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1. Introduction

After Carlitz introduced an interesting q-analogue of Frobenius-Euler numbers in [1], q-
Bernoulli and q-Euler numbers and polynomials have been studied by several authors.
Recently, many authors have an interest in the q-extension of the Genocchi numbers and
polynomials(cf. [2–5]). Kim et al. [5] defined the q-Genocchi numbers and the q-Genocchi
polynomials. In [3], Kim derived the q-analogs of the Genocchi numbers and polynomials
by constructing q-Euler numbers. He also gave some interesting relations between q-Euler
and q-Genocchi numbers. The first author et al. [6] obtained the distribution relation for the
Genocchi polynomials.

The main aim of this paper is to derive the Fourier transform for the Genocchi
function. Recently, Kim [7] investigated the properties of the Euler functions and derived
the interesting formula related to the infinite series by using the Fourier transform for the
Euler function. In this paper, we investigate some arithmetical properties of the Genocchi
functions and the Genocchi polynomials.

In [8], Cangul-Ozden-Simsek constructed new generating functions of the twisted
(h, q)-extension of twisted Euler polynomials and numbers attached to the Dirichlet
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character χ. Cangul et al. [8] also defined the twisted (h, q)-extension of zeta functions,
which interpolate the twisted (h, q)-extension of Euler numbers at negative integers. In this
paper, we define the Cangul-Ozden-Simsek type twisted (h, q)-Genocchi polynomials and
numbers. We have the generating function of (h, q)-Genocchi polynomials. We have the
generalized twisted (h, q)-Genocchi numbers attached to the Dirichlet character χ. We define
zeta functions related to (h, q)-Genocchi polynomials and we have the generating function of
the generalized (h, q)-Genocchi numbers attached to χ.

Let p be a fixed odd prime number. Throughout this paper Zp,Qp, C, and Cp will,
respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers,
the complex number field, and the completion of algebraic closure of Qp. Let N be the set
of natural numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of
Cp with |p|p = p−vp(p) = 1/p. When one talks of q-extension, q is variously considered as an
indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally
assumes |q| < 1. If q ∈ Cp, then we assume |1 − q|p < 1. We also use the following notations:

[x]q = [x : q] =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

For d, a fixed positive integer with (p, d) = 1, set

X = Xd =
lim←

N
Z

dpNZ
, X1 = Zp,

X∗ =
⋃

0<a<dp,
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.2)

where a ∈ Z satisfies the condition 0 ≤ a < dpN . The distribution is defined by

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

. (1.3)

We say that f is uniformly differential function at a point a ∈ Zp, and we write f ∈
UD(Zp), if the difference quotients, Ff(x, y) = f(x)−f(y)/x−y have a limit f

′
(a) as (x, y) →

(a, a).
For f ∈ UD(Zp), the p-adic invariant q-integral on Zp is defined as

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx. (1.4)
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The fermionic p-adic q-measures on Zp are defined as

μ−q
(
a + dpNZp

)
=

(−q)a
[
dpN

]
−q
, (1.5)

and the fermionic p-adic invariant q-integral on Zp is defined as

I−q(f) =
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

pN−1∑

x=0

f(x)(−q)x, (1.6)

for f ∈ UD(Zp). For f ∈ UD(Zp), we note that

I−1
(
f1
)
+ I−1(f) = 2f(0), (1.7)

where f1(x) = f(x + 1). (For details see [1–44].)
In this paper, we investigate arithmetical properties of the Genocchi functions and

the Genocchi polynomials. In Section 2, we derive the Fourier transform on the Genocchi
function. In Section 3, we define the Cangul-Ozden-Simsek type twisted (h, q)-Genocchi
polynomials and numbers. We have the generating function of (h, q)-Genocchi polynomials.
We also have the generalized twisted (h, q)-Genocchi numbers attached to χ. In Section 4,
we define zeta functions related to (h, q)-Genocchi polynomials and we have the generating
function of the generalized (h, q)-Genocchi numbers attached to χ.

2. Genocchi numbers and functions

The Genocchi numbers are defined as

2t
et + 1

= eGt =
∞∑

n=0

Gn
tn

n!
for |t| < π, (2.1)

where we use the technique method notation by replacing Gn by Gn, symbolically. From this
definition, we can derive the following relation:

G0 = 0, (G + 1)n +Gn =

{
2 if n = 1,
0 if n > 1.

