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1. Introduction

Initialed by Lazer and Leach [1], much work has been devoted to the study of existence result
for nonlinear periodic boundary value problem

y′′(x) +m2y(x) + ĝ
(

x, y(x)
)

= e(x), x ∈ (0, 2π),

y(0) = y(2π), y′(0) = y′(2π),
(1.1)

where m ≥ 0 is an integer. Results from the paper have been extended to partial differential
equations by several authors. The reader is referred, for detail, to Landesman and Lazer [2],
Amann et al. [3], Brézis and Nirenberg [4], Fučı́k and Hess [5], and Iannacci and Nkashama
[6] for some reference along this line. Concerning (1.1), results have been carried out by
many authors also. Let us mention articles by Mawhin and Ward [7], Conti et al. [8], Omari
and Zanolin [9], Ding and Zanolin [10], Capietto and Liu [11], Iannacci and Nkashama [12],
Chu et al. [13], and the references therein.
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However, relatively little is known about the discrete analog of (1.1) of the form

Δ2u(t − 1) + λka(t)u(t) + g(t, u(t)) = h(t), t ∈ T,

u(0) = u(T), u(1) = u(T + 1),
(1.2)

where T := {1, . . . , T}, a, h : T → R with a > 0, g(t, s) : T × R → R is continuous in s. The
likely reason is that the spectrum theory of the corresponding linear problem

Δ2u(t − 1) + λka(t)u(t) = 0, t ∈ T,

u(0) = u(T), u(1) = u(T + 1)
(1.3)

was not established until [14]. In [14], Wang and Shi showed that the linear eigenvalue
problem (1.3) has exactly T real eigenvalues

μ0 < μ1 ≤ μ2 < · · · < μT−2 ≤ μT−1, when T is odd,

μ0 < μ1 ≤ μ2 < · · · ≤ μT−2 < μT−1, when T is even.
(1.4)

Suppose that these above eigenvalues have N + 1 different values λk, (k = 0, 1, . . . ,N). Then
(1.4) can be rewritten as

λ0 < λ1 < · · · < λN. (1.5)

For each λk, we denote its eigenspace by Mk. If dimMk = 1, then we assume that Mk :=
span{ψk} in which ψk is the eigenfunction of λk. If dimMk = 2, then we assume that Mk :=
span{ψk, ϕk} in which ψk and ϕk are two linearly independent eigenfunctions of λk.

It is the purpose of this paper to prove the existence results for problem (1.2) when
there occurs resonance at the eigenvalue λk and the nonlinear function g may “touching” the
eigenvalue λk+1. To have the wit, we have what follows.

Theorem 1.1. Let a, h : T → R with a > 0, g(t, s) : T × R → R is continuous in s, and for some
r∗ < 0 < R∗,

g(t, x) ≥ A(t), ∀x ≥ R∗,

g(t, x) ≤ B(t), ∀x ≤ r∗,
(1.6)

where A,B : T → R are two given functions. Suppose for some 1 ≤ k ≤ N − 1,

dimMk+1 = 2. (1.7)

Assume that for all ε > 0, there exist a constant R = R(ε) > 0 and a function b : T → R such that

∣

∣g(t, u)
∣

∣ ≤ (Γ(t) + ε)a(t)|u| + b(t), t ∈ T, |u| ≥ R, (1.8)
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where Γ : T → R is a given function satisfying

0 ≤ Γ(t) ≤ λk+1 − λk, t ∈ T, (1.9)

and for at least [T/2] + 2 points in [1, T],

Γ(t) < λk+1 − λk, (1.10)

where [r] denotes the integer part of the real number r.
Then (1.2) has at least one solution provided

T
∑

t=1

h(t)v(t) <
∑

v(t)>0

g+(t)v(t) +
∑

v(t)<0

g−(t)v(t), (1.11)

where v ∈ Mk, v /= 0, and

g+(t) = lim inf
u→+∞

g(t, u), g−(t) = lim sup
u→−∞

g(t, u). (1.12)

In [12], Iannacci and Nkashama proved the analogue of Theorem 1.1 for continuous-
time nonlinear periodic boundary value problems (1.1). Our paper is motivated by Iannacci
and Nkashama [12]. However, as we will see below, there are big differences between
the continuous case and the discrete case. The main tool we use is the Leray-Schauder
continuation theorem (see Mawhin [15, Theorem IV.5]).

