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1. Introduction

The first works on infinite horizon optimal control problems are due to Pontryagin and
his school [1]. They were followed by few others [2–6]. We consider in this paper an
infinite horizon Optimal Control problem in the discrete time framework. Such problems are
fundamental in the macroeconomics growth theory [7–10] and see references of [11]. Even
in the finite horizon case, the discrete time framework presents significant differences from
the continuous time one. Boltianski [12] shows that in the discrete time case, a convexity
condition is needed to guarantee a strong Pontryagin Principle while this last one can be
obtained without such condition in the continuous time setting. We study our problem in the
space of bounded sequences �∞,which allows us to use Analysis in Banach spaces instead of
using reductions to finite horizon problems as in [5, 6]. According to Chichlinisky [13, 14], the
space of bounded sequences was first used in economics by Debreu [15]. It can also be found
in [7, 8, 16]. We obtain Pontryagin Maximum Principles in the strong form using weaker
convexity hypotheses than the traditional ones and without invertibility [5]. When we study
the problem in a general sequence space it turns out that the infinite series will not always
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converge. Therefore we present other notions of optimality that are currently used, notably
in the economic literature, see [3, 4, 9] and we show how our problem can be related to these
other problems. We end the paper by establishing sufficient conditions of optimality.

Now we briefly describe the contents of the paper. In Section 2 we introduce the
notations and the problem, then we state Theorems 2.1 and 2.2 which give necessary
conditions of optimality namely the existence of the adjoint variable in the space �1 satisfying
the adjoint equation and the strong Pontryagin maximum principle. In Section 3 we prove
these theorems through some lemmas and using results due to Ioffe-Tihomirov [17]. In
Section 4 we introduce some other notions of optimality for problems in the nonbounded case
and we show links with our problem. For example, we show that when the objective function
is positive then a bounded solution is a solution among the unbounded processes. Finally we
give sufficient conditions of optimality for problems in the bounded and unbounded cases
adapting for each case the approprate transversality condition.

2. Pontryagin maximum principles for bounded processes

We first precise our notations. Let Ω be a nonempty open convex subset of Rn and U a
nonempty compact subset of Rm. Let Φ : Ω ×U → R and, for all t ∈ N, ft : Ω ×U → R

n.We
set (x, u) = ((xt)t, (ut)t).

Define dom J = {(x, u) ∈ ΩN ×UN :
∑+∞

t=0 β
tΦ(xt, ut) converges in R}.

For every x ∈ R
n define C(x) as the closure of the set of terms of the sequence x. If

x ∈ �∞(N,Rn), C(x) is compact. We set X = {x = (xt)t ∈ �∞(N,Rn), such that C(x) ⊂ Ω}.X is
thus the set of the bounded sequences which are in the interior of Ω. Note that X is a convex
open subset of �∞(N,Rn) since Ω is open and convex. We set U = {u = (ut)t ∈ UN}. Define
Adm(η) = {(x, u) ∈ ΩN × U : xt+1 = ft(xt, ut), t ∈ N, and x0 = η}; it is the set of admissible
processes with respect to the considered dynamical system.

Let β ∈ (0, 1). We consider first the following problem (P1):

Maximize J
(
x, u

)
=

+∞∑

t=0

βtΦ
(
xt, ut

)

xt+1 = ft
(
xt, ut

)
, t ∈ N

x0 = η
(
x, u

)
∈ X × U

(P1)

which can be written as follows.

(P1) Maximize J(x, u)when (x, u) ∈ Adm(η) ∩ (X ×U).

Theorem 2.1. Let (x̂, û) be a solution of (P1). Assume the following.

(i) For all u ∈ U, the mapping x �→ Φ(x, u) is of class C1 on Ω and for all t ∈ N, the mapping
x �→ ft(x, u) is Fréchet-differentiable on Ω.

(ii) For all t ∈ N, for all xt ∈ Ω, for all u′
t, u

′′
t ∈ U, for all α ∈ [0, 1], there exists ut ∈ U such

that

Φ
(
xt, ut

)
≥ αΦ

(
xt, u

′
t

)
+ (1 − α)Φ

(
xt, u

′′
t

)

ft
(
xt, ut

)
= αft

(
xt, u

′
t

)
+ (1 − α)ft

(
xt, u

′′
t

)
.

(2.1)
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(iii) For any compact set C ⊂ Ω, there exists a constant KC such that for all t ∈ N, for all
x, x′ ∈ C, for all u ∈ U, ‖ft(x, u)‖ ≤ KC and ‖Dxtft(x, u) −Dxtft(x

′, u)‖ ≤ KC‖x − x′‖.
(iv) There exists r > 0 such that B(x̂, r) ⊂ X and for all (xt, ut) ∈ B(x̂t, r) ×U,

sup
t≥0

∥
∥Dxtft

(
xt, ut

)∥
∥ < 1. (2.2)

Then there exists (pt+1)t ∈ �1(N,Rn) such that

(a) pt = pt+1 ◦Dxtft(x̂t, ût) + βtDxtΦ(x̂t, ût), for all t,

(b) βtΦ(x̂t, ût) + 〈pt+1, ft(x̂t, ût)〉 ≥ βtΦ(x̂t, ut) + 〈pt+1, ft(x̂t, ut)〉, for all t, for all ut ∈ U,

(c) limt→+∞ pt = 0.

