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Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained
by periodic vector sequences generated by logical neural networks. Such sequences can
mathematically be described by “doubly periodic traveling waves” and therefore it is of interest to
propose dynamic models that may produce such waves. One such dynamic network model is built
here based on reaction-diffusion principles and a complete discussion is given for the existence
of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori
unknown parameters involved in our search of solutions, our results are nontrivial. The reaction
term in our model is a linear function and hence our results can also be interpreted as existence
criteria for solutions of a nontrivial linear problem depending on 6 parameters.
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1. Introduction

Szekely in [1] studied the locomotion of salamanders and showed that a bipolar neural
network may generate dynamic rhythms that mimic the “sequential” contraction and
relaxation of four muscle pools that govern the movements of these animals. What is
interesting is that we may explain the correct sequential rhythm by means of the transition of
state values of four different (artificial) neurons and the sequential rhythm can be explained
in terms of an 8-periodic vector sequence and subsequently in terms of a “doubly periodic
traveling wave solution” of the dynamic bipolar cellular neural network.

Similar dynamic (locomotive) patterns can be observed in many animal behaviors and
therefore we need not repeat the same description in [1]. Instead, we may use “simplified”
snorkeling or walking patterns to motivate our study here. When snorkeling, we need to
float on water with our faces downward, stretch out our arms forward, and expand our legs
backward. Then our legs must move alternatively. More precisely, one leg kicks downward
and another moves upward alternatively.

Let v0 and v1 be two neuron pools controlling our right and left legs, respectively, so
that our leg moves upward if the state value of the corresponding neuron pool is 1, and
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Figure 1: Doubly periodic traveling wave.

downward if the state value of the corresponding neuron pool is −1. Let v
(t)
0 and v

(t)
1 be

the state values of v0 and v1 during the time stage t, where t ∈ N = {0, 1, 2, . . .}. Then the
movements of our legs in terms of (v(t)

0 , v
(t)
1 ), t ∈ N, will form a 2-periodic sequential pattern

(−1, 1) −→ (1,−1) −→ (−1, 1) → (1,−1) −→ · · · (1.1)

or

(1,−1) −→ (−1, 1) −→ (1,−1) −→ (1, 1) −→ · · · . (1.2)

If we set v(t)
i = v

(t)
i mod 2 for any t ∈ N and i ∈ Z = {0,±1,±2, . . .}, then it is easy to check

that

v
(t+1)
i = v

(t)
i+1 ∀i ∈ Z, t ∈ N

(
temporal-spatial transition condition

)
,

v
(t+2)
i = v

(t)
i ∀i ∈ Z, t ∈ N

(
temporal periodicity condition

)
,

v
(t)
i = v

(t)
i+2 ∀i ∈ Z, t ∈ N

(
spatial periodicity condition

)
.

(1.3)

Such a sequence {v(t)
i } may be called a “doubly periodic traveling wave” (see Figure 1).

Now we need to face the following important issue (as in neuromorphic engineering).
Can we build artificial neural networks which can support dynamic patterns similar to
{(v(t)

0 , v
(t)
1 )}

t∈N? Besides this issue, there are other related questions. For example, can we
build (nonlogical) networks that can support different types of graded dynamic patterns
(remember an animal can walk, run, jump, and so forth, with different strength)?

To this end, in [2], we build a (nonlogical) neural network and showed the exact
conditions such doubly periodic traveling wave solutions may or may not be generated by
it. The network in [2] has a linear “diffusion part” and a nonlinear “reaction part.” However,
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the reaction part consists of a quadratic polynomial so that the investigation is reduced to
a linear and homogeneous problem. It is therefore of great interests to build networks with
general polynomials as reaction terms. This job is carried out in two stages. The first stage
results in the present paper and we consider linear functions as our reaction functions. In
a subsequent paper, as a report of the second stage investigation, we consider polynomials
with more general form (see the statement after (2.11)).

2. The Model

We briefly recall the diffusion-reaction network in [2]. In the following, we set N =
{0, 1, 2, . . .},Z = {. . . ,−2,−1, 0, 1, 2, . . .} and Z

+ = {1, 2, 3, . . .}. For any x ∈ R, we also use [x] to
denote the greatest integer part of x. Suppose that v0, . . . , vΥ−1 are neuron pools, where Υ ≥ 1,
placed (in a counterclockwise manner) on the vertices of a regular polygon such that each
neuron pool vi has exactly two neighbors, vi−1 and vi+1, where i ∈ {0, . . . ,Υ − 1}. For the sake
of convenience, we have set v0 = v−1 and v1 = vΥ to reflect the fact that these neuron pools
are placed on the vertices of a regular polygon. For the same reason, we define vi = vi mod Υ

for any i ∈ Z and let each v
(t)
i be the state value of the ith unit vi in the time period t ∈ N.

During the time period t, if the value v
(t)
i of the ith unit is higher than v

(t)
i−1, we assume that

“information” will flow from the ith unit to its neighbor. The subsequent change of the state
value of the ith unit is v

(t+1)
i − v

(t)
i , and it is reasonable to postulate that it is proportional to

the difference v
(t)
i − v

(t)
i−1, say, α(v(t)

i − v
(t)
i−1), where α is a proportionality constant. Similarly,

information is assumed to flow from the (i + 1)-unit to the ith unit if v(t)
i+1 > v

(t)
i . Thus, it is

reasonable that the total effect is

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i−1 − v

(t)
i

)
+ α

(
v
(t)
i+1 − v

(t)
i

)
= α

(
v
(t)
i+1 − 2v(t)

i + v
(t)
i−1

)
, i ∈ Z, t ∈ N. (2.1)

If we now assume further that a control or reaction mechanism is imposed, a slightly more
complicated nonhomogeneous model such as the following

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i+1 − v

(t)
i

)
+ α

(
v
(t)
i−1 − v

(t)
i

)
+ g

(
v
(t)
i

)
∀i ∈ Z, t ∈ N (2.2)

may result. In the above model, we assume that g is a function and α ∈ R.
The existence and uniqueness of (real) solutions of (2.2) is easy to see. Indeed, if the

(real) initial distribution {v(0)
i }

i∈Z is known, then we may calculate successively the sequence

v
(1)
−1 , v

(1)
0 , v

(1)
1 ;v(1)

−2 , v
(2)
−1 , v

(2)
0 , v

(2)
1 , v

(1)
2 , . . . (2.3)
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in a unique manner, which will give rise to a unique solution {v(t)
i }

t∈N,i∈Z of (2.2). Motivated
by our example above, we want to find solutions that satisfy

v
(t+τ)
i = v

(t)
i+δ ∀i ∈ Z, t ∈ N, (2.4)

v
(t+Δ)
i = v

(t)
i ∀i ∈ Z, t ∈ N, (2.5)

v
(t)
i = v

(t)
i+Υ ∀i ∈ Z, t ∈ N, (2.6)

where τ,Δ,Υ ∈ Z
+ and δ ∈ Z. It is clear that equations in (1.3) are special cases of (2.4), (2.5),

and (2.6), respectively.
Suppose that v = {v(t)

i } is a double sequence satisfying (2.4) for some τ ∈ Z
+ and δ ∈ Z.

Then it is clear that

v
(t+kτ)
i = v

(t)
i+kδ for any i ∈ Z, t ∈ N, (2.7)

where k ∈ Z
+. Hence when we want to find any solution {v(t)

i } of (2.2) satisfying (2.4), it is
sufficient to find the solution of (2.2) satisfying

v
(t+τ/q)
i = v

(t)
i+δ/q, (2.8)

where q is the greatest common divisor (τ, δ) of τ and δ. For this reason, we will pay attention
to the condition that (τ, δ) = 1. Formally, given any τ ∈ Z

+ and δ ∈ Z with (τ, δ) = 1, a real
double sequence {v(t)

i }
t∈N,i∈Z is called a traveling wave with velocity −δ/τ if

v
(t+τ)
i = v

(t)
i+δ, t ∈ N, i ∈ Z. (2.9)

In case δ = 0 and τ = 1, our traveling wave is also called a standing wave.
Next, recall that a positive integer ω is called a period of a sequence ϕ = {ϕm} if

ϕm+ω = ϕm for all m ∈ Z. Furthermore, if ω ∈ Z
+ is the least among all periods of a sequence

ϕ, then ϕ is said to be ω-periodic. It is clear that if a sequence ϕ is periodic, then the least
number of all its (positive) periods exists. It is easy to see the following relation between the
least period and a period of a periodic sequence.

Lemma 2.1. If y = {yi} is ω-periodic and ω1 is a period of y, then ω is a factor of ω1, or ω mod
ω1 = 0.

We may extend the above concept of periodic sequences to double sequences. Suppose
that v = {v(t)

i } is a real double sequence. If ξ ∈ Z
+ such that v(t)

i+ξ = v
(t)
i for all i and t, then ξ

is called a spatial period of v. Similarly, if η ∈ Z
+ such that v(t+η)

i = v
(t)
i for all i and t, then η

is called a temporal period of v. Furthermore, if ξ is the least among all spatial periods of v,
then v is called spatial ξ-periodic, and if η is the least among all temporal periods of v, then v
is called temporal η-periodic.

In seeking solutions of (2.2) that satisfy (2.5) and (2.6), in view of Lemma 2.1, there
is no loss of generality to assume that the numbers Δ and Υ are the least spatial and the
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least temporal periods of the sought solution. Therefore, from here onward, we will seek
such doubly-periodic traveling wave solutions of (2.2). More precisely, given any function
g, α ∈ R, δ ∈ Z and Δ,Υ, τ ∈ Z

+ with (τ, δ) = 1, in this paper, we will mainly be concerned
with the traveling wave solutions of (2.2) with velocity −δ/τ which are also spatial Υ-periodic
and temporal Δ-periodic. For convenience, we call such solutions (Δ,Υ)-periodic traveling
wave solutions of (2.2) with velocity −δ/τ.

