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1. Introduction

The study of dynamic equations on time scales, which goes back to its founder Hilger [1],
is an area of mathematics that has recently received a lot of attention. For example, we
refer the reader to literatures [2–8] and the references cited therein. At the same time, some
fundamental integral inequalities used in analysis on time scales have been extended by
many authors [9–14]. In this paper, we investigate some new nonlinear integral inequalities
on time scales, which unify and extend some continuous inequalities and their corresponding
discrete analogues. Our results can be used as handy tools to study the properties of certain
dynamic equations on time scales.

Throughout this paper, a knowledge and understanding of time scales and time scale
notation is assumed. For an excellent introduction to the calculus on time scales, we refer the
reader to monographes [2, 3].

2. Main Results

In what follows, R denotes the set of real numbers, R+ = [0,∞), Z denotes the set of integers,
N0 = {0, 1, 2, . . .} denotes the set of nonnegative integers, C(M,S) denotes the class of all
continuous functions defined on set M with range in the set S, T is an arbitrary time scale,
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Crd denotes the set of rd-continuous functions, R denotes the set of all regressive and rd-
continuous functions, andR+ = {p ∈ R : 1+μ(t)p(t) > 0, ∀t ∈ T}. We use the usual conventions
that empty sums and products are taken to be 0 and 1, respectively. Throughout this paper,
we always assume that p ≥ 1, 0 < q ≤ p, p, and q are real constants, and t ≥ t0, t0 ∈ T

κ.
We firstly introduce the following lemmas, which are useful in our main results.

Lemma 2.1 ([15] (Bernoulli’s inequality)). Let 0 < α ≤ 1 and x > −1. Then (1 + x)α ≤ 1 + αx.

Lemma 2.2 ([2]). Let t0 ∈ T
κ andw : T×Tκ → R be continuous at (t, t), where t ≥ t0, t ∈ T

κ with
t > t0. Assume thatwΔ(t, ·) is rd-continuous on [t0, σ(t)]. If for any ε > 0, there exists a neighborhood
U of t, independent of τ ∈ [t0, σ(t)], such that

∣
∣
∣w(σ(t), τ) −w(s, τ) −wΔ(t, τ)(σ(t) − s)

∣
∣
∣ ≤ ε|σ(t) − s|, ∀s ∈ U, (2.1)

where wΔ denotes the derivative of w with respect to the first variable, then

g(t) :=
∫ t

t0

w(t, τ)Δτ (2.2)

implies

gΔ(t) =
∫ t

t0

wΔ(t, τ)Δτ +w(σ(t), t). (2.3)

Lemma 2.3 ([2] (Comparison Theorem)). Suppose u, b ∈ Crd, a ∈ R+. Then

uΔ(t) ≤ a(t)u(t) + b(t), t ≥ t0, t ∈ T
κ, (2.4)

implies

u(t) ≤ u(t0)ea(t, t0) +
∫ t

t0

ea(t, σ(τ))b(τ)Δτ, t ≥ t0, t ∈ T
κ. (2.5)

Lemma 2.4 (see [13]). Let u, f, g ∈ Crd, u(t), f(t), and g(t) be nonnegative. If f(t) is
nondecreasing, then

u(t) ≤ f(t) +
∫ t

t0

g(τ)u(τ)Δτ, t ∈ T
κ, (2.6)

implies

u(t) ≤ f(t)eg(t, t0), t ∈ T
κ, (2.7)
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Next, we establish our main results.

Theorem 2.5. Assume that u, a, b, g, h ∈ Crd, a(t) > 0, u(t), b(t), g(t) and h(t) are nonnegative.
Then

up(t) ≤ a(t) + b(t)
∫ t

t0

[

g(τ)uq(τ) + h(τ)
]

Δτ, t ∈ T
κ, (2.8)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

∫ t

t0

eB(t, σ(τ))F(τ)Δτ, t ∈ T
κ, (2.9)

where

F(t) = g(t)aq/p(t) + h(t), (2.10)

B(t) =
q

p
aq/p−1(t)b(t)g(t), t ∈ T

κ. (2.11)

Proof. Define a function z(t) by

z(t) =
∫ t

t0

[

g(τ)uq(τ) + h(τ)
]

Δτ. (2.12)

Then (2.8) can be restated as

up(t) ≤ a(t) + b(t)z(t) = a(t)
(

1 +
b(t)z(t)
a(t)

)

. (2.13)

