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1. Introduction

Consider the half-linear difference equations with the deviating argument

Δ
(
an

∣∣Δxn

∣∣αsgnΔxn

)
+ bn

∣∣xn+q
∣∣αsgnxn+q = 0, (1.1)

where Δ is the forward difference operator Δxn = xn+1 − xn, α > 0, q ∈ Z and a = {an}, b = {bn}
are positive real sequences for n ≥ 0 such that

Ya =
∞∑

n=0

(
1
an

)1/α

= ∞, Yb =
∞∑

n=0

bn < ∞. (1.2)

A large number of papers deal with the oscillatory and asymptotic properties of several
particular cases of (1.1), such as the classical half-linear equation

Δ
(
an

∣
∣Δxn

∣
∣αsgnΔxn

)
+ bn

∣
∣xn+1

∣
∣αsgnxn+1 = 0 (H)
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and the equations with the advanced or delayed argument τ ∈ Z, τ ≥ 1,

Δ
(
an

∣
∣Δxn

∣
∣αsgnΔxn

)
+ bn

∣
∣xn+1+τ

∣
∣αsgnxn+1+τ = 0, (H+)

Δ
(
an

∣∣Δxn

∣∣αsgnΔxn

)
+ bn|xn+1−τ |αsgnxn+1−τ = 0, (H−)

see, for example, [1–9], the monographs [10, 11], and references therein.
By solution of (1.1)wemean a nontrivial sequence satisfying (1.1) for large n. As usual, a

solution x = {xn} of (1.1) is said to be nonoscillatory if there exists a large nx such that xnxn+1 > 0
for n ≥ nx, otherwise it is said to be oscillatory. Equation (1.1) is characterized by the homogeneity
property, which means that if x is a solution of (1.1), then also λx is its solution for any constant
λ.

It is well-known that the deviating argument τ plays an important role in the oscillation.
For instance, for (H) the Sturm-type separation property holds and so all its solutions are
either nonoscillatory or oscillatory, see, for example, [11, Section 8.2]. In general, this property
is no true anymore for (H+) and (H−); and the coexistence of oscillatory and nonoscillatory
solutions can occur even in the linear case, that is when α = 1, as we illustrate below. Never-
theless, in [4] some comparison criteria, which link the nonoscillation of (H)with the existence
of nonoscillatory solutions of the advanced equation (H+), or the delayed equation (H−),
are given. In particular, if a ≡ 1, the nonoscillation of (H) is equivalent to the existence of
nonoscillatory solutions for (H+) or (H−), see [4, Corollary 8].

Nonoscillatory solutions of (1.1) can be classified as subdominant, intermediate, or
dominant solutions, according to their asymptotic behavior, see below for the definition. As it is
claimed in [12, page 241], the existence of the intermediate solutions is a difficult problem also
in the continuous case. Moreover, another well-known problem is their possible coexistence
with different types of nonoscillatory solutions, see, for example, [13, page 213]. In [14], both
problems have been completely resolved for the half-linear differential equation

(
a(t)

∣∣x′∣∣αsgnx′)′ + b(t)|x|αsgnx = 0, (1.3)

using the extension of the Wronskian. Such approach cannot be used for (H) because the
monotonicity of the corresponding Casoratian-type function remains an open problem.

The aim of this paper is to study intermediate solutions for (1.1) and the role of the
deviating argument q, especially as regards the growth of the nonoscillatory solutions and the
oscillation. The problem of the existence of intermediate solutions is completely resolved when
q = 1, that is for the half-linear equation (H). When q /= 1 some analogies or discrepancies on
the growth of the nonoscillatory solutions, due to the presence of the deviating argument, are
presented and also the coexistence with different types of nonoscillatory solutions is studied.
Roughly speaking, if an ≡ 1, the deviating argument has no effect, that is (1.1) has the same
types of nonoscillatory solutions for any q. On the other hand, if a is rapidly increasing, or
decreasing, for large n, the delay may change the type of nonoscillatory solutions as well as the
oscillation, as examples below show.