Comments

For continuous time problems, one does not need conditions to obtain a strong Pontryagin
maximum principle, both in the finite horizon case (see, e.g., [18]) and in the infinite horizon
case (see, e.g., [5]). But for discrete time problems, strong Pontryagin principles cannot hold
without an additional assumption namely a convexity condition, as Boltyanski shows in
[12] for the finite horizon framework. Condition (ii) comes from the Ioffe and Tihomirov
book [17]. It generalizes the usual convexity condition used to garantee a strong Pontryagin
maximum principle. The usual condition is: U convex subset, Φ concave with respect to u
and for every t, ft affine with respect to u. It implies condition (ii). In (iii) the condition
‖ft(x, u)‖ ≤ KC is satisfied when ft is continuous (since U is compact) and the condition
‖Dxtft(x, u) −Dxtft(x

′, u)‖ ≤ KC‖x − x′‖ is satisfied when D2
xt
ft exists and is continuous.

Conclusion (a) is the adjoint equation, conclusion (b) is the strong Pontryagin
maximum principle and conclusion (c) is a transversality condition at infinity. In our case
(c) is immediately obtained since (pt+1)t is in �1(N,Rn), but in general (nonbounded cases) it
is very delicate to obtain such a conclusion. [9]

In the next theorem we consider the autonomous case. Thus the hypotheses are
simpler and easier to manipulate.

Theorem 2.2. Let ft = f for all t ∈ N. Let (x̂, û) be a solution of (P1). Assume that the following
conditions are fulfilled.

(i) For all u ∈ U, the mappings x �→ Φ(x, u) and x �→ f(x, u) are of class C1 on Ω.

(ii) For all t ∈ N, for all xt ∈ Ω, for all u′
t, u

′′
t ∈ U, for all α ∈ [0, 1], there exists ut ∈ U such

that

Φ
(
xt, ut

)
≥ αΦ

(
xt, u

′
t

)
+ (1 − α)Φ

(
xt, u

′′
t

)
,

f
(
xt, ut

)
= αf

(
xt, u

′
t

)
+ (1 − α)f

(
xt, u

′′
t

)
.

(2.3)

(iii) supt≥0‖Dxtf(x̂t, ût)‖ < 1.

Then there exists (pt+1)t ∈ �1(N,Rn) such that the assertions (a), (b), and (c) of Theorem 2.1 are
satisfied.
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3. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1

First part

The first part of the proof goes through several lemmas.

Lemma 3.1. J is well-defined and under hypothesis (i) of Theorem 2.1, for all u, the mapping x �→
J(x, u) is of class C1 and one has, for all δx ∈ �∞(N,Rn), DxJ(x, u)δx =

∑+∞
t=0 β

tDxtΦ(xt, ut)δxt.

For the proof see [19].
We set F(x, u) = (ft(xt, ut) − xt+1)t≥0 for all (x, u) ∈ X × U.

Lemma 3.2. Assume that hypothesis (iii) of Theorem 2.1 holds. Then for (x, u) ∈ �∞(N,Ω) × U,
one has F(x, u) ∈ �∞(N,Rn). Moreover, if in addition hypotheses (i) and (iv) of Theorem 2.1 hold,
then for all u, the mapping x �→ F(x, u) is of class C1 on the ball B(x̂, r) in �∞(N,Rn) and for all
δx ∈ �∞(N,Rn), one has DxF(x, u)δx = (Dxtft(xt, ut)δxt − δxt+1)t∈N.

Proof. Let (x, u) ∈ �∞(N,Ω) × U. Let KC be the constant of (iii) with C = C(x). So for all
t ∈ N, ‖ft(xt, ut) − xt+1‖ ≤ KC + supt∈N ‖xt‖. So one has F(x, u) ∈ �∞(N,Rn).

Assume now that hypotheses (i) and (iv) of Theorem 2.1 hold. Let us show that x �→
F(x, u) is of class C0 on B(x̂, r). Take (x0, u) ∈ B(x̂, r) × U. Let ε > 0 be given. Let x ∈ B(x̂, r)
be such that ‖x − x0‖ < min{2r, ε/2}. Then, for all t ∈ N, ‖ft(xt, ut) − xt+1 + ft(x0

t , ut) − x0
t+1‖ ≤

‖ft(x0
t , ut) − ft(xt, ut)‖ + ‖xt+1 − x0

t+1‖ ≤ supyt∈]x0
t ,xt[‖Dxtft(yt, ut)‖ · ‖xt − x0

t ‖ + ‖xt+1 − x0
t+1‖ <

(ε/2)(supt≥0‖Dxtft(yt, ut)‖ + 1) < ε under (iv), which implies that ‖F(x, u) − F(x0, u)‖∞ < ε.
Let us now show that x �→ F(x, u) is Fréchet-differentiable on B(x̂, r). Take

(x0, u) ∈ B(x̂, r) × U. Let ε > 0 be given. Let x ∈ B(x̂, r) be such that ‖x −
x0‖ < min{2r, ε/2}. Then, for all t ∈ N, ‖ft(xt, ut) − xt+1 + ft(x0

t , ut) − x0
t+1 +

Dxtft(x
0
t , ut)(xt − x0

t ) − (xt+1 − x0
t+1)‖ ≤ (supyt∈]x0

t ,xt[‖Dxtft(yt, ut) −Dxtft(x
0
t , ut)‖)‖(xt − x0

t )‖ ≤
(supyt∈]x0

t ,xt[(‖Dxtft(yt, ut)‖ + ‖Dxtft(x
0
t , ut)‖)‖(xt − x0

t )‖ < ε under (iii). But this implies
that ‖F(x, u) − F(x0, u) −Dxtft(x

0
t , ut)(xt − x0

t ) − ((xt+1 − x0
t+1))t∈N‖∞ < ε. Thus x �→ F(x, u)

is Fréchet-differentiable at x0 and DxF(x0, u)δx = (Dxtft(x
0
t , ut)δxt − δxt+1)t∈N.