Finally, we note that when a(t) ≡ 1 in (1.2), the existence of odd solutions or even
solutions was investigated by R. Ma and H. Ma [16] under some parity conditions on the
nonlinearities. The existence of solutions of second-order discrete problem at resonance was
studied by Rodriguez in [17], in which the nonlinearity is required to be bounded. For other
results on discrete boundary value problems, see Kelley and Peterson [18], Agarwal and
O’Regan [19], Rachunkova and Tisdell [20], Yu and Guo [21], Atici and Cabada [22], Bai and
Xu [23]. However, these papers do not address the problem under “asymptotic nonuniform
resonance” conditions.

2. Preliminaries

Let

̂T = {0, 1, . . . , T + 1}. (2.1)

Let

D :=
{

u : ̂T −→ R | u(0) = u(T), u(1) = u(T + 1)
}

. (2.2)
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Then D is a Hilbert space under the inner product

〈u, v〉 =
T
∑

t=1

a(t)u(t)v(t), (2.3)

and the corresponding norm is

‖u‖ :=
√

〈u, u〉 =

(

T
∑

t=1

a(t)u(t)u(t)

)1/2

. (2.4)

Thus,

〈

ψk, ϕk

〉

= 0 if dimMk = 2,
〈

ψj, ψk

〉

= 0, for j, k ∈ {0, 1, . . . ,N}, j /= k,

〈

ϕj, ϕk

〉

= 0, for j, k ∈ {0, 1, . . . ,N}, j /= k.

(2.5)

In the rest of the paper, we always assume that

∥

∥ψk

∥

∥ = 1, for k ∈ {0, 1, . . . ,N},
∥

∥ϕk

∥

∥ = 1 if dimMk = 2.
(2.6)

Define a linear operator L : D → D by

(Lu)(t) = −Δ2u(t − 1), t ∈ T,

(Lu)(0) := (Lu)(1),

(Lu)(T + 1) := (Lu)(T).

(2.7)

Lemma 2.1 (see [16]). Let u,w ∈ D. Then

T
∑

k=1

w(k)Δ2u(k − 1) = −
T
∑

k=1

Δu(k)Δw(k). (2.8)

Similar to [12, Lemma 3], we can prove the following.

Lemma 2.2 (see [12]). Suppose that
(i) there exist A,B : T → R and real numbers r < 0 < R, such that

g(t, x) ≥ A(t), ∀x ≥ R,

g(t, x) ≤ B(t), ∀x ≤ r,
(2.9)
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(ii) there exist α, β : T → [0,∞) and a constant B0 > 0 such that

∣

∣g(t, u)
∣

∣ ≤ α(t)|u| + β(t), t ∈ T, |u| ≥ B0. (2.10)

Then for each real number κ > 0, there is a decomposition

g(t, x) = qκ(t, x) + eκ(t, x) (2.11)

of g satisfying

0 ≤ xqκ(t, x), t ∈ T, x ∈ R, (2.12)
∣

∣qκ(t, u)
∣

∣ ≤ α(t)|u| + β(t) + κ, t ∈ T, |u| ≥ max{1, B0}, (2.13)

and there exists a function σκ : T → [0,∞) depending on r, R, and g such that

|eκ(t, x)| ≤ σκ(t), t ∈ T, x ∈ R. (2.14)

3. Existence of Periodic Solutions

In this section, we need to give some lemmas first, which have vital importance to prove
Theorem 1.1.

For convenience, we set

ϕk := 0, as dimMk = 1. (3.1)

Thus, for any u ∈ D, we have the following Fourier expansion:

u(t) = a0 +
N
∑

i=1

[

aiψi(t) + biϕi(t)
]

, t ∈ T. (3.2)

Let us write

u(t) = u(t) + u0(t) + ũ(t), u⊥(t) = u(t) − u0(t), (3.3)

where

u(t) = a0 +
k−1
∑

i=1

[

aiϕi(t) + biψi(t)
]

,

u0(t) = akϕk(t) + bkψk(t),

ũ(t) =
N
∑

i=k+1

[

aiϕi(t) + biψi(t)
]

.

