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It is supposed that the fractional difference equation xn+1 = (μ +
∑k

j=0ajxn−j)/(λ +
∑k

j=0bjxn−j),
n = 0, 1, . . . , has an equilibrium point x̂ and is exposed to additive stochastic perturbations type
of σ(xn − x̂)ξn+1 that are directly proportional to the deviation of the system state xn from the
equilibrium point x̂. It is shown that known results in the theory of stability of stochastic difference
equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov
functionals construction can be successfully used for getting of sufficient conditions for stability
in probability of equilibrium points of the considered stochastic fractional difference equation.
Numerous graphical illustrations of stability regions and trajectories of solutions are plotted.
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1. Introduction—Equilibrium points

Recently, there is a very large interest in studying the behavior of solutions of nonlinear
difference equations, in particular, fractional difference equations [1–38]. This interest really
is so large that a necessity appears to get some generalized results.

Here, the stability of equilibrium points of the fractional difference equation

xn+1 =
μ +

∑k
j=0ajxn−j

λ +
∑k

j=0bjxn−j
, n ∈ Z = {0, 1, . . . }, (1.1)

with the initial condition

xj = φj, j ∈ Z0 = {−k,−k + 1, . . . , 0}, (1.2)
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is investigated. Here μ, λ, aj , bj , j = 0, . . . , k are known constants. Equation (1.1) generalizes a
lot of different particular cases that are considered in [1–8, 16, 18–20, 22–24, 32, 35, 37].

Put

Aj =
k∑

l=j

aj , Bj =
k∑

l=j

bj , j = 0, 1, . . . , k, A = A0, B = B0, (1.3)

and suppose that (1.1) has some point of equilibrium x̂ (not necessary a positive one). Then by
assumption

λ + Bx̂ /= 0 (1.4)

the equilibrium point x̂ is defined by the algebraic equation

x̂ =
μ +Ax̂

λ + Bx̂
. (1.5)

By condition (1.4), equation (1.5) can be transformed to the form

Bx̂2 − (A − λ)x̂ − μ = 0. (1.6)

It is clear that if

(A − λ)2 + 4Bμ > 0, (1.7)

then (1.1) has two points of equilibrium

x̂1 =
A − λ +

√
(A − λ)2 + 4Bμ

2B
, (1.8)

x̂2 =
A − λ −

√
(A − λ)2 + 4Bμ

2B
. (1.9)

If

(A − λ)2 + 4Bμ = 0, (1.10)

then (1.1) has only one point of equilibrium

x̂ =
A − λ

2B
. (1.11)

And at last if

(A − λ)2 + 4Bμ < 0, (1.12)

then (1.1) has not equilibrium points.

Remark 1.1. Consider the case μ = 0, B /= 0. From (1.5) we obtain the following. If λ /= 0 and
A /= λ, then (1.1) has two points of equilibrium:

x̂1 =
A − λ

B
, x̂2 = 0. (1.13)

If λ /= 0 and A = λ, then (1.1) has only one point of equilibrium: x̂ = 0. If λ = 0, then (1.1) has
only one point of equilibrium: x̂ = A/B.

Remark 1.2. Consider the case μ = B = 0, λ /= 0. If A /= λ, then (1.1) has only one point of
equilibrium: x̂ = 0. If A = λ, then each solution x̂ = const is an equilibrium point of (1.1).
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2. Stochastic perturbations, centering, and linearization—Definitions
and auxiliary statements

Let {Ω,F,P} be a probability space and let {Fn, n ∈ Z} be a nondecreasing family of sub-σ-
algebras of F, that is, Fn1 ⊂ Fn2 for n1 < n2, let E be the expectation, let ξn, n ∈ Z, be a sequence
of Fn-adapted mutually independent random variables such that Eξn = 0, Eξ2

n = 1.
As it was proposed in [39, 40] and used later in [41–43] we will suppose that (1.1) is

exposed to stochastic perturbations ξn which are directly proportional to the deviation of the
state xn of system (1.1) from the equilibrium point x̂. So, (1.1) takes the form

xn+1 =
μ +

∑k
j=0ajxn−j

λ +
∑k

j=0bjxn−j
+ σ

(
xn − x̂

)
ξn+1. (2.1)

Note that the equilibrium point x̂ of (1.1) is also the equilibrium point of (2.1).
Putting yn = xn − x̂ we will center (2.1) in the neighborhood of the point of equilibrium

x̂. From (2.1) it follows that

yn+1 =

∑k
j=0

(
aj − bjx̂

)
yn−j

λ + Bx̂ +
∑k

j=0bjyn−j
+ σynξn+1. (2.2)

It is clear that the stability of the trivial solution of (2.2) is equivalent to the stability of the
equilibrium point of (2.1).