In general, the control function g in (2.2) can be selected in many different ways. But
naturally, we should start with the trivial polynomial and general polynomials of the form

g(x) = κf(x) := κ(x − r1)(x − r2) · · · (x − rn), (2.10)

where r1, r2, . . . , rn are real numbers, and κ is a real parameter. In [2], the trivial polynomial
and the quadratic polynomial f(x) = x2 are considered. In this paper, we will consider the
linear case, namely,

f(x) = 1 for x ∈ R or f(x) = x − r for x ∈ R, where r ∈ R, (2.11)

while the cases where r1, r2, . . . , rn are mutually distinct and n ≥ 2 will be considered in a
subsequent paper (for the important reason that quite distinct techniques are needed).

Since the trivial polynomial is considered in [2], we may avoid the case where κ = 0.
A further simplification of (2.11) is possible in view of the following translation invariance.

Lemma 2.2. Let τ,Δ,Υ ∈ Z
+, δ ∈ Z with (τ, δ) = 1 and α, κ, r ∈ R with κ/= 0. Then v = {v(t)

i } is a
(Δ,Υ)-periodic traveling wave solution with velocity −δ/τ for the following equation:

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i+1 − 2v(t)

i + v
(t)
i−1

)
+ κ

(
v
(t)
i − r

)
, i ∈ Z, t ∈ N, (2.12)

if, and only if, y = {y(t)
i } = {v(t)

i − r} is a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ
for the following equation

y
(t+1)
i − y

(t)
i = α

(
y
(t)
i+1 − 2y(t)

i + y
(t)
i−1

)
+ κy

(t)
i , i ∈ Z, t ∈ N. (2.13)

Therefore, from now on, we assume in (2.2) that

α ∈ R, g = κf, (2.14)

where

κ/= 0,

f(x) = 1 for x ∈ R, or, f(x) = x for x ∈ R.
(2.15)

As for the traveling wave solutions, we also have the following reflection invariance
result (a direct verification is easy and can be found in [2]).
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Lemma 2.3 (cf. proof of [2, Theorem 3]). Given any δ ∈ Z \ {0} and τ ∈ Z
+ with (τ, δ) = 1. If

{v(t)
i } is a traveling wave solution of (2.2) with velocity −δ/τ, then {w(t)

i } = {v(t)
−i } is also a traveling

wave solution of (2.2) with velocity δ/τ.

Let −δ ∈ Z
+ and Δ,Υ, τ ∈ Z

+, where (τ, δ) = 1. Suppose that v = {v(t)
i } is a (Δ,Υ)-

periodic traveling wave solution of (2.2) with velocity −δ/τ. Then it is easy to check that
w = {w(t)

i } = {v(t)
−i } is also temporal Δ-periodic and spatial Υ-periodic. From this fact and

Lemma 2.3, when we want to consider the (Δ,Υ)-periodic traveling wave solutions of (2.2)
with velocity −δ/τ , it is sufficient to consider the (Δ,Υ)-periodic traveling wave solutions of
(2.2) with velocity δ/τ . In conclusion, from now on, we may restrict our attention to the case
where

τ ∈ Z
+, δ ∈ N with (τ, δ) = 1. (2.16)

3. Basic Facts

Some additional basic facts are needed. Let us state these as follows. First, let Aξ be a circulant
matrix defined by

A2 =

[
2 −2

−2 2

]

,

Aξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 −1 0 −1

−1 2 −1 0

· · ·
· · ·

0 −1 2 −1

−1 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

ξ×ξ

, ξ ≥ 3.

(3.1)

Second, we set

λ(i,ξ) = 4sin2
(
iπ

ξ

)
, i ∈ Z, ξ ∈ Z

+, (3.2)

u
(i,ξ)
m =

1
√
ξ(cos(2miπ/ξ) + sin(2miπ/ξ))

, m, i ∈ Z; ξ ∈ Z
+. (3.3)

It is known (see, e.g., [3]) that for any ξ ≥ 2, the eigenvalues of Aξ are λ(1,ξ), . . . , λ(ξ,ξ) and the
eigenvector corresponding to λ(i,ξ) is

u(i,ξ) =
(
u
(i,ξ)
1 , . . . , u

(i,ξ)
ξ

)†
for i ∈ {1, . . . , ξ}, (3.4)
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and that u(1,ξ), u(2,ξ), . . . , u(ξ,ξ) are orthonormal. It is also clear that u(0,ξ) = u(ξ,ξ), λ(0,ξ) =
λ(ξ,ξ), λ(i,ξ) = λ(ξ−i,ξ), and

u
(ξ−i,ξ)
m =

1
√
ξ(cos(2miπ/ξ) − sin(2miπ/ξ))

∀m, i ∈ Z. (3.5)

Therefore, λ(0,ξ), . . . , λ([ξ/2],ξ) are all distinct eigenvalues of Aξ with corresponding eigenspaces
span{u(ξ)}, span{u(1), u(ξ−1)}, . . . , span{u([ξ/2]), u(ξ−[ξ/2])}, respectively.

Given any finite sequence v = {v1, v2, . . . , vξ} (or vector v =
(
v1, v2, . . . , vξ

)†), where
ξ ≥ 1, its (periodic) extension is the sequence v̂ = {v̂i}i∈Z defined by

v̂i = vi mod ξ, i ∈ Z. (3.6)

Suppose that Υ,Δ ∈ Z
+ and τ, δ satisfy (2.16). When we want to know whether a

double sequence is a (Δ,Υ)-periodic traveling wave solution of (2.2) with velocity −δ/τ, the
following two results will be useful.

Lemma 3.1. Let ξ, η ∈ Z
+ with ξ ≥ 2 and let u(i,ξ) be defined by (3.4).

(i) Suppose ξ ≥ 4. Let j, k ∈ {1, . . . , [ξ/2]} with j /= k and a, b, c, d ∈ R such that au(j,ξ) +
bu(ξ−j,ξ) and cu(k,ξ) + du(ξ−k,ξ) are both nonzero vectors. Then η is a period of the extension
of the vector au(j,ξ) + bu(ξ−j,ξ) + cu(k,ξ) + du(ξ−k,ξ) if and only if ηj/ξ ∈ Z

+ and ηk/ξ ∈ Z
+.

(ii) Suppose ξ ≥ 3. Let j ∈ {1, . . . , [ξ/2]} and a, b, c ∈ R such that bu(ξ−j,ξ) + cu(j,ξ) is a
nonzero vector. Then au(ξ,ξ) + bu(ξ−j,ξ) + cu(j,ξ) is ξ-periodic if and only if (j, ξ) = 1.

(iii) Suppose ξ = 2. Let a, b ∈ R such that b /= 0. Then au(2,2) + bu(1,2) is 2-periodic.

Proof. To see (i), we need to consider five mutually exclusive and exhaustive cases: (a) j, k ∈
{1, . . . , [ξ/2] − 1}; (b) ξ is odd, j ∈ {1, . . . , [ξ/2] − 1} and k = (ξ − 1)/2; (c) ξ is odd, k ∈
{1, . . . , [ξ/2] − 1} and j = (ξ − 1)/2; (d) ξ is even, j ∈ {1, . . . , [ξ/2] − 1} and k = ξ/2; (e) ξ is
even, k ∈ {1, . . . , [ξ/2] − 1} and j = ξ/2.

Suppose that case (a) holds. Take

u = au(j,ξ) + bu(ξ−j,ξ) + cu(k,ξ) + du(ξ−k,ξ), (3.7)

where a, b, c, d ∈ R such that au(j,ξ) + bu(ξ−j,ξ) and cu(k,ξ) + du(ξ−k,ξ) are both nonzero vectors.
Let û = {ûi}i∈Z be the extension of u, so that ûi = ui mod ξ for i ∈ Z. Then it is clear that for any
i ∈ Z,

ûi = au
(j,ξ)
i + bu

(ξ−j,ξ)
i + cu

(k,ξ)
i + du

(ξ−k,ξ)
i

=
1
√
ξ

[
(a + b) cos

2ijπ
ξ

+ (a − b) sin
2ijπ
ξ

+ (c + d) cos
2ikπ
ξ

+ (c − d) sin
2ikπ
ξ

]
.

(3.8)
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By direct computation, we also have

ûi+η =
1
√
ξ

cos
2ηjπ
ξ

[
(a + b) cos

2ijπ
ξ

+ (a − b) sin
2ijπ
ξ

]

+
1
√
ξ

sin
2ηjπ
ξ

[
(a − b) cos

2ijπ
ξ

− (a + b) sin
2ijπ
ξ

]

+
1
√
ξ

cos
2ηkπ
ξ

[
(c + d) cos

2ikπ
ξ

+ (c − d) sin
2ikπ
ξ

]

+
1
√
ξ

sin
2ηkπ
ξ

[
(c − d) cos

2ikπ
ξ

− (c + d) sin
2ikπ
ξ

]
.

(3.9)

By (3.8) and (3.9), we see that η is a period of û, that is, ûi − ûi+η = 0 for all i ∈ Z, if, and only
if, given any i ∈ Z,

0 =
1
√
ξ

(
cos

2ηjπ
ξ

− 1
)[

(a + b) cos
2ijπ
ξ

+ (a − b) sin
2ijπ
ξ

]

+
1
√
ξ

(
cos

2ηkπ
ξ

− 1
)[

(c + d) cos
2ikπ
ξ

+ (c − d) sin
2ikπ
ξ

]

+
1
√
ξ

sin
2ηjπ
ξ

[
(a − b) cos

2ijπ
ξ

− (a + b) sin
2ijπ
ξ

]

+
1
√
ξ

sin
2ηkπ
ξ

[
(c − d) cos

2ikπ
ξ

− (c + d) sin
2ikπ
ξ

]
.