Using Lemma 2.1, from the above inequality, we easily obtain

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)z(t), (2.14)

uq(t) ≤ aq/p(t) +
q

p
aq/p−1(t)b(t)z(t). (2.15)

It follows from (2.12) and (2.15) that

zΔ(t) = g(t)uq(t) + h(t)

≤ g(t)
(

aq/p(t) +
q

p
aq/p−1(t)b(t)z(t)

)

+ h(t)

= F(t) + B(t)z(t), t ∈ T
κ,

(2.16)
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where F(t) and B(t) are defined as in (2.10) and (2.11), respectively. Using Lemma 2.3 and
noting z(t0) = 0, from (2.16)we have

z(t) ≤
∫ t

t0

eB(t, σ(τ))F(τ)Δτ, t ∈ T
κ. (2.17)

Therefore, the desired inequality (2.9) follows from (2.14) and (2.17). This completes
the proof of Theorem 2.5.

Corollary 2.6. Assume that u, g ∈ Crd, u(t), and g(t) are nonnegative. If α > 0 is a constant, then

up(t) ≤ α +
∫ t

t0

g(τ)uq(τ)Δτ, t ∈ T
κ, (2.18)

implies

u(t) ≤ α1/p
(

1 − 1
q
+
1
q
eB̂(t, t0)

)

, t ∈ T
κ, (2.19)

where

B̂(t) =
q

p
αq/p−1g(t), t ∈ T

κ. (2.20)

Proof. Letting a(t) = α, b(t) = 1, and h(t) = 0 in Theorem 2.5, we obtain

F(t) = αq/pg(t), B(t) =
q

p
αq/p−1g(t) := B̂(t), t ∈ T

κ. (2.21)

Therefore,

u(t) ≤ α1/p +
1
p
α1/p−1

∫ t

t0

eB̂(t, σ(τ))F(τ)Δτ

= α1/p +
1
p
α1/p−1

∫ t

t0

eB̂(t, σ(τ))α
q/pg(τ)Δτ
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= α1/p +
1
q
α1/p

∫ t

t0

eB̂(t, σ(τ))
q

p
αq/p−1g(τ)Δτ

= α1/p +
1
q
α1/p

∫ t

t0

eB̂(t, σ(τ))B̂(τ)Δτ

= α1/p +
1
q
α1/p(eB̂(t, t0) − eB̂(t, t)

)

= α1/p +
1
q
α1/peB̂(t, t0) −

1
q
α1/p

= α1/p
(

1 − 1
q
+
1
q
eB̂(t, t0)

)

, t ∈ T
κ.

(2.22)

The proof of Corollary 2.6 is complete.

Remark 2.7. The result of Theorem 2.5 holds for an arbitrary time scale. Therefore, using
Theorem 2.5, we can obtain many results for some peculiar time scales. For example, letting
T = R and T = Z, respectively, we have the following two results.

Corollary 2.8. Let T = R and assume that u(t), a(t), b(t), g(t), h(t) ∈ C(R+,R+), and a(t) > 0.
Then the inequality

up(t) ≤ a(t) + b(t)
∫ t

0

[

g(s)uq(s) + h(s)
]

ds, t ∈ R+, (2.23)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

∫ t

0
F(θ) exp

(∫ t

θ

B(s)ds

)

dθ, t ∈ R+, (2.24)

where F(t) and B(t) are defined as in Theorem 2.5.

Corollary 2.9. Let T = Z and assume that a(t) > 0, u(t), b(t), g(t), and h(t) are nonnegative
functions defined for t ∈ N0. Then the inequality

up(t) ≤ a(t) + b(t)
t−1∑

s=0

[

g(s)uq(s) + h(s)
]

, t ∈ N0, (2.25)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

t−1∑

θ=0

F(θ)
t−1∏

s=θ+1

[1 + B(s)], t ∈ N0, (2.26)

where F(t) and B(t) are defined as in Theorem 2.5.
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Investigating the proof procedure of Theorem 2.5 carefully, we easily obtain the
following more general result.