To show the continuity of x �→ DxF(x, u) at x0 let KB be the constant of hypothesis
(iii) corresponding to B(x̂, r). Let ε > 0 be given and let x ∈ B(x̂, r) be such that ‖x −
x0‖ < min{2r, ε/KB}·‖DxF(x, u) −DxF(x0, u)‖∞ ≤ supt∈N‖Dxtft(x

0
t , ut) − Dxtft(xt, ut)‖ ≤

supt∈NKB‖x0
t − xt‖ < ε. So F is of class C1.

Lemma 3.3. Under hypothesis (ii) of Theorem 2.1, for all x ∈ X, for all u′, u′′ ∈ U, for all α ∈ [0, 1],
there exists u ∈ U such that

J
(
x, u

)
≥ αJ

(
x, u′) + (1 − α)J

(
x, u′′)

F
(
x, u

)
= αF

(
x, u′) + (1 − α)F

(
x, u′′).

(3.1)

Proof. Let x = (xt)t ∈ X, u′ = (u′
t)t ∈ U, u′′ = (u′′

t )t ∈ U and α ∈ [0, 1]. Hypothesis (ii) of
Theorem 2.1 implies for all t ∈ N the existence of ut ∈ U such that
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Φ
(
xt, ut

)
≥ αΦ

(
xt, u

′
t

)
+ (1 − α)Φ

(
xt, u

′′
t

)

ft
(
xt, ut

)
= αft

(
xt, u

′
t

)
+ (1 − α)ft

(
xt, u

′′
t

)
.

(3.2)

Therefore we obtain

+∞∑

t=0

βtΦ
(
xt, ut

)
≥ α

+∞∑

t=0

βtΦ
(
xt, u

′
t

)
+ (1 − α)

+∞∑

t=0

βtΦ
(
xt, u

′′
t

)

(
ft
(
xt, ut

)
− xt+1

)
t = α

(
ft
(
xt, u

′
t

)
− xt+1

)
t + (1 − α)

(
ft
(
xt, u

′′
t

)
− xt+1

)
t.

(3.3)

Set u = (ut)t, so u ∈ U and satisfies the required relations.

Lemma 3.4. Under hypotheses (i) and (iv) of Theorem 2.1, ImDxF(x̂, û) = �∞(N,Rn).

Proof. Since DxF(x, u)δx = (Dxtft(xt, ut)δxt − δxt+1)t∈N, δx0 = 0, the problem is a problem of
bounded solutions of first-order linear difference equations.

Let (Mt)t≥0 ∈ �∞(N, (Rn,Rn)). Assume that supt≥1‖Mt‖ < 1. Then for all (bt)t≥0 ∈
�∞(N,Rn) there exists a unique (ht)t≥0 ∈ �∞(N,Rn) such that for all t ≥ 0,

ht+1 −Mtht = bt, (3.4)

where h0 = 0.
Consider the operator T : �∞(N∗,Rn) → �∞(N∗,Rn) such that for all h ∈ �∞(N∗,Rn),

T(h) =
(
ht −Mt−1ht−1

)
t≥1 (3.5)

T = I + T where

I = identity of �∞
(
N

∗,Rn
)

T(h) :=
(
0,−M1h1,−M2h2, . . . ,−Mtht, . . .

)
.

(3.6)

Recall that the ‖·‖�∞ norm of z ∈ (Rn)N
∗
is defined by ‖z‖�∞ = supt≥1‖zt‖ and that the norm of

a linear operator S between normed spaces is defined by ‖S‖L = sup‖z‖≤1‖S(z)‖.
So ‖T(h)‖�∞ = supt≥1‖ −Mtht‖ ≤ (supt≥1‖Mt‖)‖h‖∞. So ‖T‖L ≤ supt≥1‖Mt‖ < 1. Since

T = I + T and ‖T‖L < 1,T is invertible so it is surjective.
Set Mt = Dxtft(x̂t, ût). Then under (iv) one has supt≥1‖Dxtft(x̂t, ût)‖ < 1. So T is

surjective that is ImDxF(x̂, û) = �∞(N,Rn).

Recall that �∗∞(N,R) = �1(N,R) ⊕ �d1 (N,R) where �d1 (N,R) consists of all singular
functionals, see Aliprantis and Border [20]. In fact it consists (up to scalar multiples) of all
extensions of the “limit functional” to �∞.

If θ ∈ �d1 (N,R), then there exists k ∈ R such that for all x ∈ c = c(N,R), θ(x) =
k·limt→∞ xt. (c being the space of convergent sequences having a limit in R.)
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Lemma 3.5 (�∗∞(N,R
n) = �1(N,Rn) ⊕ �d1 (N,R

n)). If θ ∈ �d1 (N,R
n) then θ = (θ1, θ2, . . . , θn)

where θi ∈ �d1 (N,R) for every i = 1, . . . , n. So there exists k = (k1, . . . , kn) ∈ R
n such that for all

x ∈ c(N,Rn), θ(x) = 〈k, limt→∞ xt〉.

