds

+
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣
∣∣∣f�

j

(
uj(t)

)∣∣∣ −
1 − τ̇j(t)

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣
∣∣∣f�

j

(
uj

(
t − τj(t)

))∣∣∣

+
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

[∣∣uj(t)
∣∣ −
∣∣uj(t − s)

∣∣]ds

≤ −
n∑

i=1

di|ui(t)| +
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣
∣∣∣f�

j

(
uj(t)

)∣∣∣ +
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

∣∣uj(t)
∣∣ds

≤ −min
i∈Λ

di

n∑

i=1

|ui(t)| +
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣Lf

j

∣∣uj(t)
∣∣ +

n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∣∣uj(t)
∣∣
∫ω

0
K(s)ds

≤
{
−min

i∈Λ
di +

1
1 − ρ

n∑

i=1

max
i∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
i∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)ds

}
n∑

i=1

|ui(t)|

≤ AV (t), t ≥ t0.

(3.4)

Next we will consider conditions (H4) and (H5), respectively.

Case 1. If (H4) holds, that is, A < 0, then by (3.3) and (3.4), we get

n∑

i=1

|ui(t)| ≤ V (t) ≤ V (t0)exp[A(t − t0)], t ≥ t0, (3.5)

which implies that the equilibrium point of the system (2.1) is exponentially stable without
impulses. So the conclusion of Theorem 3.1 holds obviously.
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Case 2. If (H5) holds, then there exist ε� > 0 and η ≥ max{τ,ω} such that

B ≤ exp
[
−ε�
(
η + max{τ,ω}

)]
exp
[
−Aη
]
. (3.6)

Then one may choose a sequence {tk}k∈Z+
such that max{τ,ω} ≤ tk − tk−1 ≤ η and define

γik = exp[−ε�(tk+1 − tk + max{τ,ω})] · exp[−A(tk+1 − tk)] − B − 1 .= γk. (3.7)

It is obvious that γk ≥ −1 since (3.6) holds.
For any ε ∈ (0, 1), let

δ = min
{
ε,

ε

B + 1
exp[−(ε� + A)(t1 − t0)]

}
. (3.8)

For any t0 ≥ 0, we can prove that for each solution u(t) = u(t, t0, ϕ) of system (2.5) through
(t0, ϕ), ||ϕ|| ≤ δ implies that

n∑

i=1

|ui(t)| ≤ ε exp[−ε�(t − t0)], t ≥ t0. (3.9)

First, for t ∈ [t0, t1), by (3.4), we have

V (t) ≤ V (t0)exp[A(t − t0)]. (3.10)

Then considering (3.3) and the choice of δ, we get

n∑

i=1

|ui(t)| ≤ V (t)

≤ V (t0)exp[A(t − t0)]

≤ V (t0)exp[A(t1 − t0)]

≤ (1 + B)
∥∥ϕ
∥∥exp[A(t1 − t0)]

≤ (1 + B)δexp[A(t1 − t0)]

≤ ε exp[−ε�(t1 − t0)]

≤ ε exp[−ε�(t − t0)], t ∈ [t0, t1).

(3.11)

So we obtain

n∑

i=1

|ui(t)| ≤ ε exp[−ε�(t − t0)], t ∈ [t0, t1). (3.12)
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By the fact that max{τ,ω} ≤ tk − tk−1, we get

V (t1) =

⎧
⎨

⎩

n∑

i=1

|ui(t1)| +
1

1 − ρ

n∑

i=1

n∑

j=1

∣∣aij

∣∣
∫ t1

t1−τj (t1)

∣∣∣f�
j

(
uj(s)

)∣∣∣ds

+
n∑

i=1

n∑

j=1

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

∫ t1

t1−s

∣∣uj(v)
∣∣dvds

⎫
⎬

⎭

≤

⎧
⎨

⎩

n∑

i=1

∣∣ui

(
t−1
)∣∣∣∣1 + γi1

∣∣ +
1

1 − ρ

n∑

i=1

max
j∈Λ

∣∣∣aijL
f

j

∣∣∣
∫ t1

t1−τ

n∑

j=1

∣∣uj(s)
∣∣ds

+
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
Kij(s)