(3.10)

By (3.3) and (3.5), we may rewrite (3.10) as

0 =
(

cos
2ηjπ
ξ

− 1
)(

au
(j,ξ)
i + bu

(ξ−j,ξ)
i

)
+ sin

2ηjπ
ξ

(
−bu(j,ξ)

i + au
(ξ−j,ξ)
i

)

+
(

cos
2ηkπ
ξ

− 1
)(

cu
(k,ξ)
i + du

(ξ−k,ξ)
i

)
+ sin

2ηkπ
ξ

(
−cu(k,ξ)

i + du
(ξ−k,ξ)
i

)
.

(3.11)

By (3.3) again, we have u
(i,ξ)
m+ξ = u

(i,ξ)
m for each i,m ∈ Z. Hence we see that η is a period of û if,

and only if,

(0, . . . , 0)† =
(

cos
2ηjπ
ξ

− 1
)(

au(j,ξ) + bu(ξ−j,ξ)
)
+ sin

2ηjπ
ξ

(
−bu(j,ξ) + au(ξ−j,ξ)

)

×
(

cos
2ηkπ
ξ

− 1
)(

cu(k,ξ) + du(ξ−k,ξ)
)
+ sin

2ηkπ
ξ

(
−cu(k,ξ) + du(ξ−k,ξ)

)
.

(3.12)
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Note that j ∈ {1, . . . , [ξ/2] − 1} implies that u(j,ξ) and u(ξ−j,ξ) are distinct and hence they are
linearly independent. Thus, the fact that au(j,ξ)+bu(ξ−j,ξ) is not a zero vector implies |a|+ |b|/= 0.
Similarly, we also have |c| + |d|/= 0. Then it is easy to check that au(j,ξ) + bu(ξ−j,ξ),−bu(j,ξ) +
au(ξ−j,ξ), cu(k,ξ) + du(ξ−k,ξ) and −cu(k,ξ) + du(ξ−k,ξ) are linear independent. Hence we have that η
is a period of û if and only if

cos
2ηjπ
ξ

− 1 = cos
2ηkπ
ξ

− 1 = sin
2ηjπ
ξ

= sin
2ηkπ
ξ

= 0. (3.13)

In other words, η is a period of û if, and only if, ηj/ξ ∈ Z
+ and ηk/ξ ∈ Z

+.
The other cases (b)–(e) can be proved in similar manners and hence their proofs are

skipped.
To prove (ii), we first set u = au(ξ,ξ) + bu(ξ−j,ξ) + cu(j,ξ). As in (i), we also know that η is

a period of û = {ûi}i∈Z, where ûi = ui mod ξ, if and only if ηj/ξ ∈ Z
+. That is,

{
η ∈ Z

+ |
ηj

ξ
∈ Z

+
}

=
{
η ∈ Z

+ | η is a period of û
}
. (3.14)

Suppose (ξ, j) = 1. If ηj/ξ ∈ Z
+ for some η ∈ Z

+, then we have η = 0 mod ξ because (ξ, j) = 1.
Hence we have

min
{
η ∈ Z

+ | η is a period of û
}
= min

{
η ∈ Z

+ |
ηj

ξ
∈ Z

+
}

= ξ. (3.15)

In other words, if (ξ, j) = 1, then û is ξ-periodic. Next, suppose (ξ, j) = η1 /= 1; that is, there
exists some ξ1, j1 > 1 such that ξ = η1ξ1 and j = η1j1. Note that j < ξ and hence we also have
η1 < ξ1. Since ξ = η1ξ1, η1 < ξ and η1 > 1, we have 1 < ξ1 < ξ. Taking η = ξ1, then we have
ηj/ξ ∈ Z

+. Hence η is a period of û and η < ξ. That is, û is not ξ-periodic. In conclusion, if û is
ξ-periodic, then (ξ, j) = 1.

The proof of (iii) is done by recalling that u(2,2) = (1/
√

2)(1, 1)† and u(1,2) =
(1/

√
2)(−1, 1)† and checking that au(2,2) +bu(1,2) is truly 2-periodic. The proof is complete.

The above can be used, as we will see later, to determine the spatial periods of some
special double sequences.

Lemma 3.2. Let u(i,ξ) be defined by (3.4). Let ξ ≥ 3, j ∈ {0, 1, . . . , [ξ/2]} and k ∈ {1, . . . , [ξ/2]}
with j /= k. Let further

u = au(j,ξ) + bu(ξ−j,ξ) + cu(k,ξ) + du(ξ−k,ξ),

u′ = −au(j,ξ) − bu(ξ−j,ξ) + cu(k,ξ) + du(ξ−k,ξ),
(3.16)

where a, b, c, d ∈ R such that au(j,ξ) + bu(ξ−j,ξ) is a nonzero vector. Define v = {v(t)
i } by

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is odd,

û′, if t is even.
(3.17)
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(i) Suppose that j /= 0 and cu(k,ξ) + du(ξ−k,ξ) is a nonzero vector. Then v is spatial ξ-periodic if,
and only if, ηj/ξ /∈Z

+ or ηk/ξ /∈Z
+ for any η ∈ {1, . . . , ξ − 1} with η | ξ.

(ii) Suppose that j = 0 and cu(k,ξ)
i + du

(ξ−k,ξ)
i is a nonzero vector. Then v is spatial ξ-periodic if,

and only if, (k, ξ) = 1.

(iii) Suppose that cu(k,ξ) + du(ξ−k,ξ) is a zero vector. Then v is spatial ξ-periodic if, and only if,
(j, ξ) = 1.

Proof. To see (i), suppose that j /= 0 and cu(k,ξ) +du(ξ−k,ξ) is a nonzero vector. Note that the fact
that j, k ∈ {1, . . . , [ξ/2]} with j /= k implies ξ ≥ 4. By Lemma 3.1(i), η is a period of û if, and
only if, ηj/ξ ∈ Z

+ and ηk/ξ ∈ Z. By Lemma 3.1(i)again, ηj/ξ ∈ Z
+ and ηk/ξ ∈ Z

+ if, and only
if, η is a period of û′. Hence the least period of û is the same as û′ and v is spatial ξ-periodic if,
and only if, û is ξ-periodic. Note that ξ is a period of û. By Lemma 2.1 and Lemma 3.1(i), we
have û is ξ-periodic if and only if ηj/ξ /∈Z

+ or ηk/ξ /∈Z
+ for any η ∈ {1, . . . , ξ − 1} with η | ξ.

The assertions (ii) and (iii) can be proved in similar manners. The proof is complete.

Lemma 3.3. Let ξ be even with ξ ≥ 3 and let u(i,ξ) be defined by (3.4). Let j, k ∈ {1, . . . , [ξ/2]} and

u = au(j,ξ) + bu(ξ−j,ξ) + cu(k,ξ) + du(ξ−k,ξ),

u′ = −au(j,ξ) − bu(ξ−j,ξ) + cu(k,ξ) + du(ξ−k,ξ),
(3.18)

where a, b, c, d ∈ R such that au(j,ξ)
i + bu

(ξ−j,ξ)
i is a nonzero vector. Let v = {v(t)

i } be defined by

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is odd,

û′, if t is even.
(3.19)

(i) Suppose that cu(k,ξ) + du(ξ−k,ξ) is a nonzero vector. Then v
(t+1)
i = v

(t)
i+ξ/2 for all i ∈ Z and

t ∈ N if and only if j is odd and k is even.

(ii) Suppose that cu(k,ξ) +du(ξ−k,ξ) is a zero vector. Then v
(t+1)
i = v

(t)
i+ξ/2 for all i ∈ Z and t ∈ N

if and only if j is odd.

Proof. To see (i), we first suppose that j is odd and k is even. Note that

v
(0)
i =

1
√
ξ

[
(a + b) cos

2ijπ
ξ

+ (a − b) sin
2ijπ
ξ

+ (c + d) cos
2ikπ
ξ

+ (c − d) sin
2ikπ
ξ

]

, (3.20)

v
(1)
i =

1
√
ξ

[
−(a + b) cos

2ijπ
ξ

− (a − b) sin
2ijπ
ξ

+ (c + d) cos
2ikπ
ξ

+ (c − d) sin
2ikπ
ξ

]
. (3.21)
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For any s, i ∈ Z, it is clear that

cos
2(i + ξ/2)sπ

ξ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos
2isπ
ξ

if s is even,

− cos
2isπ
ξ

if s is odd,

sin
2(i + ξ/2)sπ

ξ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin
2isπ
ξ

if s is even,

− sin
2isπ
ξ

if s is odd.

(3.22)

Since j is odd and k is even, by (3.22), it is easy to see that v̂(1)
i = v̂(0)

i+ξ/2 for all i ∈ Z. By the
definition of v, we also have

v
(t+2)
i = v

(t)
i , v

(t)
i = v

(t)
i+ξ ∀i ∈ Z, t ∈ N. (3.23)

In particular, we have v
(t+1)
i = v

(t)
i+ξ/2 for all i ∈ Z and t ∈ N.

For the converse, suppose that j is even or k is odd. We first focus on the case that j
and k are both even. By (3.20) and (3.22), we have

v
(0)
i+ξ/2 =

1
√
ξ

[
(a + b) cos

2ijπ
ξ

+ (a − b) sin
2ijπ
ξ

+ (c + d) cos
2ikπ
ξ

+ (c − d) sin
2ikπ
ξ

]
.

(3.24)

If v(t+1)
i = v

(t)
i+ξ/2 for all i ∈ Z and t ∈ N, it is clear that v(1)

i = v
(0)
i+ξ/2 for all i ∈ Z. By (3.21) and

(3.24), we have

2(a + b) cos
2ijπ
ξ

+ 2(a − b) sin
2ijπ
ξ

= 0 ∀i ∈ Z. (3.25)

That is, 2(au(j,ξ) +bu(ξ−j,ξ)) = 0. This is contrary to our assumption. That is, if j, k are both even,
then we have v

(t+1)
i /=v

(t)
i+ξ/2 for some t ∈ N and i ∈ Z. By similar arguments, in case where j, k

are both odd or where j is even and k is odd, we also have v
(t+1)
i /=v

(t)
i+ξ/2 for some t ∈ N and

i ∈ Z. In summary, if v(t+1)
i = v

(t)
i+ξ/2 for all i, t, then j is odd and k is even.