Second part

Our optimal control problem can be written as the following abstract static optimisation
problem in a Banach space:

Maximize J
(
x, u

)

F
(
x, u

)
= 0

(
x, u

)
∈ X × U

(3.7)

that satisfies all conditions of Theorem 4.3, Ioffe-Tihomirov [17]. Sowe can apply this theorem
and obtain the existence of λ0 ∈ R, P ∈ �∗∞(N,R

n), not all zero, λ0 ≥ 0, such that:

(AE) λ0DxJ
(
x̂, û

)
+DxF

∗(x̂, û
)
P = 0,

(PMP)
(
λ0J + 〈P, F〉

)(
x̂, û

)
≥
(
λ0J + 〈P, F〉

)(
x̂, u

)
, ∀u ∈ U.

(3.8)

(AE) denotes the adjoint equation of this problem and (PMP) the Pontryagin maximum
principle. They can be written, respectively:

λ0
+∞∑

t=0

βtDxtΦ
(
x̂t, ût

)
δxt +

〈
P, (Dxtft

(
x̂t, ût

)
δxt − δxt+1

)
t≥0

〉
= 0,

∀δx ∈ �∞
(
N,Rn) such that δx0 = 0,

λ0
+∞∑

t=0

βtΦ
(
x̂t, ût

)
+
〈
P,

(
ft
(
x̂t, ût

)
− x̂t+1

)
t≥0

〉

≥ λ0
+∞∑

t=0

βtΦ
(
x̂′t, ut

)
+
〈
P,

(
ft
(
x̂t, ut

)
− x̂t+1

)
t≥0

〉
, ∀u ∈ U

(3.9)

Set P = p + θ where p ∈ �1(N,Rn) and θ ∈ �d1 (N,R
n).

(AE) becomes:

λ0
+∞∑

t=0

βtDxtΦ
(
x̂t, ût

)
δxt +

+∞∑

t=0

〈
pt+1, Dxtft

(
x̂t, ût

)
δxt

〉
−

+∞∑

t=0

〈
pt+1, δxt+1

〉

+
〈
θ,
(
Dxtft

(
x̂t, ût

)
δxt − δxt+1

)
t≥0

〉
= 0, ∀δx ∈ �∞

(
N,Rn).

(3.10)
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So we get

+∞∑

t=0

〈
λ0β

tDxtΦ
(
x̂t, ût

)
+Dxt f

∗
t

(
x̂t, ût

)
pt+1 − pt, δxt

〉

= −
〈
θ,
(
Dxtft

(
x̂t, ût

)
δxt − δxt+1

)
t≥0

〉
, ∀δx ∈ �∞

(
N,Rn) with δx0 = 0.

(3.11)

Let z be arbitrarily chosen in R
n and let t ≥ 1 be in N. Consider the sequence (δxs)s defined

as follows:

δxs =

⎧
⎨

⎩

z, if s = t

0, if s /= t.
(3.12)

So one has Dxsfs(x̂s, ûs)δxs − δxs+1 = 0 if s ≥ t + 1, hence (Dxsfs(x̂s, ûs)δxs − δxs+1)s ∈ c0 ⊂ c.
Thus, it holds that 〈θ, (Dxsfs(x̂s, ûs)δxs − δxs+1)s〉 = 〈k, lims→∞(Dxsfs(x̂s, ûs)δxs −

δxs+1)〉 = 〈k, 0〉 = 0.
Now

∑+∞
s=1〈λ0βsDxsΦ(x̂s, ûs) + Dxs f

∗
s(x̂s, ûs)ps+1 − ps, δxs〉 = 〈λ0βtDxtΦ(x̂t, ût) +

Dxt f
∗
t (x̂t, ût)pt+1 − pt, z〉.
Therefore, for all t ≥ 1 and for all z ∈ R

n one has

〈
λ0β

tDxtΦ
(
x̂t, ût

)
+Dxt f

∗
t

(
x̂t, ût

)
pt+1 − pt, z

〉
= 0 (3.13)

which implies

λ0β
tDxtΦ

(
x̂t, ût

)
+Dxt f

∗
t

(
x̂t, ût

)
pt+1 − pt = 0, ∀t ≥ 1, (3.14)

that is,

pt = pt+1 ◦Dxtft
(
x̂t, ût

)
+ λ0β

tDxtΦ
(
x̂t, ût

)
, ∀t ≥ 1, (3.15)

(PMP) becomes:

λ0
+∞∑

t=0

βt
(
Φ
(
x̂t, ût

)
−Φ

(
x̂t, ut

))
+
〈
P,

(
ft
(
x̂t, ût

)
− ft

(
x̂t, ut

))
t≥0

〉
≥ 0, ∀u ∈ U. (3.16)

So λ0
∑+∞

t=0β
t(Φ(x̂t, ût)−Φ(x̂t, ut))+〈p, (ft(x̂t, ût)−ft(x̂t, ut))t≥0〉+〈θ, (ft(x̂t, ût)−ft(x̂t, ut))t≥0〉 ≥ 0

for all u ∈ U.
Consider, for all ut ∈ U, the sequences (ut)s∈N defined as follows:

ut
s =

⎧
⎨

⎩

ût, if s /= t

ut, if s = t.
(3.17)
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Since the inequality holds for every u ∈ U,we obtain

λ0β
t(Φ

(
x̂t, ût

)
−Φ

(
x̂t, ut

))
+
〈
pt+1, ft

(
x̂t, ût

)
− ft

(
x̂t, ut

)〉
≥ 0, ∀ut ∈ U (3.18)

using 〈θ, (ft(x̂t, ût) − ft(x̂t, ut))t≥0〉 = 0 as (ft(x̂t, ût) − ft(x̂t, ut))t≥0 is of finite support.

