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1. Introduction

The theory of time scales has become a new important mathematical branch since it was
introduced by Hilger [1]. Theoretically, the time scales approach not only unifies calculus
of differential and difference equations, but also solves other problems that are a mix of
stop start and continuous behavior. Practically, the time scales calculus has a tremendous
potential for application, for example, Thomas believes that time scales calculus is the best
way to understand Thomas models populations of mosquitoes that carry West Nile virus
[2]. In addition, Spedding have used this theory to model how students suffering from the
eating disorder bulimia are influenced by their college friends; with the theory on time scales,
they can model how the number of sufferers changes during the continuous college term as
well as during long breaks [2]. By using the theory on time scales we can also study insect
population, biology, heat transfer, stock market, epidemic models [2–6], and so forth. At the
same time, motivated by the wide application of boundary value problems in physical and
applied mathematics, boundary value problems for dynamic equations with p-Laplacian on
time scales have received lots of interest [7–16].



2 Advances in Difference Equations

In [7], Anderson et al. considered the following three-point boundary value problem
with p-Laplacian on time scales:

(
ϕp(uΔ(t))

)∇
+ c(t)f(u(t)) = 0, t ∈ (a, b),

u(a) − B0

(
uΔ(v)

)
= 0, uΔ(b) = 0,

(1.1)

where v ∈ (a, b), f ∈ Cld([0,∞), [0,∞)), c ∈ Cld([a, b], [0,∞)), and Kmx ≤ B0(x) ≤ KMx
for some positive constants Km, KM. They established the existence results for at least one
positive solution by using a fixed point theorem of cone expansion and compression of
functional type.

For the same boundary value problem, He in [8] using a new fixed point theorem due
to Avery and Henderson obtained the existence results for at least two positive solutions.

In [9], Sun and Li studied the following one-dimensional p-Laplacian boundary value
problem on time scales:

(
ϕp(uΔ(t))

)Δ
+ h(t)f(uσ(t)) = 0, t ∈ [a, b],

u(a) − B0

(
uΔ(a)

)
= 0, uΔ(σ(b)) = 0,

(1.2)

where h(t) is a nonnegative rd-continuous function defined in [a, b] and satisfies that there
exists t0 ∈ [a, b] such that h(t0) > 0, f(u) is a nonnegative continuous function defined on
[0,∞), B1x ≤ B0(x) ≤ B2x for some positive constants B1, B2. They established the existence
results for at least single, twin, or triple positive solutions of the above problem by using
Krasnosel’skii’s fixed point theorem, new fixed point theorem due to Avery and Henderson
and Leggett-Williams fixed point theorem.

For the Sturm-Liouville-like boundary value problem, in [17] Ji and Ge investigated a
class of Sturm-Liouville-like four-point boundary value problem with p-Laplacian:

(
ϕp

(
u′(t)

))′ + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) − αu′(ξ) = 0, u(1) + βu′(η) = 0,
(1.3)

where ξ < η, f ∈ C([0, 1] × [0,∞), [0,∞)). By using fixed-point theorem for operators on a
cone, they obtained some existence of at least three positive solutions for the above problem.
However, to the best of our knowledge, there has not any results concerning the similar
problems on time scales.

Motivated by the above works, in this paper we consider the following multi-point
boundary value problem on time scales:

(
ϕp

(
uΔ(t)

))Δ
+ h(t)f(u(t)) = 0, t ∈ [a, b]

T
,

αu(a) − βuΔ(ξ) = 0, γu
(
σ2(b)

)
+ δuΔ(η) = 0, uΔ(θ) = 0,

(1.4)
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where T is a time scale, ϕp(u) = |u|p−2u, p > 1, α > 0, β ≥ 0, γ > 0, δ ≥ 0, a < ξ < θ < η < b,

and we denote (ϕp)
−1 = ϕq with 1/p + 1/q = 1.

In the following, we denote [a, b] := [a, b]
T
= [a, b] ∩ T for convenience. And we list

the following hypotheses:

(C1) f(u) is a nonnegative continuous function defined on [0,∞);

(C2) h : [a, σ2(b)] → [0,∞) is rd-continuous with h · f /≡ 0.