(3.4)
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Lemma 3.1. Suppose that for 1 ≤ k ≤ N − 1, λk+1 is an eigenvalue of (1.3) of multiplicity 2. Let
Γ : T → R be a given function satisfying

0 ≤ Γ(t) ≤ λk+1 − λk, t ∈ T, (3.5)

and for at least [T/2] + 2 points in [1, T],

Γ(t) < λk+1 − λk. (3.6)

Then there exists a constant δ = δ(Γ) > 0 such that for all u ∈ D, one has

T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t) + Γ(t)a(t)u(t)
][

u(t) + u0(t) − ũ(t)
]

≥ δ
∥

∥

∥u⊥
∥

∥

∥

2
. (3.7)

Proof. For u ∈ D,

Δ2u(t − 1) = −a(t)
N
∑

i=1

[

aiλiψi(t) + biλiϕi(t)
]

. (3.8)

Taking into account the orthogonality of u, u0, and ũ in D, we have

T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t) + Γ(t)a(t)u(t)
][

u(t) + u0(t) − ũ(t)
]

=
T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t)
]

u(t) +
T
∑

t=1

Γ(t)a(t)
[

u(t) + u0(t)
]2

+
T
∑

t=1

[

Δ2ũ(t − 1) + λka(t)ũ(t) + Γ(t)a(t)ũ(t)
]

[−ũ(t)]

+
T
∑

t=1

[

Δ2u0(t − 1) + λka(t)u0(t)
]

u0(t)

=
T
∑

t=1

[

−(Δu(t))2 + λka(t)u
2(t)
]

+
T
∑

t=1

Γ(t)a(t)
[

u(t) + u0(t)
]2

+
T
∑

t=1

[

(Δũ(t))2 − λka(t)ũ2(t) − Γ(t)a(t)ũ2(t)
]

≥ (λk − λk−1)
T
∑

t=1

a(t)u2(t) +
T
∑

t=1

[Δũ(t)]2 −
T
∑

t=1

(λka(t) + Γ(t)a(t))ũ2(t).

(3.9)
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Set

Λ(u) = (λk − λk−1)
T
∑

t=1

a(t)u2(t). (3.10)

Then,

Λ(u) ≥ δ1‖u‖2, (3.11)

where δ1 is a positive constant less than λk − λk−1.
Let

ΛΓ(ũ) =
T
∑

t=1

[Δũ(t)]2 −
T
∑

t=1

(λka(t) + Γ(t)a(t))ũ2(t). (3.12)

We claim that ΛΓ(ũ) ≥ 0 with the equality holding only if ũ = A0ψk+1 +B0ϕk+1, whereA0, B0 ∈
R are constants.

In fact, we have from Lemma 2.1 that

ΛΓ(ũ) =
T
∑

t=1

[Δũ(t)]2 −
T
∑

t=1

(λka(t) + Γ(t)a(t))ũ2(t)

= −
T
∑

t=1

ũ(t)Δ2ũ(t − 1) −
T
∑

t=1

(λka(t) + Γ(t)a(t))ũ2(t)

=
T
∑

t=1

N
∑

i=k+1

[

aiψi(t) + biϕi(t)
]

N
∑

i=k+1

λia(t)
[

aiψi(t) + biϕi(t)
]

−
T
∑

t=1

(λka(t) + Γ(t)a(t))

(

N
∑

i=k+1

[

aiψi(t) + biϕi(t)
]

)2

≥
T
∑

t=1

N
∑

i=k+1

[

aiψi(t) + biϕi(t)
]

N
∑

j=k+1

λja(t)
[

ajψj(t) + bjϕj(t)
]

−
T
∑

t=1

λk+1a(t)

(

N
∑

i=k+1

[

aiψi(t) + biϕi(t)
]

)

⎛

⎝

N
∑

j=k+1

[

ajψj(t) + bjϕj(t)
]

⎞

⎠

=
N
∑

i=k+1

N
∑

j=k+1

aiajλj
T
∑

t=1

a(t)ψi(t)ψj(t) +
N
∑

i=k+1

N
∑

j=k+1

bibjλj
T
∑

t=1

a(t)ψi(t)ψj(t)

−
N
∑

i=k+1

N
∑

j=k+1

aiajλk+1
T
∑

t=1

a(t)ψi(t)ψj(t)
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−
N
∑

i=k+1

N
∑

j=k+1

bibjλk+1
T
∑

t=1

a(t)ψi(t)ψj(t)

=
N
∑

j=k+1

a2
j

(

λj − λk+1
)

+
N
∑

j=k+1

b2j
(

λj − λk+1
)

=
N
∑

j=k+1

(

a2
j + b2j

)

(

λj − λk+1
) ≥ 0.