Lemma 3.6. (λ0 /= 0).

Proof. Recall we obtained the existence of λ0 ∈ R, P ∈ �∗∞(N,R
n), not all zero, λ0 ≥ 0, such

that:

λ0DxJ
(
x̂, û

)
+DxF

∗(x̂, û
)
P = 0. (3.19)

If λ0 = 0, then P = 0 since ImDxF(x̂, û) = �∞(N,Rn).
Hence λ0 /= 0. We can set it equal to one.

From Lemma 3.6 and the previous results, conclusions (a) and (b) are satisfied.
Conclusion (c) is a straightforward consequence of the belonging of (pt+1)t to �1(N,R

n).

Lemma 3.7. (θ = 0).

Proof. Indeed we obtained 〈θ, (Dxtft(x̂t, ût)δxt − δxt+1)t≥0〉 = 0, for all δx ∈ �∞(N,Rn). Using
ImDxF(x̂, û) = �∞(N,Rn) one has 〈θ, h〉 = 0, for all h ∈ �∞(N,Rn). Thus θ = 0.

Proof of Theorem 2.2. Define F on X × U such that F(x, u) = (f(xt, ut) − xt+1)t≥0. Under
hypothesis (i) of Theorem 2.2, for all u ∈ U, the mappings x �→ J(x, u) and x �→ F(x, u)
are of class C1 on X. The proof can be found in [19].

We consider the proof of Lemma 3.4 and we setMt = Dxtf(x̂t, ût). Then the proof goes
like that of Theorem 2.1.

4. Results for unbounded problems

We study now problems of maximization over admissible processes which are not necessarily
bounded when the optimal solution is bounded. So consider the following problems.

(P2) Maximize J(x, u) on dom J ∩Adm(η).

(P3) Find (x̂, û) ∈ dom J ∩Adm(η) such that, for all (x, u) ∈ Adm(η) ,
J(x̂, û) ≥ lim supT →∞

∑T
t=0 β

tΦ(xt, ut)).

(P4) Find (x̂, û) ∈ Adm(η) such that, for all (x, u) ∈ Adm(η),
lim infT →∞(

∑T
t=0 β

tΦ(x̂t, ût) −
∑T

t=0 β
tΦ(xt, ut)) ≥ 0.

(P5) Find (x̂, û) ∈ Adm(η) such that, for all (x, u) ∈ Adm(η),
lim supT →∞(

∑T
t=0 β

tΦ(x̂t, ût) −
∑T

t=0 β
tΦ(xt, ut)) ≥ 0.

The optimality notion of (P3) is called “the strong optimality,” that of (P4) is called “the
overtaking optimality” and that of (P5) the “weak overtaking optimality” in [3] (in the
continuous-time framework). Many existence results of overtaking optimal solutions and
weakly overtaking optimal solutions are obtained in [3, 4]. In [4] there are also results in
the discrete-time framework.
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Remark 4.1. Notice that (x̂, û) is an optimal solution of (P3) implies (x̂, û) is an optimal
solution of (P4) which implies (x̂, û) is an optimal solution of (P5).

Moreover if (x̂, û) is a bounded optimal solution of (P4) then (P3) and (P4) reduce to
the same problem.

Lemma 4.2. The two following assertions hold.

(a) If (x̂, û) is an optimal solution of problem (P2), (P3), (P4) or (P5) and (x̂, û) ∈ X×U then
(x̂, û) is an optimal solution of problem (P1). Therefore Theorem 2.1 applies.

(b) Assume Φ ≥ 0 on Ω × U. If (x̂, û) is an optimal solution of problem (P3) or (P4) and
(x̂, û) ∈ X × U then dom J = Adm(η).

Proof. (a) Since X × U ∩ Adm(η) ⊂ dom J ∩Adm(η) ⊂ Adm(η), a bounded optimal solution
of (P2) or (P3) is an optimal solution of (P1). Suppose now that (x̂, û) is a bounded optimal
solution of (P4) that is lim infT →∞(

∑T
t=0 β

tΦ(x̂t, ût) −
∑T

t=0 β
tΦ(xt, ut)) ≥ 0, for all (x, u) ∈

Adm(η). Since (x̂, û) ∈ X×U this can be written J(x̂, û) ≥ lim supT →∞
∑T

t=0 β
tΦ(xt, ut), for all

(x, u) ∈ Admη and so in particular for all (x, u) ∈ X × U.

In that case lim supT →∞
∑T

t=0 β
tΦ(xt, ut) = J(x, u). The proof is analogous for (P5).

(b) If (x̂, û) is an optimal solution of problem (P3) and (x̂, û) ∈ X × U, one has
+∞ > J(x̂, û) ≥ lim supT →∞

∑T
t=0 β

tΦ(xt, ut), for all (x, u) ∈ Admη. Since Φ ≥ 0, the sequence
(
∑T

t=0 β
tΦ(xt, ut))T is increasing and since it is also upper bounded it converges in R+.