∫ t1

t1−s

n∑

j=1

∣∣uj(v)
∣∣dvds

⎫
⎬

⎭

≤
{

1 + γi1 +
τ

1 − ρ

n∑

i=1

(
max
j∈Λ

∣∣aij

∣∣Lf

j

)

+
n∑

i=1

max
j∈Λ

(∣∣bij
∣∣Lg

j

)∫ω

0
K(s)sds

}
sup

t1−max{τ,ω}≤s≤t1

(
n∑

i=1

|ui(s)|
)

≤
(
1 + γi1 + B

)
sup

t1−max{τ,ω}≤s≤t1

(
n∑

i=1

|ui(s)|
)

≤
(
1 + γi1 + B

)
ε exp[−ε�(t1 − max{τ,ω} − t0)],

(3.13)

which, together with (3.6) and (3.7), yields

n∑

i=1

|ui(t)| ≤ V (t)

≤ V (t1)exp[A(t − t1)]

≤ V (t1)exp[A(t2 − t1)]

≤
(
1 + γi1 + B

)
ε exp[−ε�(t1 − max{τ,ω} − t0)]exp[A(t2 − t1)]

≤ ε exp[−ε�(t2 − t0)]

≤ ε exp[−ε�(t − t0)], t ∈ [t1, t2),

(3.14)

that is,

n∑

i=1

|ui(t)| ≤ ε exp[−ε�(t − t0)], t ∈ [t1, t2). (3.15)
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By following the similar inductive arguments as before, we derive that

n∑

i=1

|ui(t)| ≤ ε exp[−ε�(t − t0)], t ≥ t0. (3.16)

This completes our proof of Case 2.

The proof of Theorem 3.1 is complete.

Corollary 3.2. Assume that (H1), (H2) hold, then the equilibrium point of system (2.1) is
exponentially stable if the following condition holds:

−min
i∈Λ

di +
1

1 − ρ

n∑

i=1

max
j∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)ds < 0. (3.17)

Corollary 3.3. Assume that conditions in Theorem 3.1 hold, then the equilibrium point of the system
(2.1) can be exponentially stabilized by periodic impulses.

Proof. In fact, we need only to choose the sequence {tk}k∈Z+
such that tk− tk−1 = η ≥ max{τ,ω}

and define

γik
.= γ = exp

[
−ε�
(
η + max{τ,ω}

)]
· exp

[
−Aη
]
− B − 1. (3.18)

As a special case of system (2.1), we consider the following neural network model:

ẋi(t) = −dixi(t) +
n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj

(∫ω

0
Kij(s)xj(t − s)ds

)
+ Ii, t ≥ t0, i ∈ Λ. (3.19)

we can obtain theorem as follows.

Theorem 3.4. Assume that (H1)–(H3) hold, then the equilibrium point of the system (3.19) can be
exponentially stabilized by impulses if one of the following conditions holds

(H4) D < 0.

(H5) E ≥ 0 and exp[Dη] · E < 1, where

D = −min
i∈Λ

di +
n∑

i=1

max
j∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)ds,

E =
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)s ds.

(3.20)

Proof. In fact, we need only to mention a few points since the rest is the same as in the proof
of Theorem 3.1. First, instead of (3.4) we can get that

D+V (t) ≤ DV (t), t ≥ t0. (3.21)
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Second, instead of (3.6) and (3.7) we choose constants ε� > 0 and η ≥ ω such that

E ≤ exp
[
−ε�
(
η +ω

)]
exp
[
−Dη
]
. (3.22)

Then one may choose a sequence {tk}k∈Z+
such that ω ≤ tk − tk−1 ≤ η and define

γik = exp[−ε�(tk+1 − tk +ω)] · exp[−D(tk+1 − tk)] − E − 1. (3.23)

Corollary 3.5. Assume that conditions in Theorem 3.4 hold, then the equilibrium point of the system
(3.19) can be exponentially stabilized by periodic impulses.

Proof. Here we need only to choose the sequence {tk}k∈Z+
such that tk − tk−1 = η ≥ ω. Let

γik
.= γ = exp

[
−ε�
(
η +ω

)]
· exp

[
−Dη
]
− E − 1. (3.24)

4. A Numerical Example

In this section, we give an example to demonstrate the effectiveness of our method.