(3.13)

Obviously, ΛΓ(ũ) = 0 implies that ak+2 = · · · = aN = bk+2 = · · · bN = 0, and accordingly
ũ(t) = A0ψk+1(t) + B0ϕk+1(t) for some A0, B0 ∈ R.

Next we prove that ΛΓ(ũ) = 0 implies ũ = 0. Suppose to the contrary that ũ /= 0.
We note that ũ has at most [T/2]+1 zeros inT. Otherwise, ũmust have two consecutive

zeros in T, and subsequently, ũ ≡ 0 in [0, T + 1] by (1.3). This is a contradiction.
Using (3.6) and the fact that ũ has at most [T/2] + 1 zeros in T, it follows that

ΛΓ(ũ) =
T
∑

t=1

(λk+1a(t) − λka(t) − Γ(t)a(t))[ũ(t)]2

=
∑

t∈T,ũ(t)/= 0

a(t)[λk+1 − λk − Γ(t)][ũ(t)]2

> 0,

(3.14)

which contradicts ΛΓ(ũ) = 0. Hence, ũ = 0.
We claim that there is a constant δ2 = δ2(Γ) > 0 such that

ΛΓ(ũ) ≥ δ2‖ũ‖2. (3.15)

Assume that the claim is not true. Then we can find a sequence {ũn} ⊂ D and ũ ∈ D,
such that, by passing to a subsequence if necessary,

0 ≤ ΛΓ(ũn) ≤ 1
n
, ‖ũn‖ = 1, (3.16)

‖ũn − ũ‖ −→ 0, n −→ ∞. (3.17)
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From (3.17), it follows that

∣

∣

∣

∣

∣

T
∑

t=1

[Δũn(t)]
2 −

T
∑

t=1

[Δũ(t)]2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T
∑

t=1

[ũn(t + 1) − ũn(t)]
2 −

T
∑

t=1

[ũ(t + 1) − ũ(t)]2
∣

∣

∣

∣

∣

≤
T
∑

t=1

∣

∣

∣ũ2
n(t + 1) − ũ2(t + 1)

∣

∣

∣ +
T
∑

t=1

∣

∣

∣ũ2
n(t) − ũ2(t)

∣

∣

∣

+ 2
T
∑

t=1

(|ũn(t)| |ũn(t + 1) − ũ(t + 1)| + |ũ(t + 1)| |ũn(t) − ũ(t)|)

−→ 0.
(3.18)

By (3.12), (3.16), and (3.17), we obtain, for n → ∞,

T
∑

t=1

[Δũn(t)]
2 −→

T
∑

t=1

(λka(t) + Γ(t)a(t))[ũ(t)]2, (3.19)

and hence

T
∑

t=1

[Δũ(t)]2 ≤
T
∑

t=1

(λka(t) + Γ(t)a(t))[ũ(t)]2, (3.20)

that is,

ΛΓ(ũ) ≤ 0. (3.21)

By the first part of the proof, ũ = 0, so that, by (3.19),
∑T

t=1[Δũn(t)]
2 → 0, a contradiction

with the second equality in (3.16).
Set δ = min{δ1, δ2} > 0 and observing that ‖u⊥‖2 = ‖ũ‖2 + ‖u‖2 the proof is complete.

Lemma 3.2. Let Γ be as in Lemma 3.1 and let δ > 0 be associated with Γ by that lemma. Let ε > 0.
Let p : T → R be a function satisfying

0 ≤ p(t) ≤ Γ(t) + ε. (3.22)

Then for all u ∈ D, one has

T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t) + p(t)a(t)u(t)
][

u(t) + u0(t) − ũ(t)
]

≥ (δ − ε)
∥

∥

∥u⊥
∥

∥

∥

2
. (3.23)
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Proof. Using the computations in the proof of Lemma 3.1 and (3.22), we obtain

T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t) + p(t)a(t)u(t)
][

u(t) + u0(t) − ũ(t)
]