The assertion (ii) is proved in a manner similar to that of (i). The proof is complete.

4. Necessary Conditions

Let Υ,Δ ∈ Z
+, in this section, we want to find the necessary and sufficient conditions for

(Δ,Υ)-periodic traveling wave solutions of (2.2) with velocity −δ/τ, under the assumptions
(2.14), (2.15), and (2.16).
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We first consider the case where f(x) = 1 for all x ∈ R. Then we may rewrite (2.2) as

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i−1 − 2v(t)

i + v
(t)
i+1

)
+ κ, i ∈ Z, t ∈ N, κ/= 0. (4.1)

Suppose that v = {v(t)
i } is a (Δ,Υ)-periodic traveling wave solutions of (4.1) with velocity

−δ/τ . For any l, s ∈ Z, it is clear that

Δ∑

t=1

Υ∑

i=1

v
(t+s)
i+l =

Δ∑

t=1

Υ∑

i=1

v
(t)
i . (4.2)

Then we have

0 =
Δ∑

t=1

Υ∑

i=1

(
v
(t+1)
i − v

(t)
i

)
= α

Δ∑

t=1

Υ∑

i=1

(
v
(t)
i−1 − 2v(t)

i + v
(t)
i+1

)
+

Δ∑

t=1

Υ∑

i=1

κ = ΔΥκ/= 0. (4.3)

This is a contradiction. In other words, (Δ,Υ)-periodic traveling wave solutions of (4.1) with
velocity −δ/τ do not exist.

Next, we consider the case f(x) = x and focus on the equation

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i−1 − 2v(t)

i + v
(t)
i+1

)
+ κv

(t)
i , i ∈ Z, t ∈ N, κ/= 0. (4.4)

Before dealing with this case, we give some necessary conditions for the existence of (Δ,Υ)-
periodic traveling wave solutions of (4.4) with velocity −δ/τ.

Lemma 4.1. Let α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). Suppose that v = {v(t)
i } is a (Δ,Υ)-

periodic traveling wave solution of (4.4) with velocity −δ/τ, where Δ = 1 and Υ > 1. Then the

matrix κIΥ − αAΥ is not invertible and
(
v
(0)
1 , . . . , v

(0)
Υ

)†
is a nonzero vector in ker(κIΥ − αAΥ).

Proof. Let v = {v(t)
i } be a (1,Υ)-periodic traveling wave solution of (2.2) with velocity −δ/τ.

It is clear that

v
(t+1)
i = v

(t)
i , v

(t)
i = v

(t)
i+Υ ∀i, t. (4.5)

Since v satisfies (4.4), by (4.5), we have

(κIΥ − αAΥ)
(
v
(t)
1 , . . . , v

(t)
Υ

)†
= (0, . . . , 0)† ∀t ∈ N. (4.6)

This fact implies that
(
v
(t)
1 , . . . , v

(t)
Υ

)†
is a vector in ker(κIΥ − αAΥ). If κIΥ − αAΥ is invertible

or
(
v
(t)
1 , . . . , v

(t)
Υ

)†
= 0, by direct computation, we have

(
v
(t)
1 , . . . , v

(t)
Υ

)†
= (0, . . . , 0)† ∀t ∈ N, (4.7)
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and hence v
(t)
i = 0 for all t ∈ N and i ∈ Z. This is contrary to Δ being the least among all

spatial periods and Δ > 1. That is, κIΥ −αAΥ is not invertible and
(
v
(0)
1 , . . . , v

(0)
Υ

)†
is a nonzero

vector in ker(κIΥ − αAΥ). The proof is complete.

Lemma 4.2. Let α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). Suppose that v = {v(t)
i } is a (Δ,Υ)-

periodic traveling wave solution of (4.4) with velocity −δ/τ, where Δ > 1 and Υ = 1. Then Δ =
2, κ = −2, each v(0)

i /= 0 and

v
(t)
i =

⎧
⎨

⎩

v
(0)
i , if t is even, i ∈ Z,

−v(0)
i , if t is odd, i ∈ Z.

(4.8)

Proof. From the assumption of v, we have

v
(t+Δ)
i = v

(t)
i , v

(t)
i = v

(t)
i+1 ∀i, t. (4.9)

Note that v also satisfies (4.4). Hence by (4.9) and computation, we have

v
(t+1)
i = (1 + κ)t+1v

(0)
i , i ∈ Z, t ∈ N. (4.10)

If v(0)
j = 0 for some j, by (4.9) and (4.10), we have v

(0)
i = 0 for all i and v

(t)
i = 0 for any i, t. This

is contrary to Δ being the least among all temporal periods and Δ > 1. Hence we have v
(0)
i /= 0

for all i. Then it is clear that v(t)
i is divergent as t → ∞ if |1 + κ| > 1 and v

(t)
i → λ as t → ∞

for all i ∈ Z if |1 + κ| < 1. This is impossible because v is temporal Δ-periodic and Δ > 1. Thus
we know that |1 + κ| = 1. Since κ/= 0, we know that κ = −2. By (4.10), we have

v
(t)
i =

⎧
⎨

⎩

v
(0)
i , if t is even, i ∈ Z,

−v(0)
i , if t is odd, i ∈ Z.

(4.11)

Lemma 4.3. Let α, κ ∈ R with κ/= 0, τ, δ satisfy (2.16) and λ(i,ξ) are defined by (3.2). Suppose that
v = {v(t)

i } is a (Δ,Υ)-periodic traveling wave solution of (4.4) with velocity −δ/τ, where Δ > 1 and
Υ > 1. Then the following results are true.

(i) For any t ∈ N, one has

(
v
(t+1)
1 , . . . , v

(t+1)
Υ

)†
= [(1 + κ)IΥ − αAΥ]t+1

(
v
(0)
1 , . . . , v

(0)
Υ

)†
. (4.12)

(ii) The vector
(
v
(0)
1 , . . . , v

(0)
Υ

)†
is the sum of the vectors u and w, where u is an eigenvector of

(1 + κ)IΥ − αAΥ corresponding to the eigenvalue −1 and w is either the zero vector or an
eigenvector of (1 + κ)IΥ − αAΥ corresponding to the eigenvalue 1.

(iii) The matrix (1 + κ)IΥ − αAΥ has an eigenvalue −1, that is, (1 + κ) − α4 sin2(jπ/Υ) = −1
for some j ∈ {0, 1, . . . , [Υ/2]}.

(iv) Δ = 2.
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Proof. To see (i), note that the assumption on v implies

v
(t+Δ)
i = v

(t)
i , v

(t)
i = v

(t)
i+Υ ∀i, t. (4.13)

Since v is a solution, by (4.13), we know that

(
v
(t+1)
1 , . . . , v

(t+1)
Υ

)†
= [(1 + κ)IΥ − αAΥ]

(
v
(t)
1 , . . . , v

(t)
Υ

)†
, t ∈ N. (4.14)

By direct computation, we have

(
v
(t+1)
1 , . . . , v

(t+1)
Υ

)†
= [(1 + κ)IΥ − αAΥ]t+1

(
v
(0)
1 , . . . , v

(0)
Υ

)†
, t ∈ N. (4.15)

For (ii) and (iii), by taking t + 1 = Δ in (4.12), it is clear from (4.13) that

(
v
(0)
1 , . . . , v

(0)
Υ

)†
=
(
v
(Δ)
1 , . . . , v

(Δ)
Υ

)†
= [(1 + κ)IΥ − αAΥ]Δ

(
v
(0)
1 , . . . , v

(0)
Υ

)†
. (4.16)

Thus
(
v
(0)
1 , . . . , v

(0)
Υ

)†
is an eigenvector of [(1 + κ)IΥ − αAΥ]Δ corresponding to the eigenvalue

1. This implies that the matrix (1 + κ)IΥ − αAΥ must have eigenvalue 1 or −1, and

(
v
(0)
1 , . . . , v

(0)
Υ

)†
= u +w, (4.17)

where u is either the zero vector or an eigenvector of (1 + κ)IΥ − αAΥ corresponding to the
eigenvalue −1 and w is either a zero vector or an eigenvector of (1+κ)IΥ−αAΥ corresponding
to the eigenvalue 1. Suppose that u is the zero vector, or, −1 is not an eigenvalue of (1 +
κ)IΥ − αAΥ. Then 1 must be an eigenvalue of (1 + κ)IΥ − αAΥ and w must be an eigenvector

corresponding to the eigenvalue 1; otherwise,
(
v
(0)
1 , . . . , v

(0)
Υ

)†
= 0 and this is impossible.

Thus, 1 is a temporal period of v. This is contrary to Δ being the least among all periods and

Δ > 1. In conclusion, (1 + κ)IΥ − αAΥ has eigenvalue −1 and
(
v
(0)
1 , . . . , v

(0)
Υ

)†
= u +w, where

u is an eigenvector of (1 + κ)IΥ − αAΥ corresponding to the eigenvalue −1, and w is either
a zero vector or an eigenvector of (1 + κ)IΥ − αAΥ corresponding to the eigenvalue 1. Since
(1 + κ) − αλ(0,Υ), . . . , (1 + κ) − αλ([Υ/2],Υ) are all distinct eigenvalues of (1 + κ)IΥ − αAΥ, there
exists some j ∈ {0, 1, . . . , [Υ/2]} such that (1 + κ) − αλ(j,Υ) = −1.

To see (iv), recall the result in (ii). We have

(
v
(0)
1 , . . . , v

(0)
Υ

)†
= [(1 + κ)IΥ − αAΥ]2

(
v
(0)
1 , . . . , v

(0)
Υ

)†
. (4.18)

It is also clear that

(
v
(t+2)
1 , . . . , v

(t+2)
Υ

)†
= [(1 + κ)IΥ − αAΥ]2

(
v
(t)
1 , . . . , v

(t)
Υ

)†
, t ∈ N. (4.19)
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That is, 2 is a temporal period of v. By the definition of Δ and Δ > 1, we have Δ = 2. The
proof is complete.