Together with nonlinear equation (2.2) we will consider and its linear part

zn+1 =
k∑

j=0

γjzn−j + σznξn+1, γj =
aj − bjx̂

λ + Bx̂
. (2.3)

Two following definitions for stability are used below.

Definition 2.1. The trivial solution of (2.2) is called stable in probability if for any ε1 > 0 and ε2 >
0 there exists δ > 0 such that the solution yn = yn(φ) satisfies the condition P{supn∈Z|yn(φ)| >
ε1} < ε2 for any initial function φ such that P{supj∈Z0

|φj | ≤ δ} = 1.

Definition 2.2. The trivial solution of (2.3) is called mean square stable if for any ε > 0 there
exists δ > 0 such that the solution zn = zn(φ) satisfies the condition E|zn(φ)|2 < ε for any initial
function φ such that supj∈Z0

E|φj |2 < δ. If, besides, limn→∞E|zn(φ)|2 = 0, for any initial function
φ, then the trivial solution of (2.3) is called asymptotically mean square stable.

The following method for stability investigation is used below. Conditions for
asymptotic mean square stability of the trivial solution of constructed linear equation (2.3)
were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals
construction [44–46]. Since the order of nonlinearity of (2.2) is more than 1, then obtained
stability conditions at the same time are [47–49] conditions for stability in the probability of
the trivial solution of nonlinear equation (2.2) and therefore for stability in probability of the
equilibrium point of (2.1).



4 Advances in Difference Equations

Lemma 2.3. (see [44]). If

k∑

j=0

∣
∣γj

∣
∣ <

√
1 − σ2, (2.4)

then the trivial solution of (2.3) is asymptotically mean square stable.
Put

β =
k∑

j=0

γj , α =
k∑

j=1

∣
∣Gj

∣
∣, Gj =

k∑

l=j

γl. (2.5)

Lemma 2.4. (see [44]). If

β2 + 2α|1 − β| + σ2 < 1, (2.6)

then the trivial solution of (2.3) is asymptotically mean square stable.
Consider also the necessary and sufficient condition for asymptotic mean square stability of the

trivial solution of (2.3).
LetU and Γ be two square matrices of dimension k + 1 such thatU = ‖uij‖ has all zero elements

except for uk+1,k+1 = 1 and

Γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1

γk γk−1 γk−2 · · · γ1 γ0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

Lemma 2.5 ([46]). Let the matrix equation

Γ′DΓ −D = −U (2.8)

has a positively semidefinite solution D with dk+1,k+1 > 0. Then the trivial solution of (2.3) is
asymptotically mean square stable if and only if

σ2dk+1,k+1 < 1. (2.9)

Corollary 2.6. For k = 1 condition (2.9) takes the form
∣
∣γ1

∣
∣ < 1,

∣
∣γ0

∣
∣ < 1 − γ1, (2.10)

σ2 < d−1
22 =

(
1 + γ1

)((
1 − γ1

)2 − γ2
0

)

1 − γ1
. (2.11)

If, in particular, σ = 0, then condition (2.10) is the necessary and sufficient condition for
asymptotic mean square stability of the trivial solution of (2.3) for k = 1.

Remark 2.7. Put σ = 0. If β = 1, then the trivial solution of (2.3) can be stable (e.g., zn+1 = zn
or zn+1 = 0.5(zn + zn−1)), unstable (e.g., zn+1 = 2zn − zn−1) but cannot be asymptotically stable.
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Really, it is easy to see that if β ≥ 1 (in particular, β = 1), then sufficient conditions (2.4) and
(2.6) do not hold. Moreover, necessary and sufficient (for k = 1) condition (2.10) does not hold
too since if (2.10) holds, then we obtain a contradiction

1 ≤ β = γ0 + γ1 ≤
∣
∣γ0

∣
∣ + γ1 < 1. (2.12)

Remark 2.8. As it follows from results of [47–49] the conditions of Lemmas 2.3, 2.4, 2.5 at the
same time are conditions for stability in probability of the equilibrium point of (2.1).