So lim supT →∞
∑T

t=0 β
tΦ(xt, ut) = limT →∞

∑T
t=0 β

tΦ(xt, ut) = J(x, u) and (x, u) ∈ dom J.

Theorem 4.3. Let ft = f for all t ∈ N. One assumes the following conditions fulfilled:

(i) Φ ≥ 0 on Ω ×U.

(ii) For all x ∈ Ω, there exists v ∈ U such that x = f(x, v).

Then one has

(a) sup(x,u)∈dom J∩Adm(η) J(x, u) = sup(x,u)∈(X×U)∩Adm(η)J(x, u).

(b) If (x̂, û) is an optimal solution of problem (P1), then it is an optimal solution of problems
(P3), (P4), and (P5) which all reduce to the same problem.

Remark 4.4. (b) shows that under a nonnegativity assumption, solving the problem in the
space of bounded processes provides solutions for problems in spaces of admissible processes
which are not necessarily bounded. This type of results is in the spirit of Blot and Cartigny
[21] where problems are studied in the continuous-time case.

Proof. (a) It is clear that the following inequality holds:

sup
(x,u)∈dom J∩Adm(η)

J
(
x, u

)
≥ sup

(x,u)∈(X×U)∩Adm(η)
J
(
x, u

)
. (4.1)
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Let (x̃, ũ) ∈ dom J ∩ Adm(η). Let ε > 0 be given and let T = Tε be such that 0 ≤
∑

t>Tε
βtΦ(x̃t, ũt) ≤ ε. Set

x′
t =

⎧
⎨

⎩

x̃t, if t ≤ T

x̃T , if t > T,

u′
t =

⎧
⎨

⎩

ũt, if t ≤ T

u′
T , if t > T,

(4.2)

where u′
T is such that x′

T = f(x′
T , u

′
T ).x

′ = (x′
t)t and u′ = (u′

t)t are bounded and (x′, u′) ∈
(X ×U) ∩Adm(η).

Since Φ ≥ 0 on Ω ×U one has

J
(
x′, x′) =

+∞∑

t=0

βtΦ
(
x′
t, u

′
t

)

=
T∑

t=0

βtΦ
(
x̃t, ũt

)
+

+∞∑

t=T+1

βtΦ
(
x̃T , u

′
T

)

≥
T∑

t=0

βtΦ
(
x̃t, ũt

)

sup
(x,u)∈(X×U)∩Adm(η)

J
(
x, u

)
≥ J

(
x′, u′) ≥

T∑

t=0

βtΦ
(
x̃t, ũt

)

(4.3)

so we obtain

ε + sup
(x,u)∈(X×U)∩Adm(η)

J
(
x, u

)
≥ J

(
x̃, ũ

)
. (4.4)

Since this is true fo all ε > 0, letting ε → 0, we obtain

sup
(x,u)∈(X×U)∩Adm(η)

J
(
x, u

)
≥ sup

(x,u)∈dom J∩Adm(η)
J
(
x, u

)
. (4.5)

(b) Since Φ ≥ 0, for all (x, u) ∈ Adm(η), the sequence (
∑T

t=0 β
tΦ(xt, ut))T is nonnegative and

nondecreasing so it converges in [0,∞].
So lim supT →∞

∑T
t=0 β

tΦ(xt, ut) = limT →∞
∑T

t=0 β
tΦ(xt, ut). Hence (P3), (P4) reduce to

the same problem. Similarly (P5) reduces to it. Let (x̂, û) be an optimal solution of problem
(P1) and suppose it is not an optimal solution of problem (P3). So there exists (x, u) ∈ Adm(η)
such that limT →∞

∑T
t=0 β

tΦ(xt, ut) = +∞ that is

∀R ∈ R, ∃TR ∈ N
∗, ∀T ≥ TR,

T∑

t=0

βtΦ
(
xt, ut

)
> R. (4.6)
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Let R ∈ R and T = TR. Construct x′ = (x′
t)t and u′ = (u′

t)t as in (a). Thus
∑+∞

t=0β
tΦ(x′

t, u
′
t) =

∑T
t=0 β

tΦ(xt, ut) +
∑+∞

t=T+1 β
tΦ(xT , uT ) ≥ R.

Hence we obtain sup(x,u)∈(X×U)∩Adm(η) J(x, u) ≥ R, so sup(x,u)∈(X×U)∩Adm(η) J(x, u) = +∞
which contradicts the hypothesis so (x̂, û) is an optimal solution of problem (P3).

Following Michel, [22], for all t ∈ N and for all (xt, xt+1) ∈ Ω×Ω,we defineAt(xt, xt+1)
as the set of the (νt, ζt) ∈ R × Rn for which there exists ut ∈ U satisfying νt ≤ βtΦ(xt, ut), ζt =
f(xt, ut) − xt+1. We also define Bt(xt, xt+1) as the set of the (νt, ζt) ∈ R × Rn for which there
exists (ut, αt) ∈ U × Rn satisfying νt ≤ βtΦ(xt, ut), αkζkt = fk(xt, ut) − xk

t+1 for all k = 1, . . . , n.

Theorem 4.5. Let ft = f for all t ∈ N. Let (x̂, û) be an optimal solution of problem (P1). One assumes
the following conditions fulfilled.

(i) Φ ≥ 0 on Ω ×U.