Next, we consider one result about the relation between δ and Υ under the assumption
that doubly-periodic traveling wave solutions of (4.4) exist.

Lemma 4.4. Let α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). Suppose that v = {v(t)
i } is a (Δ,Υ)-

periodic traveling wave solution of (4.4) with velocity −δ/τ, where Δ = 2 and Υ ≥ 1.

(i) If τ is even, then δ = T1Υ for some odd integer T1 and Υ is odd.

(ii) If τ is odd, then Υ is even and δ = T1Υ/2 for some odd integer T1.

Proof. By the assumption on v, we have

v
(t+2)
i = v

(t)
i , v

(t)
i = v

(t)
i+Υ ∀i, t. (4.20)

Since v is a traveling wave, we also know that

v
(t+τ)
i = v

(t)
i+δ ∀i, t. (4.21)

To see (i), suppose that τ is even. Then from (4.20) and (4.21), we have

v
(t)
i = v

(t+2)
i = · · · = v

(t+τ)
i = v

(t)
i+δ ∀i, t. (4.22)

That is, δ is also a spatial period of v. By Lemma 2.1 and the definition of Υ, it is easy to see
that δ = 0 mod Υ. Since δ = 0 mod Υ, τ is even and (τ, δ) = 1, we have δ = T1Υ for some odd
integer T1 and Υ is odd.

For (ii), suppose that τ is odd. Then from (4.20) and (4.21), we have

v
(t+1)
i = · · · = v

(t+τ)
i = v

(t)
i+δ ∀i, t. (4.23)

By (4.20) and (4.23), we know that

v
(t)
i = v

(t+2)
i = v

(t+1)
i+δ = v

(t)
i+2δ ∀i, t. (4.24)

That is, 2δ is also a spatial period of v. By Lemma 2.1 and the definition of Υ, it is easy to see
that 2δ = 0 mod Υ. If δ = 0 mod Υ. From (4.23), we have

v
(t+1)
i = v

(t)
i+δ = · · · = v

(t)
i ∀i, t. (4.25)

Then 1 is a temporal period of v and this is contrary to Δ = 2. Thus δ /= 0 mod Υ. Since
2δ = 0 mod Υ, the fact that Υ is odd implies δ = 0 mod Υ. This leads to a contradiction.
So we must have that Υ is even and δ = 0 mod (Υ/2). Note that δ = 0 mod (Υ/2) and
δ /= 0 mod Υ implies δ = T1Υ/2 for some odd integer T1. The proof is complete.
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5. Existence Criteria

Now we turn to our main problem. First of all, let α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). If
Υ,Δ ∈ Z

+ with Δ > 1 and if (4.4) has a (Δ,Υ)-periodic traveling wave solution of (4.4) with
velocity −δ/τ, by Lemmas 4.2 and 4.3, Δ must be 2. For this reason, we just need to consider
five mutually exclusive and exhaustive cases: (i) Υ = Δ = 1; (ii) Δ = 1 and Υ > 1; (iii) Δ = 2
and Υ = 1; (iv) Δ = 2 and Υ = 2 and (v) Δ = 2 and Υ ≥ 3.

The condition Υ = Δ = 1 is easy to handle.

Theorem 5.1. Let α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). Then the unique (1, 1)-periodic
traveling wave solution of (4.4) is {v(t)

i = 0}.

Proof. If v = {v(t)
i } is a (1, 1)-periodic traveling wave solution of (4.4), then v

(t)
i = c for all i ∈ Z

and t ∈ N, where c ∈ R. Substituting {v(t)
i = c} into (4.4), we have c = 0. Conversely, it is clear

that {v(t)
i = 0} is a (1, 1)-periodic traveling wave solution.

Theorem 5.2. Let α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). Let λ(i,ξ) and u(i,ξ) be defined by (3.2)
and (3.4), respectively. Then the following results hold.

(i) For any Δ = 1 and any Υ ≥ 2, (4.4) has a (1,Υ)-periodic traveling wave solutions of
(2.2) with velocity −δ/τ if, and only if, δ = 0 mod Υ, and κ − αλ(j,Υ) = 0 for some
j ∈ {1, . . . , [Υ/2]} with (j,Υ) = 1.

(ii) Every (1,Υ)-periodic traveling wave solution v = {v(t)
i } is of the form

{
v
(t)
i

}
=
{
v
(0)
i

}

i∈Z
= û ∀t ∈ N, (5.1)

where u = au(j) + bu(Υ−j) for some a, b ∈ R such that au(j) + bu(Υ−j) is a nonzero vector, and the
converse is true.

Proof. For (i), let v = {v(t)
i } be a (1,Υ)-periodic traveling wave solution of (2.2) with velocity

−δ/τ. From the assumption on v, we have {v(t+1)
i }

i∈Z = {v(t)
i }

i∈Z for all t ∈ N and Υ is the

least spatial period. Hence given any t ∈ N, it is easy to see that the extension {v(t)
i }

i∈Z of

(v(t)
1 , . . . , v

(t)
Υ ) is Υ-periodic. Note that we also have

v
(t+1)
i = v

(t)
i , v

(t)
i = v

(t)
i+Υ ∀i, t. (5.2)

Since v is a traveling wave, from (5.2), we know that

v
(t)
i+δ = v

(t+τ)
i = v

(t+τ−1)
i · · · = v

(t)
i ∀i, t. (5.3)

Therefore, given any t ∈ N,δ is a period of {v(t)
i }

i∈Z. By Lemma 2.1, we have δ = 0 mod Υ.

By Lemma 4.1, we also know that κIΥ − αAΥ is not invertible and (v(0)
1 , . . . , v

(0)
Υ )

is a nonzero vector in ker (κIΥ − αAΥ). Note that κ − αλ(0,Υ), . . . , κ − αλ([Υ/2],Υ) are all
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distinct eigenvalues of κIΥ − αAΥ with corresponding eigenspaces span{u(Υ,Υ)}, . . . ,
span{u([Υ/2],Υ), u(Υ−[Υ/2],Υ)}, respectively. Since κ−αλ(0,Υ) = κ/= 0 and κIΥ−αAΥ is not invertible,
we have κ−αλ(j,Υ) = 0 for some j ∈ {1, . . . , [Υ/2]}. Hence ker(κIΥ−αAΥ) = span{u(j,Υ), u(Υ−j,Υ)}
and it is clear that

(
v
(0)
1 , . . . , v

(0)
Υ

)†
= au(j,Υ) + bu(Υ−j,Υ), (5.4)

where a, b ∈ R such that au(j,Υ) + bu(Υ−j,Υ) is a nonzero vector. If Υ = 2, we see that j must
be 1 since j ∈ {1, . . . , [Υ/2]}. It is clear that (j,Υ) = (1, 2) = 1. Suppose Υ ≥ 3 and recall that
the extension {v(0)

i }
i∈Z of (v(0)

1 , . . . , v
(0)
Υ ) is Υ-periodic. By Lemma 3.1(ii),the extension {v(0)

i }
of (v(0)

1 , . . . , v
(0)
Υ ) is Υ-periodic if and only if (j,Υ) = 1.

Conversely, suppose δ = 0 mod Υ; there exists some j ∈ {1, . . . , [Υ/2]} such that κ −
αλ(j,Υ) = 0 and (j,Υ) = 1 when Υ ≥ 3. Let v = {v(t)

i } satisfy (5.1). By the definition of v, it is
clear that v is temporal 1-periodic and Υ is a spatial period of v. Suppose Υ = 2 and then we
have that u = (a+b)u(1). The fact that u is not a zero vector implies a+b /= 0. By Lemma 3.1(iii),
we have that û is 2-periodic. By (5.1), it is clear that v is spatial 2-periodic. Suppose Υ ≥ 3.
Since (j,Υ) = 1, by Lemma 3.1(ii), we have û is Υ-periodic. By (5.1) again, it is also clear that
v is spatial Υ-periodic. In conclusion, we have that v is spatial Υ-periodic, that is,

v
(t)
i+Υ = v

(t)
i ∀t ∈ N, i ∈ Z. (5.5)

Since u ∈ ker(κIΥ − αAΥ), from the definition of v, it is easy to check that v is a solution of
(4.4). Finally, since δ = 0 mod Υ, by (5.1) and (5.5), we know that

v
(t+τ)
i = · · · = v

(t+1)
i = v

(t)
i = v

(t)
i+Υ = · · · = v

(t)
i+δ; (5.6)

that is, v is traveling wave with velocity −δ/τ.
To see (ii), note that from the second part of the proof in (i), it is easy to see that any v =

{v(t)
i } satisfying (5.1) is a (1,Υ)-periodic traveling wave solution of (4.4) with velocity −δ/τ.

Also, by the first part of the proof in (i), the converse is also true. The proof is complete.

We remark that any (1,Υ)-periodic traveling wave solution v = {v(t)
i } of (4.4) is a

standing wave since this v is also a traveling wave with velocity 0, that is, v(t+1)
i = v

(t)
i for all

i ∈ Z and t ∈ N.

Theorem 5.3. Let Υ = 1,Δ = 2, α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16). Then

(i) (4.4) has a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ if, and only if, κ =
−2 and τ is even;

(ii) furthermore, every such solution v = {v(t)
i } is of the form

v
(t)
i =

⎧
⎨

⎩

c, if t is even, i ∈ Z,

−c, if t is odd, i ∈ Z.
(5.7)

where c /= 0, and the converse is true.
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Proof. To see (i), let v = {v(t)
i } be a (Δ,Υ)-periodic traveling wave solution of (4.4) with

velocity −δ/τ. By Lemma 4.2, we have each v
(0)
i /= 0, κ = −2, and

v
(t)
i =

⎧
⎨

⎩

v
(0)
i , if t is even, i ∈ Z,

−v(0)
i , if t is odd, i ∈ Z.