Theorem 2.10. Assume that u, a, b, gi, hi ∈ Crd, a(t) > 0, u(t), b(t), gi(t), and hi(t) are
nonnegative, i = 1, 2, . . . , n. If there exists a series of positive real numbers q1, q2, . . . , qn such that
p ≥ qi > 0, i = 1, 2, . . . , n, then

up(t) ≤ a(t) + b(t)
n∑

i=1

∫ t

t0

[

gi(τ)uqi(τ) + hi(τ)
]

Δτ, t ∈ T
κ, (2.27)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

∫ t

t0

eB∗(t, σ(τ))F∗(τ)Δτ, t ∈ T
κ, (2.28)

where

F∗(t) =
n∑

i=1

(

gi(t)aqi/p(t) + hi(t)
)

, B∗(t) = b(t)
n∑

i=1

qi
p
aqi/p−1(t)gi(t). (2.29)

Theorem 2.11. Assume that u, a, b, f, g,m ∈ Crd, a(t) > 0, u(t), b(t), f(t), g(t) and m(t) are
nonnegative. If w(t, s) is defined as in Lemma 2.2 such that w(t, s) ≥ 0 and wΔ(t, s) ≥ 0 for t, s ∈ T

with s ≤ t, then

up(t) ≤ a(t) + b(t)
∫ t

t0

w(t, τ)
[

f(τ)up(τ) + g(τ)uq(τ) +m(τ)
]

Δτ, t ∈ T
κ, (2.30)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

∫ t

t0

eA(t, σ(τ))G(τ)Δτ, t ∈ T
κ, (2.31)

where

A(t) = w(σ(t), t)b(t)
(

f(t) +
q

p
aq/p−1(t)g(t)

)

+
∫ t

t0

wΔ(t, τ)b(τ)
(

f(τ) +
q

p
aq/p−1(τ)g(τ)

)

Δτ,

(2.32)

G(t) = w(σ(t), t)
[

a(t)f(t) + g(t)aq/p(t) +m(t)
]

+
∫ t

t0

wΔ(t, τ)
[

a(τ)f(τ) + g(τ)aq/p(τ) +m(τ)
]

Δτ.

(2.33)
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Proof. Define a function z(t) by

z(t) =
∫ t

t0

w(t, τ)
[

f(τ)up(τ) + g(τ)uq(τ) +m(τ)
]

Δτ, t ∈ T
κ. (2.34)

Then z(t0) = 0. As in the proof of Theorem 2.5, we easily obtain (2.14) and (2.15). Using
Lemma 2.2 and combining (2.34) and (2.15), we have

zΔ(t) = w(σ(t), t)
[

f(t)up(t) + g(t)uq(t) +m(t)
]

+
∫ t

t0

wΔ(t, τ)
[

f(τ)up(τ) + g(τ)uq(τ) +m(τ)
]

Δτ

≤ w(σ(t), t)
[

a(t)f(t) + g(t)aq/p(t) +m(t) + b(t)
(

f(t) +
q

p
aq/p−1(t)g(t)

)

z(t)
]

+
∫ t

t0

wΔ(t, τ)
[

a(τ)f(τ) + g(τ)aq/p(τ) +m(τ)

+b(τ)
(

f(τ) +
q

p
aq/p−1(t)g(τ)

)

z(τ)
]

Δτ

≤
[

w(σ(t), t)b(t)
(

f(t) +
q

p
aq/p−1(t)g(t)

)

+
∫ t

t0

wΔ(t, τ)b(τ)
(

f(τ) +
q

p
aq/p−1(t)g(τ)

)

Δτ

]

z(t)

+w(σ(t), t)
[

a(t)f(t) + g(t)aq/p(t) +m(t)
]

+
∫ t

t0

wΔ(t, τ)
[

a(τ)f(τ) + g(τ)aq/p(τ) +m(τ)
]

Δτ

= A(t)z(t) +G(t), t ∈ T
κ,

(2.35)

where A(t) and G(t) are defined as in (2.32) and (2.33), respectively. Therefore, in the above
inequality, using Lemma 2.3 and noting z(t0) = 0, we get

z(t) ≤
∫ t

t0

eA(t, σ(τ))G(τ)Δτ, t ∈ T
κ. (2.36)

It is easy to see that the desired inequality (2.31) follows from (2.14) and (2.36). This
completes the proof of Theorem 2.11.
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Corollary 2.12. Let T = R and assume that u(t), a(t), b(t), f(t), g(t), m(t) ∈ C(R+,R+), a(t) > 0.
If w(t, s) and its partial derivative ∂w(t, s)/∂t are real–valued nonnegative continuous functions for
t, s ∈ R+ with s ≤ t, then the inequality

up(t) ≤ a(t) + b(t)
∫ t

0
w(t, s)