2. Main results

For any solution x of (1.1) we denote by x[1] = {x[1]
n } its quasidifference, where

x
[1]
n = an

∣
∣Δxn

∣
∣αsgnΔxn. (2.1)
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In view of (1.2), any nonoscillatory solution x of (1.1) is eventually monotone and verifies
xnx

[1]
n > 0 for large n; we denote this property by saying that x is of class M

+. Let x be a
solution of (1.1) in the class M

+; then for large n either x is positive increasing and x[1] positive
decreasing or x is negative decreasing and x[1] negative increasing. So, we can divide the class
M

+ into the three subclasses:

M
+
∞,�

=
{
x ∈ M

+ : lim
n

∣∣xn

∣∣ = ∞, lim
n

x
[1]
n = �x, 0 <

∣∣�x
∣∣ < ∞

}
,

M
+
∞,0 =

{
x ∈ M

+ : lim
n

∣
∣xn

∣
∣ = ∞, lim

n
x
[1]
n = 0

}
,

M
+
�,0 =

{
x ∈ M

+ : lim
n

xn = �x, lim
n

x
[1]
n = 0, 0 <

∣∣�x
∣∣ < ∞

}
,

(2.2)

see also [6, 9]. Following the terminology of [15] in the continuous case, solutions in M
+
∞,�

,
M

+
∞,0, M

+
�,0 are called dominant solutions, intermediate solutions, and subdominant solutions,

respectively. This terminology is justified by the fact that if x ∈ M
+
∞,�

, y ∈ M
+
∞,0, z ∈ M

+
∞,�

,
then |xn| > |yn| > |zn| for large n.

The series

Sα =
∞∑

n=0

(
1
an

)1/α
(

∞∑

k=n

bk

)1/α

,

Tα(q) =
∞∑

n=0

bn

(
n+q−1∑

k=0

(
1
ak

)1/α
)α

,

(2.3)

where the convention
∑n2

n1
ui = 0 if n1 > n2 is used, play an important role in the classification

of nonoscillatory solutions of (1.1). The possible cases for the behavior of these series are the
following

(C1) Sα < ∞, Tα(q) < ∞; (2.4)

(C2) Sα = ∞, Tα(q) < ∞; (2.5)

(C3) Sα < ∞, Tα(q) = ∞; (2.6)

(C4) Sα = ∞, Tα(q) = ∞. (2.7)

Observe that, when q = 1, the case (C2) is possible only when α > 1, while the case (C3) is
possible only when α < 1 [2, Theorem 4]. When q /= 1, in view of the fact Tα(1) ≤ Tα(q) for q > 1,
the case (C2) is not possible when α < 1, q > 1 and the case (C3) is not possible when α > 1,
q < 1.

If q < 1 [q > 1], it is easy to give an example of (1.1) satisfying the case (C2) [the case
(C3)] for any α, see Example 5.3 below.

The main results of this paper are the following.

Theorem 2.1. For (H) we have:

(i1) if Sα < ∞, Tα(1) < ∞, then M
+
�,0 /=∅, M

+
∞,0 = ∅, M

+
∞,� /=∅;

(i2) if Sα = ∞, Tα(1) < ∞, then M
+
�,0 = ∅, M

+
∞,0 /=∅, M

+
∞,� /=∅;
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(i3) if Sα < ∞, Tα(1) = ∞, then M
+
�,0 /=∅, M

+
∞,0 /=∅, M

+
∞,�

= ∅;

(i4) if Sα = ∞, Tα(1) = ∞ and (H) is nonoscillatory, then M
+
�,0 = ∅, M

+
∞,0 /=∅, M

+
∞,�

= ∅.

Theorem 2.2. For (1.1) with q /= 1 we have:

(i1) if Sα < ∞, Tα(q) < ∞, then M
+
�,0 /=∅, M

+
∞,0 = ∅, M

+
∞,� /=∅;

(i2) if Sα = ∞, Tα(q) < ∞, then M
+
�,0 = ∅, M

+
∞,0 /=∅, M

+
∞,� /=∅;

(i3) if Sα < ∞, Tα(q) = ∞ and

lim inf
n

an > 0, (2.8)

then M
+
�,0 /=∅, M

+
∞,0 /=∅, M

+
∞,�

= ∅;

(i4) if Sα = ∞, Tα(q) = ∞, the condition (2.8) is verified and (H) is nonoscillatory, then M
+
�,0 = ∅,

M
+
∞,0 /=∅, M

+
∞,�

= ∅.

Theorems 2.1, 2.2 will be proved in the following sections. Observe that Theorem 2.1
is a discrete counterpart of [14, Theorems 4, 6, 7] for (1.3), even if the approach here used is
completely different.

3. Unbounded solutions when Tα(q) < ∞

In this section we study the growth of unbounded solutions of (1.1) when Tα(q) < ∞. The
following holds.