(5.8)

We just need to show that τ is even. Suppose to the contrary that τ is odd. Since Δ = 2 is a
spatial period of v and v is a traveling wave, we have

v
(t+1)
i = · · · = v

(t+τ)
i = v

(t)
i+δ = · · · = v

(t)
i ∀i ∈ Z. (5.9)

This is contrary to the fact that Δ = 2 is least among all temporal periods. That is, τ is even.
For the converse, suppose that κ = −2 and τ is even. Let v = {v(t)

i } be defined by (5.7). Since
c /= 0, by the definition of v, it is clear that 2(= Δ) is the least temporal period and 1 is the least
spatial period. That is,

v
(t+2)
i = v

(t)
i , v

(t)
i = v

(t)
i+1 ∀i, t. (5.10)

Since τ is even, by (5.10), it is clear that

v
(t+τ)
i = · · · = v

(t)
i = · · · = v

(t)
i+δ ∀i, t. (5.11)

For (ii), from the proof in (i), we know that any v = {v(t)
i } of the form (5.7) is a solution we

want and the converse is also true by Lemma 4.2. The proof is complete.

Now we consider the case Υ = Δ = 2. In this case, Υ and Δ are specific integers. Hence
it is relatively easy to find the (2, 2)-periodic traveling wave solutions of (4.4) with velocity
−δ/τ for any τ, δ satisfying (2.16). Depending on the parity of τ, we have two results.

Theorem 5.4. Let Υ = Δ = 2, α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16) with even τ . Then (4.4) has
no (2, 2)-periodic traveling wave solutions with velocity −δ/τ.

Proof. Since τ is even, by Lemma 4.4(i), a necessary condition for the existence of (2, 2)-
periodic traveling wave solutions with velocity −δ/τ is that Υ is odd. This is contrary to
our assumption that Υ = 2.

Theorem 5.5. Let Υ = Δ = 2, α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16) with odd τ . Then the
following results hold.

(i) If δ is even, then (4.4) has no (2, 2)-periodic traveling wave solutions with velocity −δ/τ.
(ii) If δ is odd, κ = −2 and α = −1/4, then (4.4) has no (2, 2)-periodic traveling wave solutions

with velocity −δ/τ.
(iii) If δ is odd, κ = −2 and α/= −1/4, then (4.4) has no (2, 2)-periodic traveling wave solutions

with velocity −δ/τ.
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(iv) If δ is odd, κ/= − 2 and κ − 4α = −2, then any v = {v(t)
i } of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(5.12)

where u = a(−1, 1)† and u′ = −a(−1, 1)† with a ∈ R \ {0}, is a (2, 2)-periodic traveling
wave solution with velocity −δ/τ, and the converse is true.

(v) If δ is odd, κ/= − 2 and κ − 4α/= − 2, then (4.4) has no (2, 2)-periodic traveling wave
solutions with velocity −δ/τ.

Proof. To see (i), suppose δ is even. By Lemma 4.4(ii), a necessary condition for the existence
of such solutions is δ = T1Υ/2 for some odd integer T1. Hence the fact that Υ = 2 implies δ is
odd. This leads to a contradiction.

For (ii), let κ = −2, α = −1/4 and δ is odd. By direct computation, we have −1 and
1 are eigenvalues of (1 + κ)I2 − αA2 with corresponding eigenvectors (1, 1)† and (−1, 1)†,
respectively. Suppose v = {v(t)

i } is a (2, 2)-periodic traveling wave solution with velocity
−δ/τ. By Lemma 4.3(ii), we have

(
v
(0)
1 , v

(0)
2

)†
= a(1, 1)† + b(−1, 1)†, (5.13)

where a, b ∈ R with a/= 0. By Lemma 4.3(i), we have

(
v
(t+1)
1 , v

(t+1)
2

)†
= [(1 + κ)I2 − αA2]t+1

(
v
(0)
1 , v

(0)
2

)†
∀t ∈ N. (5.14)

From (5.13) and (5.14), it is clear that

(
v
(t)
1 , v

(t)
2

)†
=

⎧
⎨

⎩

(a − b, a + b)†, if t is even,

(−a − b,−a + b)†, if t is odd.
(5.15)

Since v is spatial 2-periodic, we see that

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(5.16)

where u = (a − b, a + b)† and u′ = (−a − b,−a + b)†. From our assumption on v, we have

v
(t+τ)
i = v

(t)
i+δ, v

(t+2)
i = v

(t)
i , v

(t)
i = v

(t)
i+2 ∀t ∈ N, i ∈ Z. (5.17)

Since δ and τ are both odd, by (5.17), we have

v
(t+1)
i = · · · = v

(t+τ)
i = v

(t)
i+δ = · · · = v

(t)
i+1 ∀i, t. (5.18)
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Since v is of form (5.16) and satisfies (5.18), we have a + b = a − b = 0, that is, a = b = 0. This
is contrary to a/= 0. The proof is complete.

For (iii), suppose that δ is odd, κ = −2 and α/= − 1/4. Then we have that −1 is an
eigenvalue of (1 + κ)I2 − αA2 with corresponding eigenvector (1, 1)† and another eigenvalue
1+κ− 4α/= 1. Suppose that v = {v(t)

i } is a (2, 2)-periodic traveling wave solution with velocity
−δ/τ. By Lemma 4.3(ii), we have

(
v
(0)
1 , v

(0)
2

)†
= a(1, 1)† for some a ∈ R \ {0}. (5.19)

Since 2 is a spatial period of v, by (5.19), it is easy to see that 1 is the least spatial period.
This leads to a contradiction. Hence (4.4) has no (2, 2)-periodic traveling wave solutions with
velocity −δ/τ.

The assertion (iv) is proved by the same method used in (ii).
For (v), suppose κ/= − 2 and κ − 4α/= − 2. Then we know that −1 is not an eigenvalue

of (1 + κ)I2 − αA2. By Lemma 4.3(iii), (2, 2)-periodic traveling wave solutions with velocity
−δ/τ do not exist.

Finally, we consider the case where Υ ≥ 3 and Δ = 2. Let τ, δ satisfy (2.16), and Υ ≥
3,Δ = 2, α, κ ∈ R with κ/= 0. Depending on the parity of the number τ , we have the following
two subcases:

(C-1) Υ ≥ 3,Δ = 2, α, κ ∈ R with κ/= 0 and τ, δ satisfy (2.16) with odd τ ;

(C-2) Υ ≥ 3,Δ = 2, α, κ ∈ Rwith κ/= 0 and τ, δ satisfy (2.16) with even τ.

Here the facts in Lemma 3.2 will be used to check the spatial period of a double
sequence v = {v(t)

i }. Furthermore, when τ is odd, the conclusions in Lemma 3.3 will be used
to check whether a double sequence v = {v(t)

i } is a traveling wave.
Now we focus on case (C-1). Note that 1+ κ− αλ(0,Υ) = 1+ κ/= 1 since κ/= 0. Depending

on whether 1 + κ − αλ(k,Υ) = 1 for some even k ∈ {1, . . . , [Υ/2]}, we have the following two
theorems.

Theorem 5.6. Let Υ,Δ, α, κ, τ , and δ satisfy (C-1) above and let λ(i,ξ) and u(i,ξ) be defined by (3.2)
and (3.4), respectively. Suppose 1 + κ − αλ(k,Υ) = 1 for some even k ∈ {1, . . . , [Υ/2]}. Then

(i) (4.4) has a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ if, and only if, Υ is
even, δ = T1Υ/2 for some odd integer T1, and there exists some j ∈ {1, . . . , [Υ/2]} such
that 1 + κ − αλ(j,Υ) = −1, and either (a) (j,Υ) = 1 or (b) (j,Υ)/= 1, j is odd and for any
η ∈ {1, . . . ,Υ − 1} with η | Υ, one has either ηk/Υ/∈Z

+ or ηj/Υ/∈Z
+;

(ii) furthermore, if (j,Υ) = 1, every such solution v = {v(t)
i } is of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(5.20)
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where

û = au(j,Υ) + bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ),

û′ = −au(j,Υ) − bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ)
(5.21)

for some a, b, c, d ∈ R such that au(j,Υ) + bu(Υ−j,Υ) is a nonzero vector, and the converse is true; while
if (j,Υ)/= 1, every such solution v = {v(t)

i } is of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(5.22)

where

û = au(j,Υ) + bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ),

û′ = −au(j,Υ) − bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ),

au(j,Υ) + bu(Υ−j,Υ)
/= (0, . . . , 0)†

(5.23)

for some a, b, c, d ∈ R such that cu(k,Υ) + du(Υ−k,Υ) is a nonzero vector, and the converse is true.