3. Stability of equilibrium points

From conditions (2.4), (2.6) it follows that |β| < 1. Let us check if this condition can be true for
each equilibrium point.

Suppose at first that condition (1.7) holds. Then (2.1) has two points of equilibrium x̂1

and x̂2 defined by (1.8) and (1.9) accordingly. Putting S =
√
(A − λ)2 + 4Bμ via (2.5), (2.3),

(1.3), we obtain that corresponding β1 and β2 are

β1 =
A − Bx̂1

λ + Bx̂1
=
A − (1/2)(A − λ + S)
λ + (1/2)(A − λ + S)

=
A + λ − S

A + λ + S
,

β2 =
A − Bx̂2

λ + Bx̂2
=
A − (1/2)(A − λ − S)
λ + (1/2)(A − λ − S)

=
A + λ + S

A + λ − S
.

(3.1)

So, β1β2 = 1. It means that the condition |β| < 1 holds only for one from the equilibrium points
x̂1 and x̂2. Namely, if A + λ > 0, then |β1| < 1; if A + λ < 0, then |β2| < 1; if A + λ = 0,
then β1 = β2 = −1. In particular, if μ = 0, then via Remark 1.1 and (2.3) we have β1 = λA−1,
β2 = λ−1A. Therefore, |β1| < 1 if |λ| < |A|, |β2| < 1 if |λ| > |A|, |β1| = |β2| = 1 if |λ| = |A|.

So, via Remark 2.7, we obtain that equilibrium points x̂1 and x̂2 can be stable
concurrently only if corresponding β1 and β2 are negative concurrently.

Suppose now that condition (1.10) holds. Then (2.1) has only one point of equilibrium
(1.11). From (2.5), (2.3), (1.3), (1.11) it follows that corresponding β equals

β =
A − Bx̂

λ + Bx̂
=
A − (1/2)(A − λ)
λ + (1/2)(A − λ)

=
A + λ

λ +A
= 1. (3.2)

As it follows from Remark 2.7 this point of equilibrium cannot be asymptotically stable.

Corollary 3.1. Let x̂ be an equilibrium point of (2.1) such that

k∑

j=0

∣
∣aj − bjx̂

∣
∣ <

∣
∣λ + Bx̂

∣
∣
√

1 − σ2, σ2 < 1. (3.3)

Then the equilibrium point x̂ is stable in probability.

The proof follows from (2.3), Lemma 2.3, and Remark 2.8.
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Corollary 3.2. Let x̂ be an equilibrium point of (2.1) such that

∣
∣A − Bx̂

∣
∣ <

∣
∣λ + Bx̂

∣
∣, (3.4)

2
k∑

j=1

∣
∣Aj − Bjx̂

∣
∣ < |λ +A| − σ2

(
λ + Bx̂

)2

∣
∣λ −A + 2Bx̂

∣
∣
. (3.5)

Then the equilibrium point x̂ is stable in probability.

Proof. Via (1.3), (2.3), (2.5) we have

α =
∣
∣λ + Bx̂

∣
∣−1

k∑

j=1

∣
∣Aj − Bjx̂

∣
∣, β =

A − Bx̂

λ + Bx̂
. (3.6)

Rewrite (2.6) in the form

2α < 1 + β − σ2

1 − β
, |β| < 1, (3.7)

and show that it holds. From (3.4) it follows that |β| < 1. Via |β| < 1 we have

1 + β = 1 +
A − Bx̂

λ + Bx̂
=

λ +A

λ + Bx̂
> 0,

1 − β = 1 − A − Bx̂

λ + Bx̂
=
λ −A + 2Bx̂

λ + Bx̂
> 0.

(3.8)

So,

2
k∑

j=1

∣
∣Aj − Bjx̂

∣
∣ <

∣
∣λ + Bx̂

∣
∣
(

λ +A

λ + Bx̂
− σ2 λ + Bx̂

λ −A + 2Bx̂

)

= |λ +A| − σ2 (λ + Bx̂)2

∣
∣λ −A + 2Bx̂

∣
∣
. (3.9)

It means that the condition of Lemma 2.4 holds. Via Remark 2.8 the proof is completed.