Theorem 3.1. Assume

Sα < ∞, Tα(q) < ∞. (3.1)

Then for (1.1) we have M
+
∞,0 = ∅.

Proof. By contradiction, assume that x ∈ M
+
∞,0. Without loss of generality, let n0 be large so that

n0 +min{q, 0} ≥ 0 and

xn > 0, xn+q > 0, Δxn > 0, Δxn+q > 0 for n ≥ n0. (3.2)

Set nq = n0 + q; then xn+q > xnq
for n > n0. By summation of (1.1) we obtain, for n > n0,

x
[1]
n =

∞∑

k=n

bk
(
xk+q

)α (3.3)

and so

xn+q − xnq
=

n+q−1∑

k=nq

(
1
ak

)1/α( n∑

i=k

bi
(
xi+q

)α +
∞∑

i=n+1

bi
(
xi+q

)α
)1/α

. (3.4)

Putting

σα =

{
1, if α ≥ 1,

2(1−α)/α, if α < 1,
(3.5)
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and using (3.3) and the inequality

(X + Y )1/α ≤ σα

(
X1/α + Y 1/α), (3.6)

we obtain the following, for n > n0:

xn+q − xnq
≤ σα

n+q−1∑

k=nq

(
1
ak

)1/α( n∑

i=k

bi
(
xi+q

)α
)1/α

+ σα

n+q−1∑

k=nq

(
1
ak

)1/α( ∞∑

i=n+1

bi
(
xi+q

)α
)1/α

≤ σαxn+q

n+q−1∑

k=nq

(
1
ak

)1/α( n∑

i=k

bi

)1/α
+ σα

(
x
[1]
n+1

)1/αn+q−1∑

k=nq

(
1
ak

)1/α
,

(3.7)

and so

xn+q − xnq
≤ σαxn+q

∞∑

k=nq

(
1
ak

)1/α( ∞∑

i=k

bi

)1/α
+ σα

(
x
[1]
n+1

)1/αn+q−1∑

k=nq

(
1
ak

)1/α
. (3.8)

Therefore,

1 ≤
xnq

xn+q
+ σα

∞∑

k=nq

(
1
ak

)1/α( ∞∑

i=k

bi

)1/α
+
σα

(
x
[1]
n+1

)1/α

xn+q

n+q−1∑

k=nq

(
1
ak

)1/α
. (3.9)

In view of Sα < ∞, fixed ε, 0 < ε < 1, we can choose nq large so that

σα

∞∑

k=nq

(
1
ak

)1/α( ∞∑

i=k

bi

)1/α
< ε/2. (3.10)

Since x is unbounded, there exists N > n0 such that for n ≥ N,

xnq

xn+q
< ε/2. (3.11)

Hence, from (3.9)we obtain that there exists γ > 0 such that for n ≥ N,

(
x
[1]
n+1

)1/αn+q−1∑

k=nq

(
1
ak

)1/α
≥ γxn+q, (3.12)

where γ = (1 − ε)/σα. Summing (1.1) we obtain

x
[1]
N − x

[1]
n+1 =

n∑

k=N

bk
(
xk+q

)α
, (3.13)
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that is, in view of (3.12),

γα
(
x
[1]
N − x

[1]
n+1

)
≤

n∑

k=N

bkx
[1]
k+1

(
k+q−1∑

i=nq

(
1
ai

)1/α)α

. (3.14)

Since x[1] is decreasing, we have

γα
(
x
[1]
N − x

[1]
n+1

)
≤ x

[1]
N

∞∑

k=N

bk

(
k+q−1∑

i=nq

(
1
ai

)1/α)α

. (3.15)

In view of Tα(q) < ∞, let N be large so that

∞∑

k=N

bk

(
k+q−1∑

i=nq

(
1
ai

)1/α)α

≤ γα/2. (3.16)

Thus, from (3.15) we obtain (γα/2)x[1]
N ≤ γαx

[1]
n+1, which is a contradiction because x[1] tends to

zero as n→∞.

The following result extends [3, Theorem 2], where the existence of intermediate
solutions has been proved for q ≥ 0.

Theorem 3.2. (i1) Equation (1.1) has solutions in the class M
+
∞,�

if and only if Tα(q) < ∞.
(i2) Equation (1.1) has solutions in M

+
∞,0 if Sα = ∞ and Tα(q) < ∞.

Proof (outline). If q ≥ 0, claim (i1) follows, for example, from [6, Theorem 3]withminor changes
and claim (i2) from [3, Theorem 2]. Now we sketch the existence part of claims (i1), (i2) when
q < 0.