Proof. Let v = {v(t)
i } be a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ. Since

τ is odd, by Lemma 4.4(ii), we have that Υ is even and δ = T1Υ/2 for some odd integer T1.
From Lemma 4.3(iii), we also have

1 + κ − αλ(j,Υ) = −1 for some j ∈
{

0, 1, . . . ,
[
Υ
2

]}
. (5.24)

In view of 1 + κ − αλ(k,Υ) = 1 and (5.24), we know that span{u(j,Υ), u(Υ−j,Υ)} and
span{u(k,Υ), u(Υ−k,Υ)} are eigenspaces of (1 + κ)IΥ − αAΥ corresponding to the eigenvalues −1
and 1, respectively. By Lemma 4.3 (ii), we have

(
v
(0)
1 , . . . , v

(0)
Υ

)†
= au(j,Υ) + bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ), (5.25)

where a, b, c, d ∈ R and au(j,Υ) + bu(Υ−j,Υ) is a nonzero vector. By Lemma 4.3(i), we also see
that

(
v
(t+1)
1 , . . . , v

(t+1)
Υ

)†
= [(1 + κ)IΥ − αAΥ]t+1

(
v
(0)
1 , . . . , v

(0)
Υ

)†
∀t ∈ N. (5.26)

Hence it is clear that

(
v
(t)
1 , . . . , v

(t)
Υ

)†
=

⎧
⎨

⎩

au(j,Υ) + bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ), if t is even,

−au(j,Υ) − bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ), if t is odd.
(5.27)
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Now we want to show that j /= 0 and j satisfies condition (a) or (b). First, we may assume that
j = 0. By (5.27), we have

(
v
(t)
1 , . . . , v

(t)
Υ

)†
=

⎧
⎨

⎩

(e, . . . , e)† + cu(k,Υ) + du(Υ−k,Υ), if t is even,

(−e, . . . ,−e)† + cu(k,Υ) + du(Υ−k,Υ), if t is odd.
(5.28)

where e = a+b. Under the assumption j = 0, we also have that cu(k,Υ) +du(Υ−k,Υ) is a nonzero
vector. Otherwise, 1 is the least spatial period and this is contrary to Υ > 1. Recall that Υ is a
spatial period of v. Hence by (5.28), we have

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is odd,

û′, if t is even.
(5.29)

where

u = (e, . . . , e)† + cu(k,Υ) + du(Υ−k,Υ),

u′ = (−e, . . . ,−e)† + cu(k,Υ) + du(Υ−k,Υ).
(5.30)

By Lemma 3.2(ii), v is spatial Υ-periodic if, and only if, (k,Υ) = 1. Note that Υ and k are both
even. This leads to a contradiction. In other words, we have j /= 0, that is, j ∈ {1, . . . , [Υ/2]}.
Next, we prove that j satisfies condition (a) or (b). We may assume that the result is not true.
In other words, we have either (j,Υ)/= 1 and j is even or (j,Υ)/= 1 and ηj/Υ, ηk/Υ ∈ Z

+ for
some η ∈ {1, . . . ,Υ − 1} with η | Υ. Under this assumption, we have cu(k,Υ) + du(Υ−k,Υ) /= 0.
Otherwise, by (5.27), Lemma 3.2(iii), and the fact that (j,Υ)/= 1, we know that v is not spatial
Υ-periodic. This leads to a contradiction. Note that τ is odd, δ = T1Υ/2 for some odd T1, and
v is a (2,Υ)-periodic traveling wave. These facts imply that v has the following property:

v
(t+1)
i = · · · = v

(t+τ)
i = v

(t)
i+δ = · · · = v

(t)
i+Υ/2 for t ∈ N, i ∈ Z. (5.31)

If (j,Υ)/= 1 and j is even, by Lemma 3.3(i), v does not satisfy (5.31). This leads to a
contradiction. If (j,Υ)/= 1 and ηj/Υ, ηk/Υ,∈ Z

+ for some η ∈ {1, . . . ,Υ − 1} with η | Υ, by
Lemma 3.2(i), we see that v is not spatial Υ-periodic. This leads to a contradiction again. In
conclusion, we have that j satisfies condition (a) or (b).

For the converse, suppose that Υ is even, δ = T1Υ/2 for some odd integer T1 and
1 + κ − αλ(j,Υ) = −1 for some j ∈ {1, . . . , [Υ/2]}. We further suppose that j satisfies (a) and
let v = {v(t)

i } be defined by (5.20). Recall that span{u(j,Υ), u(Υ−j,Υ)} and span{u(k,Υ), u(Υ−k,Υ)}
are eigenspaces of (1 + κ)IΥ − αAΥ corresponding to the eigenvalues −1 and 1, respectively.
Hence by direct computation, we have that v is a solution of (4.4). Since au(j,Υ) + bu(Υ−j,Υ) /= 0,
we also have that {v(t)

i }
i∈Z is temporal 2-periodic. Since (j,Υ) = 1, we have ηj/Υ/∈Z

+ for any
η ∈ {1, . . . ,Υ − 1} with η | Υ. By (i) and (iii) of Lemma 3.2, it is easy to check that v is spatial
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Υ-periodic. The fact (j,Υ) = 1 implies that j is odd. From (i) and (ii) of Lemma 3.3, we have
that

v
(t+1)
i = v

(t)
i+Υ/2 ∀i ∈ Z, t ∈ N. (5.32)

Since δ = T1Υ/2 for some odd integer T1 and τ is odd, by (5.32), we have

v
(t+τ)
i = · · · = v

(t+1)
i = v

(t)
i+Υ/2 = · · · = v

(t)
i+δ ∀i ∈ Z, t ∈ N. (5.33)

In other words, v is a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ. If j satisfies
(b), we simply let v = {v(t)

i } be defined by (5.22) and then the desired result may be proved
by similar arguments.

To see (ii), suppose that v = {v(t)
i } is a (Δ,Υ)-periodic traveling wave solution with

velocity −δ/τ . From the proof in (i), we have shown that

(
v
(t)
1 , . . . , v

(t)
Υ

)†
=

⎧
⎨

⎩

au(j,Υ) + bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ), if t is even,

−au(j,Υ) − bu(Υ−j,Υ) + cu(k,Υ) + du(Υ−k,Υ), if t is odd.
(5.34)

where a, b, c, d ∈ R and au(j,Υ) + bu(Υ−j,Υ) is a nonzero vector. Since Υ is a spatial period of v,
we have that v = {v(t)

i } is of the form (5.20). Now we just need to show that if (j,Υ)/= 1, then
we have cu(k,Υ) + du(Υ−k,Υ) /= 0. Suppose to the contrary that cu(k,Υ) + du(Υ−k,Υ) is a zero vector,
and (j,Υ)/= 1. By Lemma 3.2 (iii), v is not spatial Υ-periodic. This leads to a contradiction. The
converse has been shown in the second part of the proof of (i).

Theorem 5.7. Let Υ,Δ, α, κ, τ , and δ satisfy (C-1) above and let λ(i,ξ) and u(i,ξ) be defined by (3.2)
and (3.4), respectively. Suppose 1 + κ − αλ(k,Υ) /= 1 for all even k ∈ {1, . . . , [Υ/2]}. Then

(i) (4.4) has a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ if, and only if, Υ is
even, δ = T1Υ/2 for some odd integer T1 and there exists some j ∈ {1, . . . , [Υ/2]} with
(j,Υ) = 1 such that 1 + κ − αλ(j,Υ) = −1;

(ii) furthermore, every such solution v = {v(t)
i } is of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(5.35)

where û = au(j,Υ)+bu(Υ−j,Υ) and û′ = −au(j,Υ)−bu(Υ−j,Υ) for some a, b such that |a|+|b|/= 0,
and the converse is true.

Next, we focus on case (C-2) and recall that 1 + κ − αλ(0,Υ) /= 1. Depending on whether
1 + κ − αλ(k,Υ) = 1 for some k ∈ {1, . . . , [Υ/2]}, we also have the following theorems.
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Theorem 5.8. Let Υ,Δ, α, κ, τ , and δ satisfy (C-2) above and let λ(i,ξ) and u(i,ξ) be defined by (3.2)
and (3.4), respectively. Suppose 1 + κ − αλ(k,Υ) = 1 for some k ∈ {1, . . . , [Υ/2]}. Then

(i) (4.4) has a (Δ,Υ)- periodic traveling wave solution with velocity −δ/τ if, and only if, Υ is
odd, δ = T1Υ for some odd integer T1, and 1+κ−αλ(j,Υ) = −1 for some j ∈ {0, 1, . . . , [Υ/2]}
such that either (a) j = 0 and (k,Υ) = 1 or (b) j /= 0 with (j,Υ) = 1 or (c) j /= 0 with (j,Υ)/= 1
and for any η ∈ {1, . . . ,Υ − 1} with η | Υ, one has either ηk/Υ/∈Z

+ or ηj/Υ/∈Z
+;

(ii) furthermore, if j satisfies condition (i)–(a) above, every such solution v = {v(t)
i } is of the

form (5.20), and the converse is true; while if j satisfies condition (i)–(b) above, every such
solution v = {v(t)

i } is of the form (5.22), and the converse is true.

Theorem 5.9. Let Υ,Δ, α, κ, τ , and δ satisfy (C-2) above and λ(i,ξ) and let u(i,ξ) be defined by (3.2)
and (3.4) respectively. Suppose 1 + κ − αλ(k,Υ) /= 1 for all k ∈ {1, . . . , [Υ/2]}. Then

(i) (4.4) has a (Δ,Υ)-periodic traveling wave solution with velocity −δ/τ if, and only if, Υ
is odd, δ = T1Υ for some odd integer T1, and there exists some j ∈ {1, . . . , [Υ/2]} with
(j,Υ) = 1 such that 1 + κ − αλ(j,Υ) = −1; and

(ii) furthermore, every such solution v = {v(t)
i } is of the form (5.35), and the converse is true.

6. Concluding Remarks and Examples

Recall that one of our main concerns is whether mathematical models can be built
that supports doubly periodic traveling patterns (with a priori unknown velocities and
periodicities). In the previous discussions, we have found necessary and sufficient conditions
for the existence of traveling waves with arbitrarily given least spatial periods and least
temporal periods and traveling speeds. Therefore, we may now answer our original question
as follows. Suppose that we are given the parameters α and κ, where α, κ ∈ R with κ/= 0, and
the reaction-diffusion network:

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i+1 − 2v(t)

i + v
(t)
i−1

)
+ κv

(t)
i , t ∈ N, i ∈ Z. (6.1)

For any Υ ≥ 2 and j ∈ {1, . . . , [Υ/2]}, we define

Γ1,Υ
j =

{
(α, κ) ∈ R

2 | 1 + κ − αλ(j,Υ) = 1
}
,

Γ−1,Υ
j =

{
(α, κ) ∈ R

2 | 1 + κ − αλ(j,Υ) = −1
}
,

(6.2)

where λ(j,Υ) is defined by (3.2). By theorems in Section 5, it is then easy to see the following
result.

Corollary 6.1. Let α and κ ∈ R with κ/= 0.

