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We study the asymptotic behavior of the solutions for the following nonlinear difference
equation xn+1 =

∑s
i=1 Akixn−ki/(B0 +

∑t
j=1 Blj xn−lj ), n = 0, 1, . . . , where the initial conditions

x−r , x−r+1, . . . , x1, x0 are arbitrary nonnegative real numbers, k1, . . . , ks, l1, . . . , lt are nonnegative
integers, r = max{k1, . . . , ks, l1, . . . , lt}, and Ak1 , . . . , Aks , B0, Bl1 , . . . , Blt are positive constants.
Moreover, some numerical simulations to the equation are given to illustrate our results.
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1. Introduction

Difference equations appear naturally as discrete analogues and in the numerical solutions of
differential and delay differential equations having applications in biology, ecology, physics,
and so forth [1]. The study of nonlinear difference equations is of paramount importance not
only in their own field but in understanding the behavior of their differential counterparts.
There has been a lot of work concerning the globally asymptotic behavior of solutions of
rational difference equations [2–6]. In particular, Elabbasy et al. [7] investigated the global
stability and periodicity of the solution for the following recursive sequence:

xn+1 = axn −
bxn

cxn − dxn−1
, n = 0, 1, . . . . (1.1)
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In [8] Elabbasy et al. investigated the global stability, boundedness, and the periodicity of
solutions of the difference equation:

xn+1 =
αxn + βxn−1 + γxn−2

Axn + Bxn−1 + Cxn−2
, n = 0, 1, . . . . (1.2)

Yang et al. [9] investigated the global attractivity of equilibrium points and the asymptotic
behavior of the solutions of the recursive sequence:

xn+1 =
axn−1 + bxn−2

c + dxn−1xn−2
, n = 0, 1, . . . . (1.3)

The purpose of this paper is to investigate the global attractivity of the equilibrium
point, and the asymptotic behavior of the solutions of the following difference equation

xn+1 =
∑s

i=1 Akixn−ki

B0 +
∑t

j=1 Blj xn−lj
, n = 0, 1, . . . , (1.4)

where the initial conditions x−r , x−r+1, . . . , x1, x0 are arbitrary nonnegative real numbers,
k1, . . . , ks, l1, . . . , lt are nonnegative integers, r = max{k1, . . . , ks, l1, . . . , lt},and Ak1 , . . . , Aks , B0,
Bl1 , . . . , Blt are positive constants. Moreover, some numerical simulations to the equation are
given to illustrate our results.

This paper is arranged as follows. In Section 2, we give some definitions and
preliminary results. The main results and their proofs are given in Section 3. Finally, some
numerical simulations are given to illustrate our theoretical analysis.

2. Some Preliminary Results

To prove the main results in this paper we first give some definitions and preliminary results
[10, 11] which are basically used throughout this paper.

Lemma 2.1. Let I be some interval of real numbers and let

f : Ik+1 −→ I (2.1)

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, . . . , x0 ∈ I,
the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . (2.2)

has a unique solution{xn}+∞n=−k.

Definition 2.2. A point x ∈ I is called an equilibrium point of (2.2) if

x = f(x, x, . . . , x). (2.3)

That is, xn = x for n ≥ 0 is a solution of (2.2), or equivalently, x is a fixed point of f .
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Definition 2.3. Let p, q be two nonnegative integers such that p + q = n. Splitting x =
(x1, x2, . . . , xn) into x = ([x]p, [x]q), where [x]σ denotes a vector with σ-components
of x, we say that the function f(x1, x2, . . . , xn) possesses a mixed monotone property in
subsets In of Rn if f([x]p, [x]q) is monotone nondecreasing in each component of [x]p and
is monotone nonincreasing in each component of [x]q for x ∈ In. In particular, if q = 0, then
it is said to be monotone nondecreasing in In.

Definition 2.4. Let x be an equilibrium point of (2.1).

(i) x is stable if, for every ε > 0, there exists δ > 0 such that for any initial
conditions (x−k, x−k+1, . . . , x0) ∈ Ik+1 with |x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < δ,
|xn − x| < ε hold for n = 1, 2, . . . .