[

f(s)up(s) + g(s)uq(s) +m(s)
]

ds, t ∈ R+, (2.37)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

∫ t

0
G(s) exp

(∫ t

s

A(τ)dτ

)

ds, t ∈ R+, (2.38)

where

A(t) = w(t, t)b(t)
(

f(t) +
q

p
aq/p−1(t)g(t)

)

+
∫ t

0

∂w(t, s)
∂t

b(s)
(

f(s) +
q

p
aq/p−1(s)g(s)

)

ds,

G(t) = w(t, t)
[

a(t)f(t) + g(t)aq/p(t) +m(t)
]

+
∫ t

0

∂w(t, s)
∂t

[

a(s)f(s) + g(s)aq/p(s) +m(s)
]

ds.

(2.39)

Corollary 2.13. Let T = Z and assume that a(t) > 0, u(t), b(t), f(t), g(t) andm(t) are nonnegative
functions defined for t ∈ N0. If w(t, s) and Δ1w(t, s) are real-valued nonnegative functions for t, s ∈
N0 with s ≤ t, then the inequality

up(t) ≤ a(t) + b(t)
t−1∑

s=0

w(t, s)
[

f(s)up(s) + g(s)uq(s) +m(s)
]

, t ∈ N0, (2.40)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

t−1∑

s=0

G̃(s)
t−1∏

τ=s+1

(

1 + Ã(τ)
)

, t ∈ N0, (2.41)
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where Δ1w(t, s) = w(t + 1, s) −w(t, s) for t, s ∈ N0 with s ≤ t,

Ã(t) = w(t + 1, t)b(t)
(

f(t) +
q

p
aq/p−1(t)g(t)

)

+
t−1∑

s=0

Δ1w(t, s)b(s)
(

f(s) +
q

p
aq/p−1(s)g(s)

)

,

G̃(t) = w(t + 1, t)
[

a(t)f(t) + g(t)aq/p(t) +m(t)
]

+
t−1∑

s=0

Δ1w(t, s)
[

a(s)f(s) + g(s)aq/p(s) +m(s)
]

.

(2.42)

Corollary 2.14. Suppose that u(t), a(t), and w(t, s) are defined as in Theorem 2.11. If a(t) is
nondecreasing for t ∈ T

κ, then

up(t) ≤ a(t) +
∫ t

t0

w(t, τ)uq(τ)Δτ, t ∈ T
κ, (2.43)

implies

u(t) ≤ a1/p(t)
[

1 − 1
q
+
1
q
e ˜
A
(t, t0)

]

, t ∈ T
κ, (2.44)

where

˜
A(t) =

q

p

(

w(σ(t), t)a1/p−1(t) +
∫ t

t0

wΔ(t, τ)a1/p−1(τ)Δτ

)

. (2.45)

Proof. Letting b(t) = 1, f(t) = 0, g(t) = 1, and m(t) = 0 in Theorem 2.11, we obtain

A(t) =
q

p

(

w(σ(t), t)a1/p−1(t) +
∫ t

t0

wΔ(t, τ)a1/p−1(τ)Δτ

)

:= ˜
A(t),

G(t) = w(σ(t), t)aq/p(t) +
∫ t

t0

wΔ(t, τ)aq/p(τ)Δτ

≤ a(t)

(

w(σ(t), t)a1/p−1(t) +
∫ t

t0

wΔ(t, τ)a1/p−1(τ)Δτ

)

=
p

q
a(t) ˜A(t), t ∈ T

κ,

(2.46)
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where the inequality holds because a(t) is nondecreasing for t ∈ T
κ. Therefore, using

Theorem 2.11 and noting (2.46), we easily have

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)

∫ t

t0

eA(t, σ(τ))G(τ)Δ(τ)

≤ a1/p(t) +
1
p
a1/p−1(t)

∫ t

t0

e ˜
A
(t, σ(τ))

p

q
a(τ) ˜A(τ)Δτ

≤ a1/p(t) +
1
q
a1/p(t)

∫ t

t0

e ˜A
(t, σ(τ)) ˜A(τ)Δτ

= a1/p(t)
[

1 +
1
q

(

e ˜
A
(t, t0) − e ˜

A
(t, t)

)]

= a1/p(t)
[

1 − 1
q
+
1
q
e ˜
A
(t, t0)

]

, t ∈ T
κ.

(2.47)

The proof of Corollary 2.14 is complete.

By Theorem 2.11, we can establish the following more general result.