(1) The double sequence v = {v(t)
i = 0} is the unique (1, 1)-periodic traveling wave solution of

(6.1) with velocity −δ/τ for arbitrary δ and τ satisfying (2.16).

(2) Suppose (α, κ) ∈ Γ1,Υ
j where j ∈ {1, . . . , [Υ/2]} with (Υ, j) = 1. Then (6.1) has at least

one (1,Υ)-periodic traveling wave solution with velocity −δ/τ for arbitrary δ and τ which
satisfy (2.16) and δ = 0 mod Υ.



Advances in Difference Equations 25

(3) Suppose κ = −2. Then (6.1) has at least one (2, 1)-periodic traveling wave solution with
velocity −δ/τ for arbitrary δ and τ satisfying (2.16).

(4) Suppose (α, κ) = (−1/4,−2) or κ/= − 2 and κ − 4α = −2. Then (6.1) has at least one
(2, 2)-periodic traveling wave solution with velocity −δ/τ for arbitrary δ and τ which are
both odd and satisfy (2.16).

(5) Suppose (i) (α, κ) ∈ Γ−1,Υ
j where Υ is even, j ∈ {1, . . . , [Υ/2]} with (j,Υ) = 1 or

(ii) (α, κ) ∈ Γ−1,Υ
j ∩ Γ1,Υ

k
where Υ is even, j, k ∈ {1, . . . , [Υ/2]} with j odd and k even and

for any η ∈ {1, . . . ,Υ − 1} with η | Υ, one has either ηk/Υ/∈Z
+ or ηj/Υ/∈Z

+. Then (6.1)
has at least one (2,Υ)-periodic traveling wave solution with velocity −δ/τ for arbitrary δ
and τ which satisfy (2.16), τ is odd, and δ = T1Υ/2 for some odd integer T1.

(6) Suppose (i) (α, κ) ∈ Γ−1,Υ
j where Υ is odd, j ∈ {1, . . . , [Υ/2]} with (j,Υ) = 1 or

(ii) (α, κ) ∈ Γ−1,Υ
j ∩Γ1,Υ

k
whereΥ is odd, j, k ∈ {1, . . . , [Υ/2]} and for any η ∈ {1, . . . ,Υ−1}

with η | Υ, one has either ηk/Υ/∈Z
+ or ηj/Υ/∈Z

+. Then (6.1) has at least one (2,Υ)-
periodic traveling wave solution with velocity −δ/τ for arbitrary δ and τ which satisfy
(2.16), τ is even, and δ = 0 mod Υ.

Finally, we provide some examples to illustrate the conclusions in the previous
sections.

Example 6.2. Let κ =
√

2, α = 1, r = 0, τ = 5, δ = 4, Υ = 8, and Δ = 2. Consider the equation

v
(t+1)
i − v

(t)
i = v

(t)
i+1 − 2v(t)

i + v
(t)
i−1 +

√
2v(t)

i , i ∈ Z, t ∈ N. (6.3)

We want to find all (2, 8)-periodic traveling wave solutions of (6.3) with velocity −4/5.
By direct computation,

1 + κ − αλ(i,8) = 1 +
√

2 − λ(i,8) /= 1 for i = 0, 1, 2, 4. (6.4)

It is also clear that Υ is even, δ = T1(Υ/2) for some odd integer T1, 1 + κ − αλ(3,8) = 1, and
(3, 8) = 1. By Theorem 5.7(i), (6.3) has (2, 8)-periodic traveling wave solution with velocity
−4/5. By Theorem 5.7(ii), any such solution v = {v(t)

i } of (6.3) is of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(6.5)

where u = au(3,8) + bu(5,8) as well as u′ = −au(3,8) − bu(5,8) for some a, b ∈ R with |a| + |b|/= 0,
and the converse is true. Recall that

u(3,8) =
(
u
(3,8)
1 , . . . , u

(3,8)
8

)†
,

u(5,8) =
(
u
(5,8)
1 , . . . , u

(5,8)
8

)†
,

(6.6)
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Figure 2: A (2, 8)-periodic traveling wave solution with velocity −4/5.

where

u
(i,8)
m =

1√
8(cos(2miπ/8) + sin(2miπ/8))

for i = 3, 5, m ∈ {1, . . . , 8}. (6.7)

In Figure 2, we take a = b =
√

2 for illustration.

Example 6.3. Let r = 0, τ = 4, δ = 27, Υ = 9 and Δ = 2. Set

κ = − 8 sin2(4/9)π

−3 + 4 sin2(4/9)π
, α = − 2

−3 + 4 sin2(4/9)π
. (6.8)

Consider the equation

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i+1 − 2v(t)

i + v
(t)
i−1

)
+ κv

(t)
i , i ∈ Z, t ∈ N. (6.9)

We want to find all (Δ,Υ)-periodic traveling wave solutions of (6.9) with velocity −27/4. By
direct computation, we have 1 + κ − αλ(4,9) = 1. From our assumption, we also have δ =
0 mod Υ. Note that 1 + κ − αλ(3,9) = −1, (3, 9)/= 1 and 4η/9/∈Z

+ for any η < 9 with η | 9. By
Theorem 5.8(i), (6.9) has doubly periodic traveling wave solutions. By Theorem 5.8(ii), any
solution v = {v(t)

i } is of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(6.10)
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Figure 3: A (2, 9)-periodic traveling wave solution with velocity −27/4.

where

û = au(3,9) + bu(6,9) + cu(4,9) + du(5,9),

û′ = −au(3,9) − bu(6,9) + cu(4,9) + du(5,9)
(6.11)

for some a, b, c, d ∈ R such that au(3,9) + bu(6,9) and cu(4,9) + du(5,9) are both nonzero, and the

converse is true. Recall that u(i,9) =
(
u
(i,9)
1 , . . . , u

(i,9)
10

)†
where

u
(i,9)
m =

1
3

(
cos

(
2miπ

9

)
+ sin

(
2miπ

9

))
(6.12)

for i ∈ {3, 4, 5, 6} and m ∈ {1, . . . , 9}. In Figure 3, we take a = b = c = d = 3/2 for illustration.

Example 6.4. Let τ = 7, δ = 15, r = 0, κ = −1, Υ = 10 and Δ = 2. Consider the equation

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i+1 − 2v(t)

i + v
(t)
i−1

)
− v

(t)
i , i ∈ Z, t ∈ N, (6.13)

where α ∈ R. We want to find all (2, 10)-periodic traveling wave solutions of (6.9) with
velocity −15/7.

By direct computation, we have

1 + κ − αλ(i,10)
/= − 1 ∀i ∈ {1, . . . , 5}, (6.14)
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Figure 4: A (2, 10)-periodic traveling wave solution with velocity −15/7.

where α/∈ {1/λ(i,10) | i ∈ {1, . . . , 5}}. By direct computation again, we also know that

1 + κ − αλ(i,10)
/= 1 ∀i ∈ {1, . . . , 5}, (6.15)

where α ∈ {1/λ(i,10) | i ∈ {1, . . . , 5}}.
First, let α ∈ R with α/∈ {1/λ(i,10) | i ∈ {1, . . . , 5}}. By Theorem 5.7(i), the fact that

1 + κ − αλ(i,10) = −1 for some i ∈ {1, . . . , 5} (6.16)

is necessary for the existence of doubly periodic traveling wave solutions. From (6.14), one
has that (6.13) has no (2, 10)-periodic traveling wave solutions of (6.13) with velocity −15/7.

Secondly, let α = 1/λ(j,10), where j ∈ {1, 3}. Recall (6.15), we see that 1+κ−αλ(i,10) /= 1 for
all i ∈ {1, . . . , 5}. By our assumption, it is easy to check that Υ is even and δ = T1(Υ/2) for some
odd integer T1. We also have 1 + κ − αλ(j,10) = −1 and note that (j, 10) = 1 because of j ∈ {1, 3}.
By Theorem 5.7(i), (6.13) has doubly periodic traveling wave solutions. By Theorem 5.7(ii),
any solution v = {v(t)

i } is of the form

{
v
(t)
i

}

i∈Z
=

⎧
⎨

⎩

û, if t is even,

û′, if t is odd.
(6.17)

where u = au(j,10) + bu(10−j,10) and u′ = −au(j,10) − bu(10−j,10) for some a, b ∈ R with |a| + |b|/= 0,

and the converse is true. Recall that u(i,10) =
(
u
(i,10)
1 , . . . , u

(i,10)
10

)†
where

u
(i,10)
m =

1√
10

(
cos

(
2miπ

10

)
+ sin

(
2miπ

10

))
(6.18)
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for i ∈ {1, 3, 7, 9} and m ∈ {1, . . . , 10}. In Figure 4, we take α = λ(1,10) and a = b =
√

10/2 for
illustration.

Finally, let α = 1/λ(j,10), where j ∈ {2, 4, 5}. We also have 1 + κ − αλ(i,10) /= 1 for all
i ∈ {1, . . . , 5},Υ is even, δ = T1(Υ/2) for some odd integer, and 1 + κ − αλ(j,10) = −1. However,
it is clear that (j, 10) > 1. By Theorem 5.7(i), (6.13) has no doubly periodic traveling wave
solutions.

We have given a complete account for the existence of (Δ,Υ)-periodic traveling wave
solutions with velocity −δ/τ for either

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i−1 − 2v(t)

i + v
(t)
i+1

)
+ κ, i ∈ Z, t ∈ N,κ/= 0 (6.19)

or

v
(t+1)
i − v

(t)
i = α

(
v
(t)
i−1 − 2v(t)

i + v
(t)
i+1

)
+ κv

(t)
i , i ∈ Z, t ∈ N,κ/= 0. (6.20)

In particular, the former equation does not have any such solutions, while the latter may, but
only when Δ = 1 or 2. We are then able to pinpoint the exact conditions on Υ, δ, τ, α, and
κ such that the desired solutions exist. Although we are concerned with the case where the
reaction term is linear, the number of parameters involved, however, leads us to a relatively
difficult problem as can be seen in our previous discussions.
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