Assume Tα(q) < ∞ and let δ ∈ {0, 1}. Using the comparison criterion, the series

∞∑

k=1

bk

(

δ +
k+q−1∑

i=1

1
(
ai

)1/α

)α

(3.17)

converges, too. So, choose n0 large so that n0 + q ≥ 2 and

∞∑

k=n0

bk

(

δ +
k+q−1∑

i=1

1
(
ai

)1/α

)α

< 1,
n0+q−1∑

j=1

1
(
aj

)1/α ≥ 1. (3.18)

Set nq = n0 + q and denote by X the Fréchet space of the real sequences defined for n ≥ nq,
endowedwith the topology of convergence on finite subsets ofNnq

= {n ∈ N, n ≥ nq}.Consider
the subset

Ω =

{

u =
{
un

}
∈ X : 1 ≤ un ≤

n−1∑

j=1

1
(
aj

)1/α

}

(3.19)
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and define the operator T : Ω→X given by T(u) = y,where

yn = 1 if nq ≤ n ≤ n0,

yn = 1 +
n−1∑

j=n0

1
(
aj

)1/α

(

δ +
∞∑

i=j

bi
(
ui+q

)α
)1/α

, if n > n0.
(3.20)

For i ≥ n0 it results i + q ≥ nq and so we have for u ∈ Ω

ui+q ≤
i+q−1∑

k=1

1
(
ak

)1/α . (3.21)

Then, in view of (3.18) we obtain the following for n > n0:

yn ≤ 1 +
n−1∑

j=n0

1
(
aj

)1/α

(
∞∑

i=j

bi

(

δ +
i+q−1∑

k=1

1
(
ak

)1/α

)α)1/α

≤ 1 +

(
n−1∑

j=n0

1
(
aj

)1/α

)(
∞∑

i=n0

bi

(

δ +
i+q−1∑

k=1

1
(
ak

)1/α

)α)1/α

≤ 1 +
n−1∑

j=n0

1
(
aj

)1/α ≤
n−1∑

j=1

1
(
aj

)1/α .

(3.22)

If nq ≤ n ≤ n0, from (3.18)we have

yn = 1 ≤
nq−1∑

j=1

1
(
aj

)1/α ≤
n−1∑

j=1

1
(
aj

)1/α (3.23)

and so T maps Ω into itself. In virtue of the Ascoli theorem, any bounded set in X is relatively
compact and so, because T(Ω) is bounded according to the topology of X, the compactness
follows. Let {v(k)} be a sequence in Ω, converging on finite subsets of Nnq

to v(∞) ∈ Ω. Using
the discrete analogue of the Lebesgue dominated convergence theorem, the sequence {T(v(k))}
converges on finite subsets of Nnq

to T(v(∞)); and so the continuity of T is proved. So, by
applying the Tychonov fixed point theorem, there exists a solution x of (1.1)which satisfies for
large n

xn ≥ 1 +
n−1∑

j=n0

1
(
aj

)1/α

(

δ +
∞∑

i=j

bi

)1/α
,

δ +
∞∑

i=n

bi ≤ x
[1]
n ≤ δ +

∞∑

i=n

bi

(
i+q−1∑

k=1

1
(
ak

)1/α

)α

.

(3.24)

If δ = 1, then limn x
[1]
n = 1 and so x ∈ M

+
∞,�

. If δ = 0 and Sα = ∞, then x ∈ M
+
∞,0 and the proof

is complete.
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4. Bounded solutions and proof of Theorem 2.1

It is well-known that the existence of bounded solutions of (1.1) depends on the convergence
of the series Sα, and so the deviating argument does not play any role. This property follows,
for example, from [9, Theorem 4.2] or [6, Theorem 2], in which the case q ≥ 0 is considered, but
the used argument can be easily modified for any q ∈ Z. More precisely the following holds.

Proposition 4.1. Equation (1.1) has solutions in the class M
+
�,0 if and only if Sα < ∞.