(ii) x is a local attractor if there exists γ > 0 such that xn → x holds for any initial
conditions (x−k, x−k+1, . . . , x0) ∈ Ik+1 with |x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < γ .

(iii) x is locally asymptotically stable if it is stable and is a local attractor.

(iv) x is a global attractor if xn → x holds for any initial conditions (x−k, x−k+1,. . . , x0) ∈
Ik+1.

(v) x is globally asymptotically stable if it is stable and is a global attractor.

(vi) x is unstable if it is not locally stable.

Lemma 2.5. Assume that s1, s2, . . . , sk ∈ R and k ∈ {0, 1, 2, . . .}. Then

|s1| + |s2| + · · · + |sk| < 1 (2.4)

is a sufficient condition for the local stability of the difference equation:

xn+k + s1xn+k−1 + · · · + skxn = 0, n = 0, 1, . . . . (2.5)

3. The Main Results and Their Proofs

In this section we investigate the globally asymptotic stability of the equilibrium point of
(1.4).

Let f : (0,∞)r → (0,∞) be a function defined by

f(xn−k1 , . . . , xn−ks , xn−l1 , . . . , xn−lt) =
∑s

i=1 Akixn−ki

B0 +
∑t

j=1 Blj xn−lj
, n = 0, 1, . . . . (3.1)

If xn−k1 /=xn−k2 /= · · · /=xn−ks /=xn−l1 /=xn−l2 · · · /=xn−lt , then it follows that

fxn−ki
(xn−k1 , . . . , xn−ks , xn−l1 , . . . , xn−lt) =

Aki

B0 +
∑t

j=1 Blj xn−lj
, i = 1, 2, . . . , s,

fxn−lj
(xn−k1 , . . . , xn−ks , xn−l1 , . . . , xn−lt) = −

Blj

∑t
i=1 Akixn−ki

(
B0 +

∑t
j=1 Blj xn−lj

)2
, j = 1, 2, . . . , t.

(3.2)
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Let x, x be the equilibrium points of (1.4), then we have

x = 0, x =
∑t

i=1 Aki − B0
∑t

j=1 Blj

. (3.3)

Moreover, we have that

fxn−ki
(x, . . . , x, x, . . . , x) =

Aki

B0
, i = 1, 2, . . . , s,

fxn−lj
(x, . . . , x, x, . . . , x) = 0, j = 1, 2, . . . , t.

(3.4)

Thus, the linearized equation of (1.4) about x is

zn+1 +
Ak1

B0
zn−k1 + · · · +

Aks

B0
zn−ks = 0. (3.5)

Theorem 3.1. If
∑s

i=1 Aki < B0 and xn−k1 /=xn−k2 /= · · · /=xn−ks /=xn−l1 /=xn−l2 · · · /=xn−lt , then the
equilibrium point x = 0 of (1.4) is locally stable.

Proof. It is obvious by Lemma 2.5 that (3.5) is locally stable if

∣
∣
∣
∣
Ak1

B0

∣
∣
∣
∣ + · · · +

∣
∣
∣
∣
Aks

B0

∣
∣
∣
∣ < 1, (3.6)

that is

s∑

i=1

Aki < B0, (3.7)

from which the result follows.

Theorem 3.2. Let [a, b] be an interval of real numbers and assume that f : [a, b]k+1 → R is a
continuous function satisfying the mixed monotone property. If there exists

m0 ≤ min{x−k, x−k+1, . . . , x−1, x0} ≤ max{x−k, x−k+1, . . . , x−1, x0} ≤ M0 (3.8)

such that

m0 ≤ f
(
[m0]p, [M0]q

)
≤ f

(
[M0]p, [m0]q

)
≤ M0, (3.9)

then there exist (m,M) ∈ [m0,M0]
2 satisfying

M = f
(
[M]p, [m]q

)
, m = f

(
[m]p, [M]q

)
. (3.10)
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Moreover, if m = M, then (2.2) has a unique equilibrium point x ∈ [m0,M0] and every solution of
(2.2) converges to x.