(2.2)

From (2.2), we note that G0 = 0, G1 = 1, G2 = −1, . . . , and G2k+1 = 0, G2k ∈ Z (k = 1, 2, . . .).
The Genocchi polynomials Gn(x) are defined as

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
, for x ∈ R. (2.3)
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From (2.1) and (2.3), we can derive

Gn(x) =
n∑

�=0

(
n

�

)
G�x

n−�, where

(
n

�

)
=

n(n − 1) · · · (n − � + 1)
�!

. (2.4)

By (2.1), it is not difficult to show that the recurrence relation for the Genocchi numbers is
given by

G0 = 0,
n∑

�=0

(
n

�

)
G� +Gn = 2δ1,n, (2.5)

where δ1,n is the Kronecker symbol.
From (2.4) and (2.5), we note that

Gn(1) +Gn = 0 for n ≥ 2. (2.6)

Thus, we obtain the following lemma.

Lemma 2.1. For n (≥ 2) ∈ N , one has Gn(1) = −Gn .

From (2.4), we can easily derive

d

dx
Gn(x) =

d

dx

n∑

�=0

(
n

�

)
G�x

n−� =
n∑

�=0

(
n

�

)
(n − �)G�x

n−�−1

= n
n∑

�=0

(n − 1)!
(n − � − 1)!�!

G�x
n−1−� = n

n∑

�=0

(
n − 1

�

)
G�x

n−1−� = nGn−1(x).

(2.7)

By (2.7), we obtain the following proposition.

Proposition 2.2. For n ≥ 0 , one has

∫x

0
Gn(t)dt =

1
n + 1

Gn+1(x). (2.8)

From now on, we assume that Gn(x) is the Genocchi function. Let us consider the
Fourier transform for the Genocchi function Gn(x) as follows.

For m ∈ N, the Fourier transform on the Genocchi function is given by

Gm(x) =
∞∑

n=−∞
a
(m)
n e(2n+1)πix,

(
a
(m)
n ∈ C

)
, (2.9)

where

a
(m)
n =

∫1

0
Gm(x)e−(2n+1)πixdx. (2.10)
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From (2.8) and (2.10), we note that

a
(m)
n =

∫1

0
Gm(x)e−(2n+1)πixdx

=
[
Gm+1(x)
m + 1

e−(2n+1)πix
]1

0
+
(2n + 1)πi

m + 1

∫1

0
Gm+1(x)e−(2n+1)πixdx

=
(2n + 1)πi

m + 1
a
(m+1)
n .

(2.11)

Thus, for m ≥ 2, we have

a
(m)
n =

m

(2n + 1)πi
a
(m−1)
n =

m(m − 1)

((2n + 1)πi)2
a
(m−2)
n = · · · = m!

((2n + 1)πi)m−1a
(1)
n . (2.12)

From (2.4) and (2.10), we derive

a
(1)
n =

∫1

0
G1(x)e−(2n+1)πixdx =

∫1

0
e−(2n+1)πixdx =

[
−e−(2n+1)πix
(2n + 1)πi

]1

0

=
2

(2n + 1)πi
. (2.13)

From (2.12) and (2.13), we can derive

a
(m)
n =

m!2
((2n + 1)πi)m

(m ∈ N), a(0)
n = 0. (2.14)

By (2.9) and (2.14), we have that G0(x) = 0 and

Gm(x) = m!2
∞∑

n=−∞

e(2n+1)πix

((2n + 1)πi)m
, for 0 ≤ x < 1. (2.15)

Therefore, we obtain the following theorem.

Theorem 2.3. For m ∈ Z+, x ∈ R with 0 ≤ x < 1 , one has

Gm(x) = m!2
∞∑

n=−∞

e(2n+1)πix

((2n + 1)πi)m
. (2.16)

If we take x = 1, then we have

Gm(1) = −m!2
∞∑

n=−∞

1
((2n + 1)πi)m

. (2.17)

By (2.17) and Lemma 2.1, we obtain the following corollary.
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Corollary 2.4. For m ∈ Z+ , one has

Gm = m!2
∞∑

n=−∞

1
((2n + 1)πi)m

. (2.18)

From Corollary 2.4, we note that

G2m = (2m)!2
∞∑

n=−∞

1

((2n + 1)πi)2m
= (2m)!2

∞∑

n=−∞

1

(2n + 1)2mπ2m(−1)m
. (2.19)

Thus, we have

∞∑

n=−∞

1

(2n + 1)2m
= (−1)m G2m

2(2m)!
π2m. (2.20)

By (2.20), we obtain the following corollary.