2. Preliminaries

In this section, we provide some background material to facilitate analysis of problem (1.4).
Let the Banach space E = {u : [a, σ2(b)] → R is rd-continuous} be endowed with the

norm ‖u‖ = supt∈[a,σ2(b)]|u(t)| and choose the cone P ⊂ E defined by

P =
{
u ∈ E : u(t) ≥ 0, t ∈

[
a, σ2(b)

]
, uΔΔ(t) ≤ 0, t ∈ [a, b]

}
. (2.1)

It is easy to see that the solution of BVP (1.4) can be expressed as

u(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫ t

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs, a ≤ t ≤ θ,

δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

t

ϕq

(∫ s

θ

h(r)f(u(r))Δr

)
Δs, θ ≤ t ≤ σ2(b).

(2.2)

If V1 = V2,where

V1 =
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs,

V2 =
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs,

(2.3)

we define the operator A : P → E by

Au(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫ t

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs, a ≤ t ≤ θ,

δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

t

ϕq

(∫ s

θ

h(r)f(u(r))Δr

)
Δs, θ ≤ t ≤ σ2(b).

(2.4)
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It is easy to see ‖u‖ = u(θ), Au(t) ≥ 0 for t ∈ [a, σ2(b)], and if Au(t) = u(t), then u(t) is
the positive solution of BVP (1.4).

From the definition of A, for each u ∈ P, we have Au ∈ P, and ‖Au‖ = Au(θ).
In fact,

(Au)Δ(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕq

(∫θ

t

h(r)f(u(r))Δr

)
≥ 0, a ≤ t ≤ θ,

−ϕq

(∫ t

θ

h(r)f(u(r))Δr

)
≤ 0, θ ≤ t ≤ σ2(b)

(2.5)

is continuous and nonincreasing in [a, σ2(b)]. Moreover, ϕq(x) is a monotone increasing
continuously differentiable function,

(∫θ

t

h(s)f(u(s))Δs

)Δ

=

(
−
∫ t

θ

h(s)f(u(s))Δs

)Δ

= −h(t)f(u(t)) ≤ 0, (2.6)

then by the chain rule on time scales, we obtain

(Au)ΔΔ(t) ≤ 0, (2.7)

so, A : P → P.
For the notational convenience, we denote

L1 =
(
β

α
+ θ − a

)
ϕq

(∫θ

a

h(r)Δr

)
,

L2 =
(
δ

γ
+ σ2(b) − θ

)
ϕq

(∫σ2(b)

θ

h(r)Δr

)
,

M1 =
β

α
ϕq

(∫θ

ξ

h(r)Δr

)
+
∫θ

ξ

ϕq

(∫θ

s

h(r)Δr

)
Δs,

M2 =
δ

γ
ϕq

(∫η

θ

h(r)Δr

)
+
∫η

θ

ϕq

(∫s

θ

h(r)Δr

)
Δs,

M3 = min

{
ξ − a

θ − a
,
σ2(b) − η

σ2(b) − θ

}
,

M4 = max

{
θ − a

ξ − a
,
σ2(b) − θ

σ2(b) − η

}
.

(2.8)
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Lemma 2.1. A : P → P is completely continuous.

Proof. First, we show that A maps bounded set into bounded set.
Assume that c > 0 is a constant and u ∈ Pc. Note that the continuity of f guarantees

that there exists K > 0 such that f(u) ≤ ϕp(K). So

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≤ β

α
ϕq

(∫θ

a

h(r)ϕp(K)Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)ϕp(K)Δr

)
Δs

= K

(
β

α
+ θ − a

)
ϕq

(∫θ

a

h(r)Δr

)

= KL1,

‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

ξ

h(r)ϕp(K)Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)ϕp(K)Δr

)
Δs

= K

(
δ

γ
+ σ2(b) − θ

)
ϕq

(∫σ2(b)

θ

h(r)Δr

)

= KL2.

(2.9)

That is, APc is uniformly bounded. In addition, it is easy to see

|Au(t1) −Au(t2)| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C|t1 − t2|ϕq

(∫θ

a

h(r)Δr

)
, t1, t2 ∈ [a, θ],

C|t1 − t2|ϕq

(∫σ2(b)

a

h(r)Δr

)
, t1 ∈ [a, θ], t2 ∈

[
θ, σ2(b)

]

or t2 ∈ [a, θ], t1 ∈
[
θ, σ2(b)

]
,

C|t1 − t2|ϕq

(∫σ2(b)

θ

h(r)Δr

)
, t1, t2 ∈ [a, θ].

(2.10)
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So, by applying Arzela-Ascoli Theorem on time scales, we obtain thatAPc is relatively
compact.