Corollary 3.3. An equilibrium point x̂ of the equation

xn+1 =
μ + a0xn + a1xn−1

λ + b0xn + b1xn−1
+ σ

(
xn − x̂

)
ξn+1 (3.10)

is stable in probability if and only if

∣
∣a1 − b1x̂

∣
∣ <

∣
∣λ + Bx̂

∣
∣,

∣
∣a0 − b0x̂

∣
∣ <

(
λ − a1 +

(
b0 + 2b1

)
x̂
)
sign

(
λ + Bx̂

)
,

(3.11)

σ2 <

(
λ + a1 + b0x̂

)(
λ + a0 − a1 + 2b1x̂

)(
λ −A + 2Bx̂

)

(
λ − a1 +

(
b0 + 2b1

)
x̂
)(
λ + Bx̂

)2
. (3.12)

The proof follows from (2.3), (2.10), (2.11).



B. Paternoster and L. Shaikhet 7

121086420−2−4−6−8−10 μ

10

8

6

4

2

−2

−4

−6

λ

A

B

C

D

Figure 1: Stability regions, σ2 = 0.
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Figure 2: Stability regions, σ2 = 0.3.

4. Examples

Example 4.1. Consider (3.10) with a0 = 2.9, a1 = 0.1, b0 = b1 = 0.5. From (1.3) and (1.7)–(1.9) it
follows that A = 3, B = 1 and for any fixed μ and λ such that μ > −(1/4)(3− λ)2 equation (3.10)
has two points of equilibrium

x̂1 =
1
2

(
3 − λ +

√

(3 − λ)2 + 4μ
)
, x̂2 =

1
2

(
3 − λ −

√

(3 − λ)2 + 4μ
)
. (4.1)

In Figure 1, the region where the points of equilibrium are absent (white region), the
region where both points of equilibrium x̂1 and x̂2 are there but unstable (yellow region), the
region where the point of equilibrium x̂1 is stable only (red region), the region where the point
of equilibrium x̂2 is stable only (green region), and the region where both points of equilibrium
x̂1 and x̂2 are stable (cyan region) are shown in the space of (μ, λ). All regions are obtained
via condition (3.11) for σ2 = 0. In Figures 2, 3 one can see similar regions for σ2 = 0.3 and
σ2 = 0.8, accordingly, that were obtained via conditions (3.11), (3.12). In Figure 4 it is shown
that sufficient conditions (3.3) and (3.4), (3.5) are enough close to necessary and sufficient
conditions (3.11), (3.12): inside of the region where the point of equilibrium x̂1 is stable (red
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Figure 3: Stability regions, σ2 = 0.8.
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Figure 4: Stability regions, σ2 = 0.

region) one can see the regions of stability of the point of equilibrium x̂1 that were obtained
by condition (3.3) (grey and green regions) and by conditions (3.4), (3.5) (cyan and green
regions). Stability regions obtained via both sufficient conditions of stability (3.3) and (3.4),
(3.5) give together almost whole stability region obtained via necessary and sufficient stability
conditions (3.11), (3.12).

Consider now the behavior of solutions of (3.10) with σ = 0 in the points A, B, C, D
of the space of (μ, λ) (Figure 1). In the point A with μ = −5, λ = −3 both equilibrium points
x̂1 = 5 and x̂2 = 1 are unstable. In Figure 5 two trajectories of solutions of (3.10) are shown
with the initial conditions x−1 = 5, x0 = 4.95, and x−1 = 0.999, x0 = 1.0001. In Figure 6 two
trajectories of solutions of (3.10) with the initial conditions x−1 = −3, x0 = 13, and x−1 = −1.5,
x0 = −1.500001 are shown in the point B with μ = 3.75, λ = 2. One can see that the equilibrium
point x̂1 = 2.5 is stable and the equilibrium point x̂2 = −1.5 is unstable. In the point C with μ = 9,
λ = −5 the equilibrium point x̂1 = 9 is unstable and the equilibrium point x̂2 = −1 is stable. Two
corresponding trajectories of solutions are shown in Figure 7 with the initial conditions x−1 = 7,
x0 = 10, and x−1 = −8, x0 = 8. In the point D with μ = 9.75, λ = −2 both equilibrium points
x̂1 = 6.5 and x̂2 = −1.5 are stable. Two corresponding trajectories of solutions are shown in
Figure 8 with the initial conditions x−1 = 2, x0 = 12, and x−1 = −8, x0 = 8. As it was noted above
in this case, corresponding β1 and β2 are negative: β1 = −7/9 and β2 = −9/7.
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Figure 5: Unstable equilibrium points x̂1 = 5 and x̂2 = 1 for μ = −5, λ = −3.
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Figure 6: Stable equilibrium point x̂1 = 2.5 and unstable x̂2 = −1.5 for μ = 3.75, λ = 2.