Theorem 2.15. Assume that u, a, b, f, gi,m ∈ Crd, a(t) > 0, u(t), b(t), f(t), gi(t), and m(t) are
nonnegative, i = 1, 2, . . . , n, and there exists a series of positive real numbers q1, q2, . . . , qn such that
p ≥ qi > 0, i = 1, 2, . . . , n. Ifw(t, s) is defined as in Lemma 2.2 such thatw(t, s) ≥ 0 andwΔ(t, s) ≥ 0
for t, s ∈ T with s ≤ t, then

up(t) ≤ a(t) + b(t)
∫ t

t0

w(t, τ)

[

f(τ)up(τ) +
n∑

i=1

gi(τ)uqi(τ) +m(τ)

]

Δτ, t ∈ T
κ, (2.48)

implies

u(t) ≤ a1/p(t) +
1
p
a1/p−1(t)b(t)

∫ t

t0

eA∗(t, σ(τ))G∗(τ)Δ(τ), t ∈ T
κ, (2.49)

where

A∗(t) = w(σ(t), t)b(t)

(

f(t) +
n∑

i=1

qi
p
aqi/p−1(t)gi(t)

)

+
∫ t

t0

wΔ(t, τ)b(τ)

(

f(τ) +
n∑

i=1

qi
p
aqi/p−1(τ)gi(τ)

)

Δτ,

G∗(t) = w(σ(t), t)

[

a(t)f(t) +
n∑

i=1

gi(t)aqi/p(t) +m(t)

]

+
∫ t

t0

wΔ(t, τ)

[

a(τ)f(τ) +
n∑

i=1

gi(τ)aqi/p(τ) +m(τ)

]

Δτ.

(2.50)
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Theorem 2.16. Let u, a, r ∈ Crd, u(t) and r(t) be nonnegative, a(t) > 0, and a(t) be nondecreasing.
Assume that there exists a series of positive real numbers q1, q2, . . . , qn such that p ≥ qi > 0, i =
1, 2, . . . , n. If Si : Tκ × R+ → R+ is a continuous function such that

0 ≤ Si(t, xi) − Si

(

t, yi

) ≤ Hi

(

t, yi

)(

xi − yi

)

, (2.51)

for t ∈ T
κ and xi ≥ yi ≥ 0, i = 1, 2, . . . , n, where Hi : Tκ × R+ → R+ is a nonnegative continuous

function, i = 1, 2, . . . , n, then

up(t) ≤ a(t) +
∫ t

t0

r(τ)up(τ)Δτ +
n∑

i=1

∫ t

t0

Si(τ, uqi(τ))Δτ, t ∈ T
κ, (2.52)

implies

u(t) ≤ R1/p(t)
[

a1/p(t) +
1
p
a1/p−1(t)L(t)eJ(t, t0)

]

, t ∈ T
κ, (2.53)

where

R(t) = er(t, t0), (2.54)

L(t) =
n∑

i=1

∫ t

t0

Si

(

τ, Rqi/p(τ)aqi/p(τ)
)

Δτ, (2.55)

J(t) =
n∑

i=1

qi
p
Hi

(

t, Rqi/p(t)aqi/p(t)
)

Rqi/p(t)aqi/p−1(t). (2.56)

Proof. Let

v(t) =
n∑

i=1

∫ t

t0

Si(τ, uqi(τ))Δτ, z(t) = a(t) + v(t), t ∈ T
κ. (2.57)

Then (2.52) can be restated as

up(t) ≤ z(t) +
∫ t

t0

r(τ)up(τ)Δτ, t ∈ T
κ. (2.58)

It is easy to see that z(t) ∈ Crd, z(t) > 0, and z(t) is nondecreasing. Using Lemma 2.4, from
(2.58), we have

up(t) ≤ R(t)z(t), t ∈ T
κ, (2.59)

where R(t) is defined as in (2.54). It follows from (2.57) and (2.59) that

up(t) ≤ R(t)[a(t) + v(t)]. (2.60)
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Using Lemma 2.1 to the above inequality, we obtain

u(t) ≤ R1/p(t)[a(t) + v(t)]1/p

≤ R1/p(t)
[

a1/p(t) +
1
p
a1/p−1(t)v(t)

]

,
(2.61)

uqi(t) ≤ Rqi/p(t)[a(t) + v(t)]qi/p

≤ Rqi/p(t)
[

aqi/p(t) +
qi
p
aqi/p−1(t)v(t)

]

, t ∈ T
κ.