Second, we will show that A : Pc → P is continuous. Suppose that {un}∞n=1 ⊂ Pc and
un(t) converges to u0(t) uniformly on [a, σ2(b)]. Hence, {Aun(t)}∞n=1 is uniformly bounded
and equicontinuous on [a, σ2(b)]. The Arzela-Ascoli Theorem on time scales tells us that there
exists uniformly convergent subsequence in {Aun(t)}∞n=1. Let {Aunl(t)}∞l=1 be a subsequence
which converges to v(t) uniformly on [a, σ2(b)]. In addition,

0 ≤ Aun(t) ≤ min{KL1, KL2}. (2.11)

Observe that

Aun(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β

α
ϕq

(∫θ

ξ

h(r)f(un(r))Δr

)
+
∫ t

a

ϕq

(∫θ

s

h(r)f(un(r))Δr

)
Δs, a ≤ t ≤ θ,

δ

γ
ϕq

(∫η

θ

h(r)f(un(r))Δr

)
+
∫σ2(b)

t

ϕq

(∫ s

θ

h(r)f(un(r))Δr

)
Δs, θ ≤ t ≤ σ2(b).

(2.12)

Inserting unl into the above and then letting l → ∞, we obtain

v(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β

α
ϕq

(∫θ

ξ

h(r)f(u0(r))Δr

)
+
∫ t

a

ϕq

(∫θ

s

h(r)f(u0(r))Δr

)
Δs, a ≤ t ≤ θ,

δ

γ
ϕq

(∫η

θ

h(r)f(u0(r))Δr

)
+
∫σ2(b)

t

ϕq

(∫ s

θ

h(r)f(u0(r))Δr

)
Δs, θ ≤ t ≤ σ2(b),

(2.13)

here we have used the Lebesgues dominated convergence theorem on time scales. From the
definition of A, we know that v(t) = Au0(t) on [a, σ2(b)]. This shows that each subsequence
of {Aun(t)}∞n=1 uniformly converges toAu0(t). Therefore, the sequence {Aun(t)}∞n=1 uniformly
converges to Au0(t). This means that A is continuous at u0 ∈ Pc. So, A is continuous on Pc

since u0 is arbitrary. Thus, A is completely continuous.
The proof is complete.

Lemma 2.2. Let u ∈ P, then u(t) ≥ ((t − a)/(θ − a))‖u‖ for t ∈ [a, θ], and u(t) ≥ ((σ2(b) −
t)/(σ2(b) − θ))‖u‖ for t ∈ [θ, σ2(b)].

Proof. Since uΔΔ(t) ≤ 0, it follows that uΔ(t) is nonincreasing. Hence, for a < t < θ,

u(t) − u(a) =
∫ t

a

uΔ(s)Δs ≥ (t − a)uΔ(t),

u(θ) − u(t) =
∫θ

t

uΔ(s)Δs ≤ (θ − t)uΔ(t),

(2.14)
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from which we have

u(t) ≥ u(a)(θ − t) + (t − a)u(θ)
θ − a

≥ t − a

θ − a
u(θ) =

t − a

θ − a
‖u‖. (2.15)

For θ ≤ t ≤ σ2(b),

u
(
σ2(b)

)
− u(t) =

∫σ2(b)

t

uΔ(s)Δs ≤
(
σ2(b) − t

)
uΔ(t),

u(t) − u(θ) =
∫ t

θ

uΔ(s)Δs ≥ (t − θ)uΔ(t),

(2.16)

we know

u(t) ≥
(
σ2(b) − t

)
u(θ) + (t − θ)u

(
σ2(b)

)

σ2(b) − θ
≥ σ2(b) − t

σ2(b) − θ
u(θ) =

σ2(b) − t

σ2(b) − θ
‖u‖. (2.17)

The proof is complete.

Lemma 2.3 ([18]). Let P be a cone in a Banach space E. Assum that Ω1, Ω2 are open subsets of E
with 0 ∈ Ω1, Ω1 ⊂ Ω2. If

A : P ∩
(
Ω2 \Ω1

)
−→ P (2.18)

is a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2 \Ω1).

3. Main Results

In this section, we present our main results with respect to BVP (1.4).
For the sake of convenience, we define f0 = limu→ 0+(f(u)/ϕp(u)), f∞ =

limu→∞(f(u)/ϕp(u)), i0 = number of zeros in the set {f0, f∞}, and i∞ = number of ∞ in
the set {f0, f∞}.