When q = 1, bounded solutions of (H) are uniquely determined up to a constant factor.
To prove this, we use a uniqueness result, stated in [1, Theorem 1], and the so-called reciprocity
principle (see, e.g., [11, Section 8.2.2]), which links solutions of (H) with ones of the reciprocal
equation (n ≥ 1):

Δ
(
Bn

∣∣Δyn

∣∣1/αsgnΔyn

)
+An

∣∣yn+1
∣∣1/αsgnyn+1 = 0, (4.1)

where

Bn =
1

(
bn−1

)1/α , An =
1

(
an

)1/α . (4.2)

Indeed, let y be a solution of (4.1) and denote by y[1] its quasidifference, that is y
[1]
n =

Bn|Δyn|1/α sgn Δyn. Then the sequence x, where xn = −y[1]
n , is a solution of (H) and satisfies

x
[1]
n = yn, sgnyny

[1]
n = −sgnxnx

[1]
n . (4.3)

Proposition 4.2. If Ya = ∞ and Sα < ∞, then for any fixed c /= 0, (H) has a unique solution x ∈ M
+
�,0

such that limn xn = c.

Proof. First, observe that Yb < ∞, because Sα < ∞. Consider (4.1), then

Sα =
∞∑

n=0

(
1
an

)1/α( ∞∑

k=n+1

bk−1

)1/α
=

∞∑

n=0

An

(
∞∑

k=n+1

(
1
Bk

)α)1/α
< ∞. (4.4)

By applying [1, Theorem 1] to (4.1), there exists a unique solution y of (4.1) such that limn yn =
0, limn y

[1]
n = −c. Applying the reciprocity principle, (H) has a unique solution x such that

limn xn = c and limn x
[1]
n = 0. Since (1.2) holds, x ∈ M

+
�,0.

Using the above results, we can prove our first main result.

Proof of Theorem 2.1. The claims (ik), k = 1, 2, 4, follow from Theorems 3.1, 3.2 and Prop-
osition 4.1.

Claim (i3). Let x be the unique solution of (H), defined for n ≥ N, satisfying x ∈ M
+
�,0 and

limn xn = 1. Let y be a solution of (H) such that yN = xN and yN+1 /≡ xN+1. If y ∈ M
+
�,0,we have

lim
n

yn = y∞ /= 1, 0 <
∣∣y∞

∣∣ < ∞. (4.5)
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In view of the homogeneity property, also z = (y∞)
−1y is a solution of (H), and limnzn = 1,

limnz
[1]
n = 0. Then, from Proposition 4.2, we have z ≡ x, that is y ≡ y∞x. Hence yN = y∞xN

and so y∞ = 1, which contradicts (4.5). Thus y /∈M
+
�,0. Since Tα(1) = ∞ and all solutions of (H)

are nonoscillatory, from Theorem 3.2 the assertion follows.

In the proof of Theorem 2.1 we used the Sturm separation property saying that os-
cillatory and nonoscillatory solutions cannot coexist for (H). Nevertheless, when q /= 1, such
a property can fail, as the following example shows.

Example 4.3. Consider the difference equations

Δ2xn + bnxn+1 = 0, (4.6)

Δ2yn + bnyn+3 = 0, (4.7)

where

bn = 2−6n−12
(
24n+6 + 22n+3 + 1

)
. (4.8)

Since S1 < ∞, by Proposition 4.1 both equations have bounded nonoscillatory solutions.
Thus, because the Sturm separation property holds for (4.6), this equation has all solutions
nonoscillatory. However (4.7) has the oscillatory solution y = {(−1)n2n(n+1)}. Similarly,

Δ2zn + Bnzn−5 = 0, Bn= 3−10n+25
(
3−4n−4 + 2·3−2n−1 + 1

)
(4.9)

has the oscillatory solution z = {(−1)n3−n2} and, again in view of Proposition 4.1, a bounded
nonoscillatory solution, while the corresponding linear equation Δ2xn + Bnxn+1 = 0 is non-
oscillatory, as it follows from Proposition 4.1 and the Sturm separation property.

As far as we know in the literature criteria assuring that all solutions of (1.1) with q /= 1
are nonoscillatory are not available. This fact yields a strong difficulty to prove the existence
of intermediate solutions of (1.1) when Tα(q) = ∞, q /= 1. These difficulties can be overcome
by making a comparison result for intermediate solutions of (1.1) with q /= 1 and (H), as it is
described in the following section.

5. Comparison result and proof of Theorem 2.2

Clearly, the convergence of the series Tα(q) depends on the deviating argument q. The
following example illustrates this fact and shows how the presence of the deviating argument
can modify the growth of nonoscillatory solutions.