=
T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t)
]

u(t) +
T
∑

t=1

p(t)a(t)
[

u(t) + u0(t)
]2

+
T
∑

t=1

[

Δ2ũ(t − 1) + λka(t)ũ(t) + p(t)a(t)ũ(t)
]

(−ũ(t))

+
T
∑

t=1

[

Δ2u0(t − 1) + λka(t)u0(t)
]

u0(t)

≥
T
∑

t=1

[

(Δũ(t))2 − (λka(t) + p(t)a(t)
)

(ũ(t))2
]

+
T
∑

t=1

[

−(Δu(t))2 + λka(t)(u(t))
2
]

≥
T
∑

t=1

[

(Δũ(t))2 − (λka(t) + Γ(t)a(t))(ũ(t))2
]

−
T
∑

t=1

εa(t)(ũ(t))2

+
T
∑

t=1

[

−(Δu(t))2 + λka(t)(u(t))
2
]

≥ δ
∥

∥

∥u⊥
∥

∥

∥

2 − ε‖ũ‖2.

(3.24)

So that, using (3.7), (3.8), the relation ũ(t) =
∑N

i=k+1[aiψi(t)+biϕi(t)], and Lemma 2.1, it follows
that

T
∑

t=1

[

Δ2u(t − 1) + λka(t)u(t) + p(t)a(t)u(t)
][

u(t) + u0(t) − ũ(t)
]

≥ (δ − ε)
∥

∥

∥u⊥
∥

∥

∥

2
. (3.25)

Proof of Theorem 1.1. The proof is motivated by Iannacci and Nkashama [12].
Let δ > 0 be associated to the function Γ by Lemma 3.1. Then, by assumption (1.8),

there exist R(δ) > 0 and b : T → R, such that

∣

∣g(t, u)
∣

∣ ≤
(

Γ(t) +
(

δ

4

))

a(t)|u| + b(t), (3.26)

for all t ∈ T and all u ∈ R with |u| ≥ R. Hence, (1.2) is equivalent to

Δ2u(t − 1) + λka(t)u(t) + q1(t, u(t)) + e1(t, u(t)) = h(t),

u(0) = u(T), u(1) = u(T + 1),
(3.27)
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where q1 and e1 satisfy (2.12) and (2.14)with κ = 1. Moreover, by (2.13)

∣

∣q1(t, u)
∣

∣ ≤
(

Γ(t) +
(

δ

4

))

a(t)|u| + b(t) + 1, t ∈ T, |u| > max{1, R}. (3.28)

Let B > max{1, R}, so that

b(t) + 1
|u| <

δ

4
a(t), t ∈ T, |u| > B. (3.29)

It follows from (3.28) and (3.29) that

0 ≤ u−1q1(t, u) ≤
(

Γ(t) +
δ

2

)

a(t), t ∈ T, |u| ≥ B. (3.30)

Define γ : T × R → R by

γ(t, u) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u−1q1(t, u), |u| ≥ B,

B
−1
q1
(

t, B
)

(

u

B

)

+
(

1 − u

B

)

Γ(t)a(t), 0 ≤ u < B,

B
−1
q1
(

t,−B
)

(

u

B

)

+
(

1 +
u

B

)

Γ(t)a(t), −B < u ≤ 0.

(3.31)

So we have

0 ≤ γ(t, u) ≤
(

Γ(t) +
δ

2

)

a(t), t ∈ T, u ∈ R. (3.32)

Define f : T × R → R

f(t, u) = e1(t, u) + q1(t, u) − γ(t, u)u. (3.33)

Then there exists ν : T → [0,∞) such that

∣

∣f(t, u)
∣

∣ ≤ ν(t), t ∈ T, u ∈ R. (3.34)

Therefore, (1.2) is equivalent to

Δ2u(t − 1) + λka(t)u(t) + γ(t, u(t))u(t) + f(t, u(t)) = h(t),

u(0) = u(T), u(1) = u(T + 1).
(3.35)
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To prove that (1.2) has at least one solution in D, it suffices, according to the Leray-
Schauder continuation method [15], to show that all of the possible solutions of the family of
equations

Δ2u(t − 1) + λka(t)u(t) +
(

1 − η
)