Clearly, i0, i∞ = 0, 1, or 2 and there are six possible cases:

(i) i0 = 0 and i∞ = 0;

(ii) i0 = 0 and i∞ = 1;

(iii) i0 = 0 and i∞ = 2;
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(iv) i0 = 1 and i∞ = 0;

(v) i0 = 1 and i∞ = 1;

(vi) i0 = 2 and i∞ = 0.

Theorem 3.1. BVP (1.4) has at least one positive solution in the case i0 = 1 and i∞ = 1.

Proof. First, we consider the case f0 = 0 and f∞ = ∞. Since f0 = 0, then there exists H1 > 0
such that f(u) ≤ ϕp(ε)ϕp(u) = ϕp(εu), for 0 < u ≤ H1,where ε satisfies

max{εL1, εL2} ≤ 1. (3.1)

If u ∈ P,with ‖u‖ = H1, then

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≤ β

α
ϕq

(∫θ

a

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)f(u(r))Δr

)
Δs

≤ β

α
ϕq

(∫θ

a

h(r)ϕp(ε‖u‖)Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)ϕp(ε‖u‖)Δr

)
Δs

= ‖u‖εL1

≤ ‖u‖,
‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)f(u(r))Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

θ

h(r)ϕp(ε‖u‖)Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)ϕp(ε‖u‖)Δr

)
Δs

= ‖u‖εL2

≤ ‖u‖.

(3.2)

It follows that if ΩH1 = {u ∈ E : ‖u‖ < H1}, then ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂ΩH1 .
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Since f∞ = ∞, then there exists H ′
2 > 0 such that f(u) ≥ ϕp(k)ϕp(u) = ϕp(ku), for

u ≥ H ′
2,where k > 0 is chosen such that

min

{
k
ξ − a

θ − a
M1, k

σ2(b) − η

σ2(b) − θ
M2

}
≥ 1. (3.3)

Set H2 = max{2H1, ((θ − a)/(ξ − a))H ′
2, ((σ

2(b) − θ)/(σ2(b) − η))H ′
2}, and ΩH2 = {u ∈

E : ‖u‖ < H2}.
If u ∈ P with ‖u‖ = H2, then

min
t∈[ξ,θ]

u(t) = u(ξ) ≥ ξ − a

θ − a
‖u‖ ≥ H ′

2,

min
t∈[θ,η]

u(t) = u
(
η
) ≥ σ2(b) − η

σ2(b) − θ
‖u‖ ≥ H ′

2.

(3.4)

So that

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≥ β

α
ϕq

(∫θ

ξ

h(r)ϕp(ku)Δr

)
+
∫θ

ξ

ϕq

(∫θ

s

h(r)ϕp(ku)Δr

)
Δs

≥ β

α
ϕq

(∫θ

ξ

h(r)ϕp

(
k
ξ − a

θ − a
‖u‖

)
Δr

)
+
∫θ

ξ

ϕq

(∫θ

s

h(r)ϕp

(
k
ξ − a

θ − a
‖u‖

)
Δr

)
Δs

= ‖u‖k ξ − a

θ − a
M1

≥ ‖u‖,

‖Au‖ = Au(θ) =
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≥ δ

γ
ϕq

(∫η

θ

h(r)ϕp

(
k
σ2(b) − η

σ2(b) − θ
‖u‖

)
Δr

)
+
∫η

θ

ϕq

(∫s

θ

h(r)ϕp

(
k
σ2(b) − η

σ2(b) − θ
‖u‖

)
Δr

)
Δs

= ‖u‖kσ
2(b) − η

σ2(b) − θ
M2

≥ ‖u‖.
(3.5)
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In other words, if u ∈ P ∩ ∂ΩH2 , then ‖Au‖ ≥ ‖u‖. Thus by (i) of Lemma 2.3, it follows
that A has a fixed point in P ∩ (ΩH2 \ΩH1)with H1 ≤ ‖u‖ ≤ H2.