Consider the difference equation

xn+1 = p + q
xn−m
xn−r

+ σ
(
xn − x̂

)
ξi+1. (4.2)

Different particular cases of this equation were considered in [2–5, 16, 22, 23, 37].
Equation (4.2) is a particular case of (2.1) with

ar = p, am = q, aj = 0 if j /= r, j /= m,

μ = λ = 0, br = 1, bj = 0 if j /= r, x̂ = p + q.
(4.3)

Suppose firstly that p + q /= 0 and consider two cases: (1) m > r ≥ 0, (2) r > m ≥ 0. In the
first case,

Aj = p + q if j = 0, . . . , r, Aj = q if j = r + 1, . . . , m,

Bj = 1 if j = 0, . . . , r, Bj = 0 if j = r + 1, . . . , m.
(4.4)

In the second case,

Aj = p + q if j = 0, . . . , m, Aj = p if j = m + 1, . . . , r, Bj = 1 if j = 0, . . . , r. (4.5)
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Figure 7: Unstable equilibrium point x̂1 = 9 and stable x̂2 = −1 for μ = 9, λ = −5.
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Figure 8: Stable equilibrium points x̂1 = 6.5 and x̂2 = −1.5 for μ = 9.75, λ = −2.

In both cases, Corollary 3.1 gives stability condition in the form 2|q| <
√

1 − σ2|p + q| or

p ∈
(
−∞,−q − θ|q|

)
∪
(
− q + θ|q|,∞

)
(4.6)

with

θ = θ1 =
2√

1 − σ2
. (4.7)

Corollary 3.2 in both cases gives stability condition in the form 2|q||m − r| < (1 − σ2)|p + q| or
(4.6) with

θ = θ2 =
2|m − r|
1 − σ2

. (4.8)

Since θ2 > θ1 then condition (4.6), (4.7) is better than (4.6), (4.8).
In the case m = 1, r = 0 Corollary 3.3 gives stability condition in the form

|q| < |p + q|, |q| < p sign (p + q), σ2 <
(p + 2q)(p − q)

p(p + q)
(4.9)
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Figure 9: Stable equilibrium points x̂ = 3 and x̂ = −1.8, unstable x̂ = 1.93 and x̂ = −0.9.

or

p ∈
(

−∞,
1
2
(
− q − θ|q|

)
)

∪
(

1
2
(
− q + θ|q|

)
,∞

)

, θ =

√
9 − σ2

1 − σ2
. (4.10)

In particular, from (4.10) it follows that for q = 1, σ = 0 (this case was considered in
[3, 23]) the equilibrium point x̂ = p + 1 is stable if and only if p ∈ (−∞,−2) ∪ (1,∞). Note that
in [3] for this case the condition p > 1 only is obtained.

In Figure 9 four trajectories of solutions of (4.2) in the case m = 1, r = 0, σ = 0, q = 1 are
shown: (1) p = 2, x̂ = 3, x−1 = 4, x0 = 1 (red line, stable solution); (2) p = 0.93, x̂ = 1.93, x−1 = 2.1,
x0 = 1.7 (brown line, unstable solution); (3) p = −1.9, x̂ = −0.9, x−1 = −0.89, x0 = −0.94 (blue
line, unstable solution); (4) p = −2.8, x̂ = −1.8, x−1 = −4, x0 = 3 (green line, stable solution).