τa(t)u(t) + ηγ(t, u(t))u(t) + ηf(t, u(t)) = ηh(t), t ∈ T,

u(0) = u(T), u(1) = u(T + 1)
(3.36)

(in which η ∈ [0, 1], τ ∈ (0, λk+1 − λk) with τ < δ/4, τ fixed) are bounded by a constant K0

which is independent of η and u.
Notice that, by (3.32), we have

0 ≤ (1 − η
)

τa(t) + ηγ(t, u) ≤
(

Γ(t) +
δ

2

)

a(t), t ∈ T, u ∈ R. (3.37)

It is clear that for η = 0, (3.36) has only the trivial solution. Now if u ∈ D is a solution
of (3.36) for some η ∈ (0, 1), using Lemma 3.2 and Cauchy’s inequality, we obtain

0 =
T
∑

t=1

(

u(t) + u0(t) − ũ(t)
)(

Δ2u(t − 1) + λka(t)u(t) +
[(

1 − η
)

τa(t) + ηγ(t, u(t))
]

u(t)
)

+
T
∑

t=1

(

u(t) + u0(t) − ũ(t)
)

(

ηf(t, u(t)) − ηh(t)
)

≥
(

δ

2

)

∥

∥

∥u⊥
∥

∥

∥

2 − ζ
(

‖u‖ + ‖ũ‖ +
∥

∥

∥u0
∥

∥

∥

)

(‖ν‖ + ‖h‖),
(3.38)

where

ζ =

( √
T

mint∈T
√

a(t)

)2

. (3.39)

So we conclude that

0 ≥
(

δ

2

)

∥

∥

∥u⊥
∥

∥

∥

2 − β
(∥

∥

∥u⊥
∥

∥

∥ +
∥

∥

∥u0
∥

∥

∥

)

, (3.40)

for some constant β > 0, depending only on a, ν and h (but not on u or η). Taking α = βδ−1,
we get

∥

∥

∥u⊥
∥

∥

∥ ≤ α +
(

α2 + 2α
∥

∥

∥u0
∥

∥

∥

)1/2
. (3.41)
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We claim that there exists ρ > 0, independent of u and η, such that for all possible
solutions of (3.36)

‖u‖ < ρ. (3.42)

Suppose on the contrary that the claim is false. Then there exists {(ηn, un)} ⊂ (0, 1)×D
with ‖un‖ ≥ n and for all n ∈ N,

Δ2un(t − 1) + λka(t)un(t) +
(

1 − ηn
)

τa(t)un(t) + ηng(t, un(t)) = ηnh(t),

un(0) = un(T), un(1) = un(T + 1).
(3.43)

From (3.41), it can be shown that

∥

∥

∥u0
n

∥

∥

∥ −→ ∞,
∥

∥

∥u⊥
n

∥

∥

∥

(∥

∥

∥u0
n

∥

∥

∥

)−1 −→ 0, (3.44)

and accordingly, u⊥
n(‖u0

n‖)−1 is bounded in D.
Setting vn = (un/‖un‖), we have

Δ2vn(t − 1) + λka(t)vn(t) + τa(t)vn(t)

= ηn

(

h(t)
‖un‖

)

+ ηnτa(t)vn(t) − ηn

(

g(t, un(t))
‖un‖

)

, t ∈ T,

vn(0) = vn(T), vn(1) = vn(T + 1).

(3.45)

Define an operator A : D → D by

(Aw)(t) := Δ2w(t − 1) + λka(t)w(t) + τa(t)w(t), t ∈ T,

(Aw)(0) := (Aw)(T), (Aw)(1) := (Aw)(T + 1).
(3.46)

Then A−1 : D → D is completely continuous since D is finite dimensional. Now, (3.45) is
equivalent to

vn(t) = A−1
[

ηn

(

h(·)
‖un‖

)

+ ηnτa(·)vn(·) − ηn

(

g(·, un(·))
‖un‖

)]

(t), t ∈ T. (3.47)

By (3.26), it follows that {(g(·, un(·))/‖un‖} is bounded. Using (3.47), we may assume that
(taking a subsequence and relabeling if necessary) vn → v in (D, ‖ · ‖), ||v|| = 1 and v(0) =
v(T), v(1) = v(T + 1).