Proof. Using m0 and M0 as a couple of initial iteration conditions we construct two
sequences {mi} and {Mi} (i = 1, 2, . . .) from the equation

mi = f
(
[mi−1]p, [Mi−1]q

)
, Mi = f

(
[Mi−1]p, [mi−1]q

)
. (3.11)

It is obvious from the mixed monotone property of f that the sequences {mi} and {Mi}
possess the following monotone property:

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ Mi ≤ · · · ≤ M1 ≤ M0, (3.12)

where i = 0, 1, 2, . . ., and

mi ≤ xl ≤ Mi for l ≥ (k + 1)i + 1. (3.13)

Set

m = lim
i→∞

mi, M = lim
i→∞

Mi, (3.14)

then

m ≤ lim
i→∞

infxi ≤ lim
i→∞

supxi ≤ M. (3.15)

By the continuity of f we have

M = f
(
[M]p, [m]q

)
, m = f

(
[m]p, [M]q

)
. (3.16)

Moreover, if m = M, then m = M = limi→∞xi = x, and then the proof is complete.

Theorem 3.3. If there exists

x ≤ m0 ≤ min{x−r , x−r+1, . . . , x−1, x0} ≤ max{x−r , x−r+1, . . . , x−1, x0} ≤ M0 (3.17)

such that

m0 ≤
∑s

i=1 Akim0

B0 +
∑t

j=1 BljM0
≤

∑s
i=1 AkiM0

B0 +
∑t

j=1 Bljm0
≤ M0, (3.18)

then the equilibrium point x = 0 of (1.4) is global attractor when
∑s

i=1 Ak − B0 < 0.
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Figure 1: Chart of (4.1) with x(−3) = 3.2, x(−2) = 2.6, x(−1) = 3.1, x(0) = 4.5.

Proof. We can easily see that the function f(xn−k1 , . . . , xn−ks , xn−l1 , . . . , xn−lt) defined by (3.1)
is nondecreasing in xn−k1 , . . . , xn−ks and nonincreasing in xn−l1 , . . . , xn−lt . Then from (1.4) and
Theorem 3.2, there exist (m,M) ∈ [m0,M0]

2 satisfying

m =
∑s

i=1 Akim

B0 +
∑t

j=1 BljM
, M =

∑s
i=1 AkiM

B0 +
∑t

j=1 Bljm
, (3.19)

thus

(
s∑

i=1

Ak − B0

)

(M −m) = 0. (3.20)

In view of
∑s

i=1 Ak − B0 < 0, we have

M = m. (3.21)

It follows by Theorem 3.2 that the equilibrium point x = 0 of (1.4) is global attractor. The
proof is therefore complete.

4. Numerical Simulations

In this section, we give numerical simulations supporting our theoretical analysis. As
examples, we consider the following difference equations:

xn+1 =
xn + xn−3

3 + xn−2 + 3xn−1
, n = 0, 1, . . . , (4.1)

xn+1 =
xn + 2xn−1 + xn−2 + xn−3

6 + xn + xn−1 + xn−2 + xn−3
, n = 0, 1, . . . . (4.2)
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Figure 2: Chart of (4.2) with x(−3) = 1.2, x(−2) = 3.5, x(−1) = 2.3, x(0) = 3.1.

Let m0 = −1/4,M0 = 4.6. It is obvious that (4.1) and (4.2) satisfy the conditions of
Theorem 3.3 when the initial conditions are (x−3, x−2, x−1, x0) ∈ [0, 4.6]4.

Figure 1 shows the numerical solution of (4.1) with x−3 = 3.2, x−2 = 2.6, x−1 = 3.1, x0 =
4.5 and the relations that mi ≤ xl ≤ Mi when l ≥ (k + 1)i + 1, i = 0, 1, 2, . . . .

Figure 2 shows the numerical solution of (4.2) with x−3 = 1.2, x−2 = 3.5, x−1 = 2.3, x0 =
3.1 and the relations that mi ≤ xl ≤ Mi when l ≥ (k + 1)i + 1, i = 0, 1, 2, . . . .
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