(2.62)

Noting the hypotheses on Si, from (2.62), we get

v(t) ≤
n∑

i=1

∫ t

t0

Si

(

τ, Rqi/p(τ)
[

aqi/p(τ) +
qi
p
aqi/p−1(τ)v(τ)

])

Δτ

=
n∑

i=1

∫ t

t0

{

Si

(

τ, Rqi/p(τ)
[

aqi/p(τ) +
qi
p
aqi/p−1(τ)v(τ)

])

−Si

(

τ, Rqi/p(τ)aqi/p(τ)
)}

Δτ +
n∑

i=1

∫ t

t0

Si

(

τ, Rqi/p(τ)aqi/p(τ)
)

Δτ

≤ L(t) +
n∑

i=1

∫ t

t0

Hi

(

τ, Rqi/p(τ)aqi/p(τ)
)

Rqi/p(τ)
qi
p
aqi/p−1(τ)v(τ)Δτ, t ∈ T

κ,

(2.63)

where L(t) is defined by (2.55). Clearly, L(t) ≥ 0 and L(t) are nondecreasing. Therefore, for
any ε > 0, from (2.63), we obtain

v(t)
L(t) + ε

≤ 1 +
n∑

i=1

∫ t

t0

Hi

(

τ, Rqi/p(τ)aqi/p(τ)
)

Rqi/p(τ)
qi
p
aqi/p−1(τ)

v(τ)
L(τ) + ε

Δτ, t ∈ T
κ. (2.64)

Let

ψ(t) =
v(t)

L(t) + ε
, t ∈ T

κ, (2.65)

and define k(t) by the right hand of (2.64). Then k(t) > 0, k(t0) = 1, ψ(t) ≤ k(t), and

kΔ(t) =
n∑

i=1

Hi

(

t, Rqi/p(t)aqi/p(t)
)

Rqi/p(t)
qi
p
aqi/p−1(t)ψ(t)

≤
n∑

i=1

Hi

(

t, Rqi/p(t)aqi/p(t)
)

Rqi/p(t)
qi
p
aqi/p−1(t)k(t)

= k(t)J(t), t ∈ T
κ,

(2.66)
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where J(t) is defined by (2.56). Using Lemma 2.3 and noting k(t0) = 1, from (2.66), we have

k(t) ≤ eJ(t, t0), t ∈ T
κ. (2.67)

Therefore,

v(t) ≤ (L(t) + ε)eJ(t, t0), t ∈ T
κ. (2.68)

It follows from (2.61) and (2.68) that

u(t) ≤ R1/p(t)
[

a1/p(t) +
1
p
a1/p−1(t)(L(t) + ε)eJ(t, t0)

]

, t ∈ T
κ. (2.69)

Letting ε → 0 in (2.69), we immediately obtain the desired inequality (2.53). This completes
the proof of Theorem 2.16.

Corollary 2.17. Let T = R, u, a, r ∈ C(R+,R+), a(t) > 0, and a(t) be nondecreasing. Assume that
there exists a series of positive real numbers q1, q2, . . . , qn such that p ≥ qi > 0, i = 1, 2, . . . , n. If
Si : R+ × R+ → R+ is a continuous function such that

0 ≤ Si(t, xi) − Si

(

t, yi

) ≤ Hi

(

t, yi

)(

xi − yi

)

, (2.70)

for t ∈ R+ and xi ≥ yi ≥ 0, i = 1, 2, . . . , n, where Hi : R+ × R+ → R+ is a continuous function,
i = 1, 2, . . . , n, then

up(t) ≤ a(t) +
∫ t

0
r(τ)up(τ)dτ +

n∑

i=1

∫ t

0
Si(τ, uqi(τ))dτ, t ∈ R+, (2.71)

implies

u(t) ≤ R
1/p

(t)

[

a1/p(t) +
1
p
a1/p−1(t)L(t) exp

(∫ t

0
J(s)ds

)]

, t ∈ R+, (2.72)

where J(t) is defined as in (2.56),

R(t) = exp

(∫ t

0
r(s)ds

)

,

L(t) =
n∑

i=1

∫ t

0
Si

(

τ, R
qi/p

(τ)aqi/p(τ)
)

dτ,

J(t) =
n∑

i=1

qi
p
Hi

(

t, R
qi/p

(t)aqi/p(t)
)

R
qi/p

(t)aqi/p−1(t).