Now we consider the case f0 = ∞ and f∞ = 0. Since f0 = ∞, there exists H3 > 0, such
that f(u) ≥ ϕp(m)ϕp(u) = ϕp(mu) for 0 < u ≤ H3, where m is such that

min

{
mM1

ξ − a

θ − a
, mM2

σ2(b) − η

σ2(b) − θ

}
≥ 1. (3.6)

If u ∈ P with ‖u‖ = H3, then we have

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≥ β

α
ϕq

(∫θ

ξ

h(r)ϕp

(
m

ξ − a

θ − a
‖u‖

)
Δr

)
+
∫θ

ξ

ϕq

(∫θ

s

h(r)ϕp

(
m

ξ − a

θ − a
‖u‖

)
Δr

)
Δs

= ‖u‖mξ − a

θ − a
M1

≥ ‖u‖,
‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≥ δ

γ
ϕq

(∫η

θ

h(r)ϕp

(
m
σ2(b)−η
σ2(b)−θ ‖u‖

)
Δr

)
+
∫η

θ

ϕq

(∫ s

θ

h(r)ϕp

(
m
σ2(b) − η

σ2(b) − θ
‖u‖

)
Δr

)
Δs

= ‖u‖mσ2(b) − η

σ2(b) − θ
M2

≥ ‖u‖.
(3.7)

Thus, we let ΩH3 = {u ∈ E : ‖u‖ < H3}, so that ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂ΩH3 .
Next consider f∞ = 0. By definition, there exists H ′

4 > 0 such that f(u) ≤ ϕp(ε)ϕp(u) =
ϕp(εu) for u ≥ H ′

4, where ε > 0 satisfies

max{εL1, εL2} ≤ 1. (3.8)
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Suppose f is bounded, then f(u) ≤ ϕp(K) for all u ∈ [0,∞), pick

H4 = max{2H3, KL1, KL2}. (3.9)

If u ∈ P with ‖u‖ = H4, then

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≤ β

α
ϕq

(∫θ

a

h(r)ϕp(K)Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)ϕp(K)Δr

)
Δs

= KL1

≤ H4

= ‖u‖,

‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫ s

θ

h(r)f(u(r))Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

θ

h(r)ϕp(K)Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)ϕp(K)Δr

)
Δs

= KL2

≤ H4

= ‖u‖.

(3.10)

Now suppose f is unbounded. From condition (C1), it is easy to know that there exists
H4 ≥ max{2H3,H4} such that f(u) ≤ f(H4) for 0 ≤ u ≤ H4. If u ∈ P with ‖u‖ = H4, then by
using (3.8)we have

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≤ β

α
ϕq

(∫θ

a

h(r)f(H4)Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)f(H4)Δr

)
Δs
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≤ β

α
ϕq

(∫θ

a

h(r)ϕp(εH4)Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)ϕp(εH4)Δr

)
Δs

= H4εL1

≤ H4

= ‖u‖,

‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

θ

h(r)f(H4)Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)f(H4)Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

θ

h(r)ϕp(εH4)Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)ϕp(εH4)Δr

)
Δs

= H4εL2

≤ H4

= ‖u‖.
(3.11)

Consequently, in either case we take

ΩH4 = {u ∈ E : ‖u‖ < H4}, (3.12)

so that for u ∈ P ∩ ∂ΩH4 , we have ‖Au‖ ≥ ‖u‖. Thus by (ii) of Lemma 2.3, it follows that A
has a fixed point u in P ∩ (ΩH4 \ΩH3)withH3 ≤ ‖u‖ ≤ H4.

The proof is complete.

Theorem 3.2. Suppose i0 = 0, i∞ = 1, and the following conditions hold,

(C3): there exists constant p′ > 0 such that f(u) ≤ ϕp(p′A1) for 0 ≤ u ≤ p′, where

A1 = min
{
L−1
1 , L−1

2

}
, (3.13)
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(C4): there exists constant q′ > 0 such that f(u) ≥ ϕp(q′A2) for u ∈ [M3q
′,M3], where

A2 = max
{
M−1

1 ,M−1
2

}
, (3.14)

furthermore, p′ /= q′. Then BVP (1.4) has at least one positive solution u, such that ‖u‖ lies between p′

and q′.