Example 5.1. Let 0 < α < 1 and define the sequences a, b so that

k∑

i=0

(
1
ai

)1/α
= 2k

2
, bk= 2−αk

2 1
k + 1

. (5.1)

Hence

Tα(0) =
∞∑

k=1

bk

(
k−1∑

i=0

(
1
ai

)1/α)α

=
∞∑

k=1

1
k + 1

2−α(2k−1) < ∞, (5.2)
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while

Tα(1) =
∞∑

k=0

1
k + 1

2−αk
2
2αk

2
=

∞∑

k=0

1
k + 1

= ∞. (5.3)

Moreover, if 0 < X < 1, we have (i ≥ 0)

−Δ
(
Xi2) = Xi2 −X(i+1)2 = Xi2(1 −X2i−1) > (1 −X)Xi2 , (5.4)

and so, taking X= 2−α, we obtain

∞∑

i=k

2−αi
2
< −β

∞∑

i=k

Δ
(
2−αi

2)
= β2−αk

2
, (5.5)

where β = (1 − 2−α)−1. Hence

Sα =
∞∑

k=0

(
1
ak

)1/α( ∞∑

i=k

bi

)1/α

≤
∞∑

k=0

2k
2
(

1
k + 1

)1/α( ∞∑

i=k

2−αi
2

)1/α

≤ β1/α
∞∑

k=0

2k
2
(

1
k + 1

)1/α
2−k

2
< ∞.

(5.6)

Taking into account that Tα(p) ≤ Tα(q) for p ≤ q, we have

Sα < ∞, Tα(q) < ∞ for q ≤ 0, Tα(1) = ∞ (5.7)

and so the case (C3) and (C1) occurs for (H) and (H−) for τ ≥ 1, respectively. Therefore, the
delayed argument changes the growth of unbounded solutions: all unbounded solutions of
(H) are intermediate in virtue of Theorem 2.1(i3), while all unbounded solutions of (H−) are
dominant for any delay τ in virtue of Theorems 3.1 and 3.2.

Now we state a comparison result for intermediate solutions of (1.1).

Theorem 5.2. Assume (2.8). If (1.1) has solutions in the class M
+
∞,0 for a fixed q, then the same occurs

for any q.

Proof. Jointly with (1.1), consider the nonlinear difference equations

Δ
(
an

∣∣Δyn

∣∣αsgnΔyn

)
+ bn

∣∣xn+q−1
∣∣αsgnyn+q−1 = 0, (5.8)

Δ
(
an

∣∣Δxn

∣∣αsgnΔxn

)
+ bn

∣∣xn+q+1
∣∣αsgnxn+q+1 = 0. (5.9)

It is sufficient to prove that if M
+
∞,0 /=∅ for (1.1), then the same holds for (5.9) and (5.8). Put

q = min{0, q}. Let z be a solution of (1.1) in the class M
+
∞,0 and let n0 be a positive integer so

that n0 + q ≥ 1. Set

n = n0 + q − 1, ñ = n + 1 = n0 + q. (5.10)
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Then

0 ≤ n < ñ ≤ n0. (5.11)

Without loss of generality, assume zi > 0, z[1]i > 0 for i ≥ n and

ai > h, (5.12)

where h is a positive constant. Since z[1] is positive decreasing for n ≥ n,we have z[1]n ≤ z
[1]
n

for
n ≥ n, that is,

zn+1 − zn ≤
(

z
[1]
n

an

)1/α

≤
(

z
[1]
n

h

)1/α

= h1. (5.13)

Summing twice (1.1), we obtain, for n > n0,

zn = zn0 +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
zk+q

)α
)1/α

. (5.14)

Step 1 (M+
∞,0 /=∅ for (1.1) ⇒ M

+
∞,0 /=∅ for (5.8)). Denote by X the Fréchet space of the real

sequences defined for n ≥ n, endowed with the topology of convergence on finite subsets of
Nn = {n ∈ N, n ≥ n} and consider the set Ω ⊂ X defined by

Ω =
{
v =

{
vn

}
∈ X : zn+1 ≤ vn ≤ Mzn+1

}
, (5.15)

where

M = 1 +
h1

zn0

. (5.16)

Let T : Ω→X be the map given by

T(v)n = zn+1 if n ≤ n ≤ n0,

T(v)n = d +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
vk+q−1

)α
)1/α

if n ≥ n0 + 1,
(5.17)

where

d = zn0 + h1. (5.18)

Let n ≤ n ≤ n0; clearly

zn+1 = T(v)n < Mzn+1. (5.19)

Now let n > n0. Since n + q − 1 ≥ n0 + q − 1 = n, we have for v ∈ Ω and k ≥ n0

zk+q ≤ vk+q−1 ≤ Mzk+q. (5.20)
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Then, from (5.14) and (5.20), we get