In the case r = 1, m = 0, Corollary 3.3 gives stability condition in the form

|q| < |p + q|, |q| < (p + 2q)sign(p + q), σ2 <
p(p + 3q)

(p + q)(p + 2q)
(4.11)

or

p ∈
(

−∞,
1
2
(
− 3q − θ|q|

)
)

∪
(

1
2
(
− 3q + θ|q|

)
,∞

)

, θ =

√
9 − σ2

1 − σ2
. (4.12)

Example 4.2. For example, from (4.12) it follows that for q = −1, σ = 0 (this case was considered
in [22, 37]), the equilibrium point x̂ = p − 1 is stable if and only if p ∈ (−∞, 0) ∪ (3,∞). In
Figure 10 four trajectories of solutions of (4.2) in the case r = 1, m = 0, σ = 0, q = −1 are shown:
(1) p = 3.5, x̂ = 2.5, x−1 = 3.5, x0 = 1.5 (red line, stable solution); (2) p = 2.2, x̂ = 1.2, x−1 = 1.2,
x0 = 1.2001 (brown line, unstable solution); (3) p = 0.3, x̂ = −0.7, x−1 = −0.7, x0 = −0.705
(blue line, unstable solution); (4) p = −0.2, x̂ = −1.2, x−1 = −2, x0 = −0.4 (green line, stable
solution).

Via simulation of a sequence of mutually independent random variables ξn consider
the behavior of the equilibrium point by stochastic perturbations. In Figure 11 one thousand
trajectories are shown for p = 4, q = −1, σ = 0.5, x−1 = 3.5, x0 = 2.5. In this case, stability
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Figure 10: Stable equilibrium points x̂ = 2.5 and x̂ = −1.2, unstable x̂ = 1.2 and x̂ = −0.7.
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Figure 11: Stable equilibrium point x̂ = 3 for p = 4, q = −1, σ = 0.5.

condition (4.12) holds (4 ∈ (−∞,−0.2) ∪ (3.2,∞)) and therefore the equilibrium point x̂ = 3
is stable: all trajectories go to x̂. Putting σ = 0.9, we obtain that stability condition (4.12) does
not hold (4/∈ (−∞,−1.78) ∪ (4.78,∞)). Therefore, the equilibrium point x̂ = 3 is unstable: in
Figure 12 one can see that 1000 trajectories fill the whole space.

Note also that if p+q goes to zero all obtained stability conditions are violated. Therefore,
by conditions p + q = 0 the equilibrium point is unstable.

Example 4.3. Consider the equation

xn+1 =
μ + axn−1

λ + xn
+ σ

(
xn − x̂

)
ξn+1 (4.13)

(its particular cases were considered in [18, 19, 35]). Equation (4.13) is a particular case of
(2.1) with k = 1, a0 = b1 = 0, a1 = a, b0 = 1. From (1.7)–(1.9) it follows that by condition
μ > −(1/4)(a − λ)2 it has two equilibrium points

x̂1 =
a − λ + S

2
, x̂2 =

a − λ − S

2
, S =

√

(a − λ)2 + 4μ. (4.14)
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Figure 12: Unstable equilibrium point x̂ = 3 for p = 4, q = −1, σ = 0.9.

For equilibrium point x̂ sufficient conditions (3.3) and (3.4), (3.5) give
∣
∣x̂
∣
∣ + |a| <

∣
∣λ + x̂

∣
∣
√

1 − σ2,

2|a| < |λ + a| − σ2 (λ + x̂)2

∣
∣λ + 2x̂ − a

∣
∣
,

∣
∣a − x̂

∣
∣ <

∣
∣λ + x̂

∣
∣.

(4.15)

From (3.11), (3.12) it follows that an equilibrium point x̂ of (4.13) is stable in probability if and
only if

∣
∣λ + x̂

∣
∣ > |a|,

∣
∣x̂
∣
∣ <

(
λ + x̂ − a

)
sign

(
λ + x̂

)
,

σ2 <

(
λ + x̂ + a

)
(λ − a)

(
λ + 2x̂ − a

)

(
λ + x̂ − a

)(
λ + x̂

)2
.

(4.16)

For example, for x̂ = x̂1 from (4.15) we obtain

|a − λ + S| + 2|a| < |a + λ + S|
√

1 − σ2,

2|a| < λ + a − σ2 (λ + a + S)2

4S
, λ + a > 0.

(4.17)

From (4.16) it follows

|a + λ + S| > 2|a|,

|a − λ + S| < (λ − a + S)sign(a + λ + S),

σ2 <
4S(λ − a)(λ + 3a + S)

(λ − a + S)(λ + a + S)2
.