Proof. Without loss of generality, we may assume that p′ < q′.
Let Ωp′ = {u ∈ E : ‖u‖ < p′}, for any u ∈ P ∩ ∂Ωp′ . In view of (C3) we have

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≤ β

α
ϕq

(∫θ

a

h(r)ϕp

(
p′A1

)
Δr

)
+
∫θ

a

ϕq

(∫θ

a

h(r)ϕp

(
p′A1

)
Δr

)
Δs

= p′A1L1

≤ p′,

‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≤ δ

γ
ϕq

(∫σ2(b)

θ

h(r)ϕp

(
p′A1

)
Δr

)
+
∫σ2(b)

θ

ϕq

(∫σ2(b)

θ

h(r)ϕp

(
p′A1

)
Δr

)
Δs

= p′A1L2

≤ p′,

(3.15)

which yields

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp′ . (3.16)

Now set Ωq′ = {u ∈ E : ‖u‖ < q′} for u ∈ P ∩ ∂Ωq′ , we have

ξ − a

θ − a
q′ ≤ u(t) ≤ q′ for t ∈ [ξ, θ],

σ2(b) − η

σ2(b) − θ
q′ ≤ u(t) ≤ q′ for t ∈ [

θ, η
]
.

(3.17)
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Hence by condition (C4),we can get

‖Au‖ = Au(θ)

=
β

α
ϕq

(∫θ

ξ

h(r)f(u(r))Δr

)
+
∫θ

a

ϕq

(∫θ

s

h(r)f(u(r))Δr

)
Δs

≥ β

α
ϕq

(∫θ

ξ

h(r)ϕp

(
q′A2

)
Δr

)
+
∫θ

ξ

ϕq

(∫θ

s

h(r)ϕp

(
q′A2

)
Δr

)
Δs

= q′A2M1

≥ q′,

‖Au‖ = Au(θ)

=
δ

γ
ϕq

(∫η

θ

h(r)f(u(r))Δr

)
+
∫σ2(b)

θ

ϕq

(∫s

θ

h(r)f(u(r))Δr

)
Δs

≥ δ

γ
ϕq

(∫η

θ

h(r)ϕp

(
q′A2

)
Δr

)
+
∫η

θ

ϕq

(∫s

θ

h(r)ϕp

(
q′A2

))
Δs

= q′A2M2

≥ q′.

(3.18)

So if we take Ωq′ = {u ∈ E : ‖u‖ < q′}, then

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ωq′ . (3.19)

Consequently, in view of p′ < q′, (3.16), and (3.19), it follows from Lemma 2.3 that A has a
fixed point u in P ∩ (Ωq′ \Ωp′).Moreover, it is a positive solution of (1.4) and p′ < u < q′.

The proof is complete.

For the case i0 = 1, i∞ = 0 or i0 = 0, i∞ = 1 we have the following results.

Theorem 3.3. Suppose that f0 ∈ [0, ϕp(A1)) and f∞ ∈ (ϕp(M4A2),∞) hold. Then BVP (1.4) has
at least one positive solution.

Proof. It is easy to see that under the assumptions, the conditions (C3) and (C4) in Theorem 3.2
are satisfied. So the proof is easy and we omit it here.

Theorem 3.4. Suppose that f0 ∈ (ϕp(M4A2),∞) and f∞ ∈ [0, ϕp(A1)) hold. Then BVP (1.4) has
at least one positive solution.

Proof. Since f0 ∈ (ϕp(M4A2),∞), for ε = f0 −ϕp(((θ−a)/(ξ−a))A2), there exists a sufficiently
small q′1 such that

f(u)
ϕp(u)

≥ f0 − ε = ϕp

(
θ − a

ξ − a
A2

)
, u ∈ (

0, q′1
]
. (3.20)
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Thus, if u ∈ (((ξ − a)/(θ − a))q′1, q
′
1], then we have

f(u) ≥ ϕp(u)ϕp

(
θ − a

ξ − a
A2

)
≥ ϕp

(
q′1A2

)
; (3.21)

by the similar method, one can get if u ∈ [((σ2(b) − η)/(σ2(b) − θ))q′2, q
′
2], then

f(u) ≥ ϕp(u)ϕp

(
σ2(b) − θ

σ2(b) − η
A2

)
≥ ϕp

(
q′2A2

)
. (3.22)

So, if we choose q′ = min{q′1, q′2}, then for u ∈ [M3q
′, q′], we have f(u) ≥ ϕp(q′A2),

which yields condition (C4) in Theorem 3.2.
Next, by f∞ ∈ [0, ϕp(A1)), for ε = ϕp(A1) − f∞, there exists a sufficiently large p′′(> q′)

such that

f(u)
ϕp(u)

≤ f∞ + ε = ϕp(A1), u ∈ [
p′′,∞)

, (3.23)

where we consider two cases.