On the other hand, using (3.41), we deduce immediately that

∥

∥

∥v⊥
n

∥

∥

∥ −→ 0, n −→ ∞. (3.48)
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Therefore,

v(t) = akϕk(t) + bkψk(t), t ∈ ̂T. (3.49)

Rewrite vn = v0
n + v⊥

n , and let, taking a subsequence and relabeling if necessary,

v0
n −→ v∗, in D. (3.50)

Set

I+ = {t ∈ T : v∗(t) > 0}, I− = {t ∈ T : v∗(t) < 0}. (3.51)

Since u(t)/≡ 0 in T, I+ /= ∅ or I− /= ∅.
We claim that

lim
n→∞

un(t) = ∞, ∀t ∈ I+, (3.52)

lim
n→∞

un(t) = −∞, ∀t ∈ I−. (3.53)

We may assume that I+ /= ∅, and only deal with the case t ∈ I+. The other case can be
treated by similar method.

It follows from (3.50) that

∥

∥

∥v0
n − v∗

∥

∥

∥

∞
:= max

{∣

∣

∣v0
n(t) − v∗(t)

∣

∣

∣ | t ∈ T

}

−→ 0, n −→ ∞, (3.54)

which implies that for all n sufficiently large,

v0
n(t) ≥

1
2
v∗(t) > 0, ∀t ∈ I+. (3.55)

On the other hand, we have from (3.44), (3.55), and the fact ||un|| ≥ ||u0
n|| that there exists

N > 0 such that for n > N and t ∈ I+,

un(t) = u0
n(t) + u⊥

n(t) = ‖un‖
(

v0
n(t) +

u⊥
n(t)
‖un‖

)

≥ 1
2
‖un‖v0

n(t). (3.56)

This together with (3.55) implies that for n ≥ N,

un(t) ≥ 1
4
‖un‖v∗(t), t ∈ T+. (3.57)

Therefore, (3.52) holds.
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Now let us come back to (3.43). Multiplying both sides of (3.43) by v0
n and summing

from 1 to T , we get that

0 ≤ η−1
n

(

1 − ηn
)

τ
∥

∥

∥v0
n

∥

∥

∥

2
‖un‖ =

T
∑

t=1

[

h(t) − g(t, un(t))
]

v0
n(t). (3.58)

Combining this with (3.52) and (3.53), it follows that

T
∑

t=1

h(t)v∗(t) ≥
∑

v(t)>0

g+(t)v∗(t) +
∑

v(t)<0

g−(t)v∗(t). (3.59)

However, this contradicts (1.11).

Example 3.3. By [16], the eigenvalues and eigenfunctions of

Δ2y(t − 1) + λy(t) = 0,

y(0) = y(7), y(1) = y(8)
(3.60)

can be listed as follows:

λ0 = 0, ϕ0 = 1,

λ1 = 2 − 2 cos
2π
7
, ψ1(t) = sin

2πt
7

, ϕ1(t) = cos
2πt
7

,

λ2 = 2 − 2 cos
4π
7
, ψ2(t) = sin

4πt
7

, ϕ2(t) = cos
4πt
7

,

λ3 = 2 − 2 cos
6π
7
, ψ2(t) = sin

6πt
7

, ϕ2(t) = cos
6πt
7

.

(3.61)

Let us consider the nonlinear discrete periodic boundary value problem

Δ2y(t − 1) + λ1y(t) + g
(

t, y(t)
)

= h(t),

y(0) = y(7), y(1) = y(8),
(3.62)

where

g(t, s) = (λ2 − λ1) ·
∣

∣

∣

∣

sin
[

π

7

(

t +
5
2

)]∣

∣

∣

∣

·
(

s +
s

1 + s2

)

, (t, s) ∈ T × R. (3.63)

Obviously, g+(t) = +∞, g−(t) = −∞, and dimM2 = 2. If we take that

Γ(t) = (λ2 − λ1) ·
∣

∣

∣

∣

sin
[

π

7

(

t +
5
2

)]∣

∣

∣

∣

, (3.64)
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then

Γ(1) = λ2 − λ1; Γ
(

j
)

< λ2 − λ1, for j = 2, . . . , 7. (3.65)

Now, it is easy to verify that g satisfies all conditions of Theorem 1.1. Consequently, for any
7-periodic function h : Z → R, (3.62) has at least one solution.
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