(2.73)
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Corollary 2.18. Let T = Z, a(t) > 0, a(t) be nondecreasing, u(t) and r(t) be nonnegative functions
defined for t ∈ N0. Assume that there exists a series of positive real numbers q1, q2, . . . , qn such that
p ≥ qi > 0, i = 1, 2, . . . , n. If Si : N0 × R+ → R+ such that

0 ≤ Si(t, xi) − Si

(

t, yi

) ≤ Hi

(

t, yi

)(

xi − yi

)

, (2.74)

for t ∈ N0 and xi ≥ yi ≥ 0, i = 1, 2, . . . , n, whereHi : N0 × R+ → R+, i = 1, 2, . . . , n, then

up(t) ≤ a(t) +
t−1∑

τ=0

r(τ)up(τ) +
n∑

i=1

t−1∑

τ=0

Si(τ, uqi(τ)), t ∈ N0, (2.75)

implies

u(t) ≤ R̃1/p(t)

[

a1/p(t) +
1
p
a1/p−1(t)L̃(t)

t−1∏

s=0

(

1 + J̃(s)
)
]

, t ∈ N0, (2.76)

where J(t) is defined as in (2.56),

R̃(t) =
t−1∏

s=0
(1 + r(s)),

L̃(t) =
n∑

i=1

t−1∑

τ=0

Si

(

τ, R̃qi/p(τ)aqi/p(τ)
)

,

J̃(t) =
n∑

i=1

qi
p
Hi

(

t, R̃qi/p(t)aqi/p(t)
)

R̃qi/p(t)aqi/p−1(t).

(2.77)

Remark 2.19. Using our main results, we can obtain many dynamic inequalities for some
peculiar time scales. Due to limited space, their statements are omitted here.

3. Some Applications

In this section, we present two applications of our main results.

Example 3.1. Consider the inequality as in (2.25) with a(t) = α(t + 1), b(t) = α(t2 + 1), g(t) =
t, h(t) = 0, p = 2, q = 1, α = 10−6, and we compute the values of u(t) from (2.25) and also
we find the values of u(t) by using the result (2.26). In our computations we use (2.25) and
(2.26) as equations and as we see in Table 1 the computation values as in (2.25) are less than
the values of the result (2.26).

From Table 1, we easily find that the numerical solution agrees with the analytical
solution for some discrete inequalities. The program is written in the programming Matlab
7.0.
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Table 1

t (2.25) (2.26)
1 1.414213562373095e − 003 1.414213562373095e − 003
2 2.661293464584210e − 003 2.910562109546456e − 003
5 5.486250637546570e − 002 1.103460932829943e − 001
7 2.670738191264154e − 001 5.410171853718061e − 001
10 1.527219045903506e + 000 3.137697944498020e + 000
12 3.720520602864323e + 000 8.436559692675310e + 000
14 7.856747926470754e + 000 2.187361362745254e + 001
17 1.997586843703775e + 001 9.900992670086097e + 001
20 4.331228422296512e + 001 5.854191578762491e + 002
25 1.241251179017371e + 002 2.937887676184530e + 004

Example 3.2. Consider the following initial value problem on time scales:

(up(t))Δ = M(t, u(t)), u(t0) = β, t ∈ T
κ, (3.1)

where p ≥ 1 and β /= 0 are constants, and M : Tκ × R → R is a continuous function.
Assume that

|M(t, u(t))| ≤ g(t)|uq(t)|, (3.2)

where g(t) is defined as in Corollary 2.6, 0 < q ≤ p is a constant. If u(t) is a solution of IVP
(3.1), then

|u(t)| ≤ ∣
∣β
∣
∣

(

1 − 1
q
+
1
q
eV (t, t0)

)

, t ∈ T
κ, (3.3)

where

V (t) =
q

p

∣
∣β
∣
∣
q−p

g(t), t ∈ T
κ. (3.4)

In fact, the solution u(t) of IVP (3.1) satisfies the following equation:

up(t) = βp +
∫ t

t0

M(τ, u(τ))Δτ, t ∈ T
κ. (3.5)

Using the assumption (3.2), from (3.5), we have

|u(t)|p ≤ ∣
∣β
∣
∣
p +

∫ t

t0

g(τ)|u(τ)|qΔτ, t ∈ T
κ. (3.6)

Now a suitable application of Corollary 2.6 to (3.6) yields (3.2).
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