Case 1. Suppose that f is bounded, say

f(u) ≤ ϕp(K), u ∈ [0,∞). (3.24)

In this case, take sufficiently large p′ such that p′ ≥ max{K/A1, p
′′}, then from (3.24), we know

f(u) ≤ ϕp(K) ≤ ϕp(A1p
′) for u ∈ (0, p′],which yields condition (C3) in Theorem 3.2.

Case 2. Suppose that f is unbounded. it is easy to know that there is p′ > p′′ such that

f(u) ≤ f
(
p′
)
, u ∈ [

0, p′
]
. (3.25)

Since p′ > p′′ then from (3.23) and (3.25), we get

f(u) ≤ f
(
p′
) ≤ ϕp

(
p′A1

)
, u ∈ [

0, p′
]
. (3.26)

Thus, the condition (C3) of Theorem 3.2 is satisfied.

Hence, from Theorem 3.2, BVP (1.4) has at least one positive solution.
The proof is complete.

From Theorems 3.3 and 3.4, we have the following two results.

Corollary 3.5. Suppose that f0 = 0 and the condition (C4) in Theorem 3.2 hold. Then BVP (1.4) has
at least one positive solution.
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Corollary 3.6. Suppose that f∞ = 0 and the condition (C4) in Theorem 3.2 hold. Then BVP (1.4)
has at least one positive solution.

Theorem 3.7. Suppose that f0 ∈ (0, ϕp(A1)) and f∞ = ∞ hold. Then BVP (1.4) has at least one
positive solution.

Proof. In view of f∞ = ∞, similar to the first part of Theorem 3.1, we have

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂ΩH2 . (3.27)

Since f0 ∈ (0, ϕp(A1)), for ε = ϕp(A1)−f0 > 0, there exists a sufficiently small p′ ∈ (0,H2) such
that

f(u) ≤ (
f0 + ε

)
ϕp(u) = ϕp(A1u) ≤ ϕp

(
A1p

′), u ∈ [
0, p′

]
. (3.28)

Similar to the proof of Theorem 3.2, we obtain

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ωp′ . (3.29)

The result is obtained, and the proof is complete.

Theorem 3.8. Suppose that f∞ ∈ (0, ϕp(A1)) and f0 = ∞ hold. Then BVP (1.4) has at least one
positive solution.

Proof. Since f0 = ∞, similar to the second part of Theorem 3.1, we have ‖Au‖ ≥ ‖u‖ for
u ∈ P ∩ ∂ΩH3 .

By f∞ ∈ (0, ϕp(A1)), similar to the second part of proof of Theorem 3.4, we have
‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp′ , where p′ > H3. Thus BVP (1.4) has at least one positive
solution.

The proof is complete.

From Theorems 3.7 and 3.8, we can get the following corollaries.

Corollary 3.9. Suppose that f∞ = ∞ and the condition (C3) in Theorem 3.2 hold. Then BVP (1.4)
has at least one positive solution.

Corollary 3.10. Suppose that f0 = ∞ and the condition (C3) in Theorem 3.2 hold. Then BVP (1.4)
has at least one positive solution.

Theorem 3.11. Suppose that i0 = 0, i∞ = 2, and the condition (C3) of Theorem 3.2 hold. Then BVP
(1.4) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < p′ < ‖u2‖.

Proof. By using the method of proving Theorems 3.1 and 3.2, we can deduce the conclusion
easily, so we omit it here.

Theorem 3.12. Suppose that i0 = 2, i∞ = 0, and the condition (C4) of Theorem 3.2 hold. Then BVP
(1.4) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < q′ < ‖u2‖.
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Proof. Combining the proofs of Theorems 3.1 and 3.2, the conclusion is easy to see, and we
omit it here.

4. Applications and Examples

In this section, we present a simple example to explain our result. When T = R,

u′∣∣u′∣∣ = (1 − t)(4 − arctanu), 0 < t < 1,

u(0) = u′
(
1
4

)
, u(1) = −u′

(
1
2

)
,

(4.1)

where, p = 3, α = β = γ = δ = 1, h(t) = 1 − t, f(u) = 4 − arctanu.
It is easy to see that the condition (C1) and (C2) are satisfied and

f0 = lim
u→ 0+

f(u)
ϕp(u)

= ∞, f∞ = lim
u→∞

f(u)
ϕp(u)

= 0. (4.2)

So, by Theorem 3.1, the BVP (4.1) has at least one positive solution.
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