Example 4.1. Consider the following neural network consisting two neurons:

(
u̇1(t)

u̇2(t)

)
=

⎛
⎜⎝

− 1
80

0

0 − 1
60

⎞
⎟⎠
(
u1(t)

u2(t)

)
+

(
1 −1

1 1

)⎛

⎝tanh
(

0.5 u1

(
t − 0.1 + 0.01sin2t

))

tanh
(
0.5 u2

(
t − 0.1 + 0.01cos2t

))

⎞

⎠

+

(
1 1

−1 1

)⎛

⎝
tanh

(∫0.2
0 su1(t − s)ds

)

tanh
(∫0.2

0 su2(t − s)ds
)

⎞

⎠, t ≥ 0.

(4.1)

Then L
f

j = 0.5, Lg

j = 1, j = 1, 2, K(s) = s, τ = 0.1, ρ = 0.01, and ω = 0.2. It is obvious that (0, 0)T

is an equilibrium point of system (4.1). By simple calculation, we get

A = −min
i∈Λ

di +
1

1 − ρ

n∑

i=1

max
j∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)ds = 1.0376 > 0,

B =
τ

1 − ρ

n∑

i=1

max
j∈Λ

∣∣aij

∣∣Lf

j +
n∑

i=1

max
j∈Λ

∣∣bij
∣∣Lg

j

∫ω

0
K(s)sds ≈ 0.1410,

exp[Amax{τ,ω}] · B ≈ 0.1735 < 1.

(4.2)

In this case, one may choose ε� = 0.01, tk − tk−1 = 0.2, γ1k = γ2k = −0.3316 such that (3.6)
and (3.7) in Theorem 3.1 hold. According to Theorem 3.1, the equilibrium point [0, 0]T of
system (4.1) can be exponentially stabilized by impulses. The numerical simulation is shown
in Figures 1(b) and 1(e).
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Figure 1: (a) Time-series of the u of system (4.1) without impulsive control for t ∈ [−0.2, 50]. (b) Time-series
of the u of system (4.1) by impulsive control with γ1k = γ2k = −0.3316 for t ∈ [−0.2, 50]. (c) Time-series of
the u of system (4.1) by impulsive control with γ1k = γ2k = −0.1 for t ∈ [−0.2, 50]. (d) Phase portrait of
system (4.1) without impulsive control for t ∈ [−0.2, 50]. (e) Phase portrait of system (4.1) by impulsive
control with γ1k = γ2k = −0.3316 for t ∈ [−0.2, 50]. (f) Phase portrait of system (4.1) by impulsive control
with γ1k = γ2k = −0.1 for t ∈ [−0.2, 50].
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Remark 4.2. Note that γ1k = γ2k = −0.3316, by Corollary 3.3, system (4.1) can be exponentially
stabilized by periodic impulses.

Remark 4.3. As we see from Figures 1(a) and 1(d), the equilibrium point [0, 0]T of system (4.1)
without impulses is unstable. However, it becomes exponentially stable by explicit impulsive
control (see Figures 1(b) and 1(e)). This implies that impulses may be used to exponentially
stabilize some unable neural networks by our proposed control method. Furthermore, in the
same impulse interval, if γ1k = γ2k = −0.1, then our control method in (3.6) and (3.7) is not
satisfied. The equilibrium point (0, 0)T of system (4.1) cannot be exponentially stabilized by
impulses, which is shown in Figures 1(c) and 1(f). However, one may observe that every
solution of system (4.1) becomes a quasiperiodic solution because of the effects of impulses.
Figures 1(a)–1(f) show the dynamic behavior of the system (4.1) with the initial condition
[u1(t), u2(t)]

T = [sN,−sN]T , N = 1, 2, . . . , 10, s = 0.01, t ∈ [−0.2, 0].

5. Conclusions

In this paper, we have investigated impulsive control for neural networks with both
time-varying and distributed delays. By using Lyapunov functionals, stability theory, and
control by impulses, some sufficient conditions are derived to exponentially stabilize neural
networks with both time-varying and distributed delays. Simulation results of a neural
network under impulsive control verify the effectiveness of the proposed control method.
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