(4.18)

Similar for x̂ = x̂2 from (4.15) we obtain

|a − λ − S| + 2|a| < |a + λ − S|
√

1 − σ2,

2|a| < |λ + a| − σ2 (λ + a − S)2

4S
, λ + a < 0.

(4.19)
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Figure 13: Stable equilibrium point x̂2 = 0 for μ = 0, λ = −2, a = 1, σ = 0.6.

From (4.16) it follows

|a + λ − S| > 2|a|,

|a − λ − S| < (λ − a − S)sign(a + λ − S),

σ2 <
4S(a − λ)(λ + 3a − S)

(λ − a − S)(λ + a − S)2
.

(4.20)

Put, for example, μ = 0. Then (4.13) has two equilibrium points: x̂1 = a − λ, x̂2 = 0. From
(4.15)-(4.16) it follows that the equilibrium point x̂1 is unstable and the equilibrium point x̂2 is
stable in probability if and only if

|λ| > |a|√
1 − σ2

. (4.21)

Note that for particular case μ = 0, a = 1, λ > 0, σ = 0 in [35] it is shown that the equilibrium
point x̂2 is locally asymptotically stable if λ > 1; and for particular case μ = 0, a = −α < 0, λ > 0,
σ = 0 in [18] it is shown that the equilibrium point x̂2 is locally asymptotically stable if λ > α.
It is easy to see that both these conditions follow from (4.21).

Similar results can be obtained for the equation xn+1 = (μ − axn)/(λ + xn−1) that was
considered in [1].

In Figure 13 one thousand trajectories of (4.13) are shown for μ = 0, λ = −2, a = 1,
σ = 0.6, x−1 = −0.5, x0 = 0.5. In this case stability condition (4.21) holds (2 > 1.25) and therefore
the equilibrium point x̂ = 0 is stable: all trajectories go to zero. Putting σ = 0.9, we obtain
that stability condition (4.21) does not hold (2 < 2.29). Therefore, the equilibrium point x̂ = 0
is unstable: in Figure 14 one can see that 1000 trajectories by the initial condition x−1 = −0.1,
x0 = 0.1 fill the whole space.

Example 4.4. Consider the equation

xn+1 =
p + xn−1

qxn + xn−1
+ σ

(
xn − x̂

)
ξn+1 (4.22)
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Figure 14: Unstable equilibrium point x̂2 = 0 for μ = 0, λ = −2, a = 1, σ = 0.9.

that is a particular case of (3.10) with μ = p, λ = 0, a0 = 0, a1 = 1, b0 = q, b1 = 1. As it follows
from (1.4), (1.7)–(1.9) by conditions p(q + 1) > −1/4, q /= − 1, (4.22) has two equilibrium points

x̂1 =
1 + S

2(q + 1)
, x̂2 =

1 − S

2(q + 1)
, S =

√
1 + 4p(q + 1). (4.23)

From (3.11), (3.12) it follows that an equilibrium point x̂ of (4.22) is stable in probability
if and only if

∣
∣1 − x̂

∣
∣ <

∣
∣(q + 1)x̂

∣
∣,

∣
∣qx̂

∣
∣ <

(
(2 + q)x̂ − 1

)
sign

(
(q + 1)x̂

)
,

σ2 <

(
1 + qx̂

)(
2x̂ − 1

)(
2(q + 1)x̂ − 1

)

(
(2 + q)x̂ − 1

)
(q + 1)2x̂2

.

(4.24)

Substituting (4.23) into (4.24), we obtain stability conditions immediately in the terms of
the parameters of considered equation (4.22): the equilibrium point x̂1 is stable in probability
if and only if

p ∈

⎧
⎪⎪⎨

⎪⎪⎩

(
q − 1

4
,∞

)

, q ≥ 0,
(

− 1
4(q + 1)

,
2
q
+

1
q2

)

, q ∈
(

− 2
3
, 0
)

,

∣
∣
∣
∣
∣
σ2 <

4S(S − q)
(
(S + 3)q + 2

)

(S + 1)2(q + 1)
(
(q + 2)S − q

) , (4.25)

the equilibrium point x̂2 is stable in probability if and only if

p ∈

⎧
⎪⎪⎨

⎪⎪⎩

(
2
q
+

1
q2

,∞
)

, q > 0,
(
q − 1

4
,

2
q
+

1
q2

)

, q < −2,

∣
∣
∣
∣
∣
σ2 <

4S(S + q)
(
(S − 3)q − 2

)

(S − 1)2(q + 1)
(
(q + 2)S + q

) . (4.26)
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Figure 15: Stability regions, σ = 0.
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Figure 16: Stability regions, σ = 0.7.