(ii) For all x ∈ Ω, there exists v ∈ U such that x = f(x, v).

(iii) For all t ∈ N, the mappings x �→ Φ(x, ût) and x �→ f(x, ût) are Fréchet-differentiable at
x̂t.

(iv) For all t ∈ N, for all (xt, xt+1) ∈ Ω ×Ω,coAt(xt, xt+1) ⊂ Bt(xt, xt+1) where co denotes the
convex hull.

(v) For all t ∈ N, Dxtf(x̂t, ût) is invertible.

Then there exists λ0 ∈ R+, (pt+1)t ∈ (Rn)N such that (λ0, p1)/= 0 and

(a) pt = pt+1 ◦Dxtf(x̂t, ût) + λ0β
tDxtΦ(x̂t, ût), for all t,

(b) λ0βtΦ(x̂t, ût)+〈pt+1, f(x̂t, ût)〉 ≥ λ0β
tΦ(x̂t, ut)+〈pt+1, f(x̂t, ut)〉, for all t, for all ut ∈ U.

Remark 4.6. Notice that condition (iv) is a convexity condition and that condition (ii) of
Theorem 2.2 implies this condition (iv). Condition (ii) of Theorem 2.2 is equivalent to the
following condition: for all t, the set At(xt, xt+1) is convex.

Proof. Use Theorem 4.3 of this paper and apply Theorem 3 in Blot-Chebbi [5].

5. Sufficient conditions of optimality

Let Ht(xt, ut, pt+1) = βtΦ(xt, ut) + 〈pt+1, ft(xt, ut)〉, for all t ∈ N.

Theorem 5.1. Let (x̂, û) ∈ X × U ∩ Adm(η) where U is convex. One assumes that there exists
(pt+1)t ∈ �1(N,Rn) and that the following conditions are fulfilled.

(i) The mappings (x, u) �→ Φ(x, u) and for all t ∈ N, (x, u) �→ ft(x, u) are of class C1 on
Ω ×U.

(ii) pt = pt+1 ◦Dxtft(x̂t, ût) + βtDxtΦ(x̂t, ût), for all t ≥ 1.

(iii) βtΦ(x̂t, ût) + 〈pt+1, ft(x̂t, ût)〉 ≥ βtΦ(x̂t, ut) + 〈pt+1, ft(x̂t, ut)〉, for all t, for all ut ∈ U.

(iv) The mapping Ht is concave with respect to (xt, ut), for all t.

Then (x̂, û) is an optimal solution of (P1).
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Proof. Notice that from (ii), DxtHt(x̂t, ût, pt+1) = pt, for all t ≥ 1.
Let (x, u) ∈ X × U ∩Adm(η). For all t, one has

βtΦ
(
x̂t, ût

)
− βtΦ

(
xt, ut

)

= Ht

(
x̂t, ût, pt+1

)
−
〈
pt+1, ft

(
x̂t, ut

)〉
−Ht

(
xt, ut, pt+1

)
+
〈
pt+1, ft

(
xt, ut

)〉

= Ht

(
x̂t, ût, pt+1

)
−Ht

(
xt, ut, pt+1

)
−
〈
Dxt+1Ht+1

(
x̂t+1, ût+1, pt+2

)
, x̂t+1 − xt+1

〉

−
〈
DutHt

(
x̂t, ût, pt+1

)
, ût − ut

〉
+
〈
DutHt

(
x̂t, ût, pt+1

)
, ût − ut

〉
,

(5.1)

therefore, we obtain

T∑

t=0

(
βtΦ

(
x̂t, ût

)
− βtΦ

(
xt, ut

))

=
T∑

t=0

(
Ht

(
x̂t, ût, pt+1

)
−Ht

(
xt, ut, pt+1

)
−
〈
Dxt+1Ht+1

(
x̂t+1, ût+1, pt+2

)
, x̂t+1 − xt+1

〉

−
〈
DutHt

(
x̂t, ût, pt+1

)
, ût − ut

〉
+
〈
DutHt

(
x̂t, ût, pt+1

)
, ût − ut

〉)

= H0
(
x̂0, û0, p1

)
−H0

(
x0, u0, p1

)

+
T∑

t=1

(
Ht

(
x̂t, ût, pt+1

)
−Ht

(
xt, ut, pt+1

)

−
〈
DxtHt

(
x̂t, ût, pt+1

)
, x̂t − xt

〉
−
〈
DutHt

(
x̂t, ût, pt+1

)
, ût − ut

〉)

−
〈
pT+1, x̂T+1 − xT+1

〉
+

T∑

t=1

〈
DutHt

(
x̂t, ût, pt+1

)
, ût − ut

〉

(5.2)

Since for all t ∈ N,Ht is concave with respect to xt and ut, one has Ht(x̂t, ût, pt+1) −
Ht(xt, ut, pt+1)−〈DxtHt(x̂t, ût, pt+1), x̂t−xt〉−〈DutHt(x̂t, ût, pt+1), ût−ut〉 ≥ 0.Using hypothesis
(iii)with t = 0 givesH0(x̂0, û0, p1)−H0(x0, u0, p1) ≥ 0 and using hypothesis (iii), the first order
necessary condition for the optimality of ût is 〈DutHt(x̂t, ût, pt+1), ût − ut〉 ≥ 0. Thus one has
∑T

t=0(β
tΦ(x̂t, ût) − βtΦ(xt, ut)) ≥ 〈pT+1, xT+1 − x̂T+1〉.
The hypothesis (pt+1)t ∈ �1(N,Rn) implies limt→+∞ pt = 0 and since x̂ and x belong to

�∞(N,Rn) one has ‖x − x̂‖ ≤ ‖x‖ + ‖x̂‖ < ∞. Hence we obtain limT →+∞〈pT+1, xT+1 − x̂T+1〉 = 0
so limT →+∞

∑T
t=0(β

tΦ(x̂t, ût) − βtΦ(xt, ut)) ≥ 0. That is J(x̂, û) − J(x, u) ≥ 0.