T(v)n ≤ d +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
Mzk+q

)α
)1/α

= Mzn −Mzn0 + d. (5.21)

Since from (5.16) it results Mzn0 = zn0 + h1, from (5.21) we obtain

T(v)n ≤ Mzn − zn0 − h1 + d = Mzn < Mzn+1. (5.22)

Moreover, using again (5.14) and (5.20), we obtain, for n > n0,

T(v)n ≥ d +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
zk+q

)α
)1/α

= zn − zn0 + d = zn + h1, (5.23)

that is, in view of (5.13),

T(v)n ≥ zn+1. (5.24)

Hence, from (5.19), (5.22), and (5.24) we have T(Ω) ⊂ Ω. Reasoning as in the proof of
Theorem 3.2, the continuity and compactness of T in Ω follows and so, by applying the
Tychonov fixed point theorem, there exists y such that y = T(y). It is easy to verify that y
is a solution of (5.8) for large n and, since y ∈ Ω, we have y ∈ M

+
∞,0, that is, the assertion.

Step 2 (M+
∞,0 /=∅ for (1.1) ⇒ M

+
∞,0 /=∅ for (5.9)). Denote by X the Fréchet space of the real

sequences defined for n ≥ ñ, endowed with the topology of convergence on finite subsets of
Nñ = {n ∈ N, n ≥ ñ}, and consider the set Ω ⊂ X defined by

Ω =
{
w =

{
wn

}
∈ X : zn−1 ≤ wn ≤ Hzn−1

}
, (5.25)

whereH > 1 is a constant. Let T : Ω→X be the map given by

T(w)n = zn−1 if ñ ≤ n ≤ n0,

T(w)n = zn0 +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
wk+q+1

)α
)1/α

for n ≥ n0 + 1.
(5.26)

Let ñ ≤ n ≤ n0; clearly

zn−1 = T(w)n ≤ Hzn−1. (5.27)

Now let n > n0. For k ≥ n0 + 1 it results that k + q + 1 ≥ n0 + q = n + 1 = ñ and so for w ∈ Ω and
k ≥ n0 + 1 :

zk+q ≤ wk+q+1 ≤ Hzk+q. (5.28)

Taking into account (5.14) and (5.28), we have

T(w)n ≥ zn0 +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
zk+q

)α
)1/α

= zn > zn−1. (5.29)
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Similarly, results for n > n0:

T(w)n ≤ zn0 +
n−1∑

i=n0

(
1
ai

)1/α( ∞∑

k=i

bk
(
Hzk+q

)α
)1/α

= zn0 +Hzn −Hzn0 . (5.30)

From (5.13)we obtain zi−1 ≥ zi + h1 for i ≥ n+ 1 = ñ and so, since n > ñ, we have zn−1 ≥ zn + h1.
Consequently,

T(w)n ≤ Hzn−1 + zn0 −H
(
h1 + zn0

)
. (5.31)

Since H > 1, we have H(h1 + zn0) ≥ zn0 and so T(w)n ≤ Hzn−1. Thus T(Ω) ⊂ Ω. Since T is
continuous and compact in Ω, by applying the Tychonov fixed point theorem, there exists x
such that x = T(x). It is easy to verify that x is a solution of (5.9) for n large and, since x ∈ Ω,
we have x ∈ M

+
∞,0, that is, the assertion.

Now we are able to prove Theorem 2.2.

Proof of Theorem 2.2. Claims (i1), (i2) follow from Theorems 3.1, 3.2, and Proposition 4.1.

Claim (i3). From Theorem 3.2(i1) and Proposition 4.1 we have M
+
�,0 /=∅, M

+
∞,�

= ∅. To prove
M

+
∞,0 /=∅, let us show that Tα(1) = ∞. Clearly, this is true if q < 1, because Tα(q) = ∞. If q > 1,

in view of (2.8)we have for large n

n+q−1∑

k=0

(
1
ak

)1/α
=

n∑

k=0

(
1
ak

)1/α
+

n+q−1∑

k=n+1

(
1
ak

)1/α

≤
n∑

k=0

(
1
ak

)1/α
+ h−1/α(q − 1),

(5.32)

where h is given by (5.12), and so Tα(1) = ∞. In view of Theorem 2.1(i3), (H) has intermediate
solutions. Thus, Theorem 5.2 yields M

+
∞,0 /=∅ also for (1.1).