Note that in [24] equation (4.18) was considered with σ = 0 and positive p, q. There it
was shown that equilibrium point x̂1 is locally asymptotically stable if and only if 4p > q − 1
that is a part of conditions (4.25).

In Figure 15 the region where the points of equilibrium are absent (white region), the
region where the both points of equilibrium x̂1 and x̂2 are there but unstable (yellow region),
the region where the point of equilibrium x̂1 is stable only (red region), the region where the
point of equilibrium x̂2 is stable only (green region) and the region where the both points of
equilibrium x̂1 and x̂2 are stable (cyan region) are shown in the space of (p,q). All regions are
obtained via conditions (4.25), (4.26) for σ = 0. In Figures 16 similar regions are shown for
σ = 0.7.

Consider the point A (Figure 15) with p = −2, q = −3. In this point both equilibrium
points x̂1 = −1.281 and x̂2 = 0.781 are unstable. In Figure 17 two trajectories of solutions of
(4.22) are shown with the initial conditions x−1 = −1.28, x0 = −1.281 and x−1 = 0.771, x0 = 0.77.
In Figure 18 two trajectories of solutions of (4.22) with the initial conditions x−1 = 4, x0 = −3
and x−1 = −0.51, x0 = −0.5 are shown in the point B (Figure 15) with p = q = 1. One can see that
the equilibrium point x̂1 = 1 is stable and the equilibrium point x̂2 = −0.5 is unstable. In the
point C (Figure 15) with p = −1, q = −6 the equilibrium point x̂1 = −0.558 is unstable and the
equilibrium point x̂2 = 0.358 is stable. Two corresponding trajectories of solutions are shown
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Figure 17: Unstable equilibrium points x̂1 = −1.281 and x̂2 = 0.781 for p = −2, q = −3.
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Figure 18: Stable equilibrium point x̂1 = 1 and unstable x̂2 = −0.5 for p = 1, q = 1.
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Figure 19: Unstable equilibrium point x̂1 = −0.558 and stable x̂2 = 0.358 for p = −1, q = −6.

in Figure 19 with the initial conditions x−1 = x0 = −0.55 and x−1 = −4, x0 = 5. In the point D
(Figure 15) with p = 2.5, q = 3 both equilibrium points x̂1 = 0.925 and x̂2 = −0.675 are stable.
Two corresponding trajectories of solutions are shown in Figure 20 with the initial conditions
x−1 = 2.1, x0 = 0.2 and x−1 = −0.2, x0 = −1.4.
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Figure 20: Stable equilibrium points x̂1 = 0.925 and x̂2 = −0.675 for p = 2.5, q = 3.
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Figure 21: Stable equilibrium points x̂1 = 1.281 and x̂2 = −0.781 for p = 2, q = 1, σ = 0.7.
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Figure 22: Stable equilibrium points x̂1 = 1.703 and x̂2 = −0.37 for p = 7, q = 2, σ = 0.7.

Consider the behavior of the equilibrium points of (4.22) by stochastic perturbations
with σ = 0.7. In Figure 21 trajectories of solutions are shown for p = 2, q = 1 (the point E
in Figure 16) with the initial conditions x−1 = 1.5, x0 = 1 and x−1 = x0 = −0.78. One can
see that the equilibrium point x̂1 = 1.281 (red trajectories) is stable and the equilibrium point
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x̂2 = −0.781 (green trajectories) is unstable. In Figure 22 trajectories of solutions are shown
for p = 7, q = 2 (the point F in Figure 16) with the initial conditions x−1 = 1.5, x0 = 1.9 and
x−1 = −1.4, x0 = −1.3. In this case both equilibrium points x̂1 = 1.703 (red trajectories) and
x̂2 = −1.37 (green trajectories) are stable.
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[5] K. S. Berenhaut, J. D. Foley, and S. Stević, “The global attractivity of the rational difference equation
yn = 1 + (yn−k/yn−m),” Proceedings of the American Mathematical Society, vol. 135, no. 4, pp. 1133–1140,
2007.
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