Corollary 5.2. Let (x̂, û) ∈ dom J ∩ Adm(η) (resp., Adm(η)). If the hypotheses of the previous
theorem are satisfied except that (pt+1)t ∈ �1(N,Rn) is replaced by (pt+1)t ∈ (Rn)N and if the following
hypothesis is also satisfied:

(v) lim infT →+∞〈pT+1, xT+1 − x̂T+1〉 = 0,

then (x̂, û) is a solution of (P3) (resp., (P4)).

Notice that if (x̂, û) ∈ Adm(η) with lim supT →+∞〈pT+1, xT+1 − x̂T+1〉 = 0 we obtain that
(x̂, û) is a solution of (P5).
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One canweaken the hypothesis of concavity ofHt with respect to xt and ut and replace
it by the concavity of H∗

t with respect to xt as the following theorem shows. (See [23] for a
quick survey of sufficient conditions.)

Let H∗
t (xt, pt+1) = maxut∈UHt(xt, ut, pt+1).

The maximum is attained since U is compact.

Theorem 5.3. Let (x̂, û) ∈ X×U∩Adm(η). One assumes that there exists (pt+1)t ∈ �1(N,Rn) and
that the following hypotheses are fulfilled.

(i) For all u ∈ U, the mappings x �→ Φ(x, u) and for all t ∈ N, x �→ ft(x, u) are of class C1 on
Ω.

(ii) Also (iii) of the previous theorem.

(iv) The mapping H∗
t is concave with respect to xt, for all t.

Then (x̂, û) is an optimal solution of (P1).

Proof. Let (x̂, û) ∈ X × U ∩Adm(η) and let (x, u) ∈ X × U ∩Adm(η). For all t, one has

βtΦ
(
x̂t, ût

)
− βtΦ

(
xt, ut

)
= Ht

(
x̂t, ût, pt+1

)
−Ht

(
xt, ut, pt+1

)
−
〈
pt+1, ft

(
x̂t, ut

)
− ft

(
xt, ut

)〉

≥ H∗
t

(
x̂t, pt+1

)
−H∗

t

(
xt, pt+1

)
−
〈
pt+1, x̂t+1 − xt+1

〉

(5.3)

by the definition of H∗
t and noticing thatHt(x̂t, ût, pt+1) = H∗

t (x̂t, pt+1). So we obtain

T∑

t=0

(
βtΦ

(
x̂t, ût

)
− βtΦ

(
xt, ut

))

≥ H∗
0
(
x̂0, p1

)
−H∗

0
(
x0, p1

)
+

T∑

t=1

(
H∗

t

(
x̂t, pt+1

)
−H∗

t

(
xt, pt+1

)
−
〈
pt, x̂t − xt

〉)

−
〈
pT+1, x̂T+1 − xT+1

〉

=
T∑

t=1

(
H∗

t

(
x̂t, pt+1

)
−H∗

t

(
xt, pt+1

)
−
〈
DxtHt

(
x̂t, ût, pt+1

)
, x̂t − xt

〉)
−
〈
pT+1, x̂T+1 − xT+1

〉
.

(5.4)

(Notice that H∗
0(x̂0, p1) = H∗

0(x0, p1).) Now using DxtH
∗
t (x̂t, pt+1) = DxtHt(x̂t, ût, pt+1) (see

Seierstad and Sydsaeter [24, page 390])we obtain
∑T

t=0(β
tΦ(x̂t, ût)−βtΦ(xt, ut)) ≥ H∗

0(x̂0, p1)−
H∗

0(x0, p1)+
∑T

t=1(H
∗
t (x̂t, pt+1)−H∗

t (xt, pt+1)−〈DxtH
∗
t (x̂t, pt+1), x̂t−xt〉)+〈pT+1, xT+1−x̂T+1〉. The

concavity of H∗
t with respect to xt gives

∑T
t=0(β

tΦ(x̂t, ût) − βtΦ(xt, ut)) ≥ 〈pT+1, xT+1 − x̂T+1〉.
Finally J(x̂, û) − J(x, u) ≥ 0 follows as in the proof of the previous theorem.

Corollary 5.4. Let (x̂, û) ∈ dom J ∩ Adm(η) (resp., Adm(η)). If the hypotheses of the previous
theorem are satisfied except that (pt+1)t ∈ �1(N,Rn) is replaced by (pt+1)t ∈ (RN)n and if the following
hypothesis is also satisfied:

(v) lim infT →+∞〈pT+1, xT+1 − x̂T+1〉 = 0,

then (x̂, û) is a solution of (P3) (resp., (P4)).
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Notice that if (x̂, û) ∈ Adm(η) with lim supT →+∞〈pT+1, xT+1 − x̂T+1〉 = 0 we obtain that
(x̂, û) is a solution of (P5).
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