Claim (i4). Again from Theorem 3.2(i1) and Proposition 4.1, we have M
+
�,0 = M

+
∞,�

= ∅. Rea-
soning as in the proof of Claim (i3), we get M

+
∞,0 /=∅.

We close this section by an example illustrating the role of the delayed argument, when
a is rapidly varying at infinity.

Example 5.3. Consider (1.1) with bn = 2−n
2+2n and

an+1= 2−n
2(
2(2n+1)/α − 1

)−α
for n ≥ 0, a0 = 1. (5.33)

For any α > 0 we have

n∑

k=0

(
1
ak

)1/α
= 1 +

n∑

k=1

Δ2(n−1)
2/α= 2n

2/α, (5.34)
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and so Tα(1) = ∞ and Tα(−1) < ∞. Using the inequality
∑∞

i=n2
−i2+2i ≥ 2−n

2+2n, we obtain

Sα ≥
∞∑

n=0

(
1
an

)1/α
2(−n

2+2n)/α = 1 +
∞∑

n=1

(
22n/α − 21/α

)
= ∞. (5.35)

Thus, for q ≤ −1 and any α, (1.1) satisfies the case (C2) and so, by Theorem 2.2, it has
intermediate and dominant solutions. Observe that if q = 1, the case (C4) occurs, and,
by Theorem 2.1, the half-linear equation (H) is either oscillatory or all its solutions are
intermediate. So, this example shows that if q is negative, the case (C2) can occur for any α.

Moreover, when α = 1 the linear equation

Δ
(
anΔxn

)
+ bnxn+1 = 0 (5.36)

is oscillatory (see, e.g., [10, Remark 1.11.9]), and the corresponding delayed linear equation

Δ
(
anΔxn

)
+ bnxn−τ = 0, τ ∈ N, (5.37)

has, by Theorem 2.2, intermediate and dominant solutions. In comparison with Example 4.3,
where the linear equation is nonoscillatory and the deviating argument may produce
oscillatory solutions, in this case we have an opposite effect to the oscillation: the linear
equation is oscillatory and the delay produces nonoscillatory solutions.

6. Conclusion and open problems

(1) The role of the deviating argument. By Theorems 2.1, 2.2, the existence of subdominant
solutions does not depend on the deviating argument q, the one of dominant solutions can
depend on q. Especially because Tα(1− τ) ≤ Tα(1) ≤ Tα(1+ τ),we obtain a possible discrepancy
concerning unbounded solutions of (H) and an equation with deviating argument. For in-
stance, if the case (C1) holds, (H) has dominant solutions and no intermediate solutions,
while it may occur that (H+) has intermediate solutions and no dominant solutions. Similarly,
the delayed argument may cause the opposite phenomena: if the case (C3) holds, (H) has
intermediate solutions and no dominant solutions, while it may occur that (H−) has dominant
solutions and no intermediate solutions. Clearly, the deviating argument can produce also the
oscillation, or nonoscillation, as Examples 4.3 and 5.3 show.

(2) Open problems. As we noticed in Section 4, the nonoscillation of all solutions of (1.1)
with q /= 1 is an open problem.

For this reason, when Tα(q) = ∞ (q /= 1), the existence of intermediate solutions has been
obtained by means of a comparison result between (H) and (1.1), say Theorem 5.2. Such a
result shows that the deviating argument does not have any influence on the existence of
intermediate solutions, provided (2.8) holds. Especially, if the classical half-linear equation
(H) has intermediate solutions and (2.8) holds, then also (H+) and (H−) have intermediate
solutions for any τ ∈ Z, τ ≥ 1.

If (2.8) is not satisfied, Theorem 5.2 can fail, as Example 5.1 illustrates. Is condition (2.8)
necessary for the validity of this theorem and, consequently, of Theorem 2.2? By means of an
argument similar to the one given in the proof of Theorem 2.2(i3)we have that (2.8) yields that
the series Tα(p), Tα(q) have the same character, that is, are both convergent or divergent for
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any p, q ∈ Z. Now, the following question arises: is the statement of these theorems valid by
assuming, instead of (2.8), that Tα(p), Tα(q) are both convergent or divergent?

(3) Future investigations. The future studies will be addressed to extend the results of this
paper, especially those concerning the intermediate solutions, to Emden-Fowler-type equations
of the form

Δ
(
an

∣
∣Δxn

∣
∣αsgnΔxn

)
+ bn

∣
∣xn+q

∣
∣βsgnxn+q = 0, α /= β. (6.1)
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