Corollary 2.5. For m ∈ Z+ , one has

∞∑

n=1

1

(2n + 1)2m
= (−1)m G2m

4(2m)!
π2m. (2.21)

3. (h, q)-extension of twisted Genocchi numbers and polynomials

In this section, we will define the (h, q)-extensions of twisted Genocchi numbers and
polynomials which are the Cangul-Ozden-Simsek type twisted (h, q)-Genocchi numbers
and polynomials, respectively. We will have the generating function of (h, q)-Genocchi
polynomials and the generalized twisted (h, q)-Genocchi numbers attached to χ.

Let f(x) = ext. Then, we have from the definition of the Genocchi numbers and the
fermionic p-adic q-integral on Zp that

t

∫

Zp

extdμ−1(x) =
∞∑

n=0

Gn
tn

n!
= t

∞∑

n=0

Gn+1

n + 1
tn

n!
,

t

∫

Zp

e(x+y)tdμ−1(y) =
∞∑

n=0

Gn(x)
tn

n!
= t

∞∑

n=0

Gn+1(x)
n + 1

tn

n!
.

(3.1)

Thus, we obtain

∫

Zp

xndμ−1(x) =
Gn+1

n + 1
,

∫

Zp

(x + y)ndμ−1(y) =
Gn+1(x)
n + 1

. (3.2)
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For f ∈ UD(Zp) and n ∈ N, we have

∫

Zp

f(x + n)dμ−1(x) = (−1)n
∫

Zp

f(x)dμ−1(x) + 2
n−1∑

�=0

(−1)n−1+�f(�). (3.3)

By (3.2) and (3.3), if we take f(x) = xk(k ∈ Z
+), we easily see that

∫

Zp

(x + n)kdμ−1(x) −
∫

Zp

xkdμ−1(x) = 2
n−1∑

�=0

(−1)�−1�k if n ≡ 0 (mod 2). (3.4)

Thus, we have

Gk+1(n)
k + 1

− Gk+1

k + 1
= 2

n−1∑

�=0

(−1)�−1�k if n ≡ 0 (mod 2) (3.5)

If n ≡ 1 (mod 2), then we know that

∫

Zp

(x + n)kdμ−1(x) +
∫

Zp

xkdμ−1(x) = 2
n−1∑

�=0

(−1)��k. (3.6)

Thus, we get

Gk+1(n)
k + 1

+
Gk+1

k + 1
= 2

n−1∑

�=0

(−1)��k if n ≡ 1 (mod 2) (3.7)

We can consider the generalized Genocchi numbers as follows:

Gn+1

n + 1
=
∫

X

xndμ−1(x), G0 = 0, (3.8)

where n ∈ Z+. Let d ∈ Nwith d ≡ 1 (mod 2). From (3.3) and (3.8), we note that

t

∫

X

extdμ−1(x) =
2
∑d−1

�=0
(−1)�e�t

edt + 1
t =

∞∑

n=0

Gn

n!
tn. (3.9)
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By (3.8) and (3.9), it is not difficult to show that

Gn+1

n + 1
=
∫

X

xndμ−1(x)

= dn
d−1∑

a=0

(−1)a
∫

Zp

(
a

d
+ x

)n

dμ−1(x)

= dn
d−1∑

a=0

(−1)aGn+1(a/d)
n + 1

,

∫

X

(x + y)ndμ−1(y) = dn
d−1∑

a=0

(−1)a
∫

Zp

(
x + a

d
+ y

)n

dμ−1(y).

(3.10)

Thus, the distribution relations for the Genocchi numbers and the Genocchi polynomials for
d ∈ N with d ≡ 1 (mod 2) are obtained as follows (cf. [6]):

Gn+1

n + 1
= dn

d−1∑

a=0

(−1)aGn+1(a/d)
n + 1

,

Gn+1(x)
n + 1

= dn
d−1∑

a=0

(−1)aGn+1((x + a)/d)
n + 1

.

(3.11)

By using the multivariate integral, we can also consider the multiple Genocchi numbers and
polynomials.

Let q ∈ Cp with |1 − q|p < 1 be indeterminate and let h ∈ Z. Then, we note that

t

∫

Zp

qhye(x+y)tdμ−1(y) =
2t

qhet + 1
ext. (3.12)

Now, we define the Cangul-Ozden-Simsek type (h, q)-Genocchi polynomials G(h)
n,q(x)

as follows:

2t
qhet + 1

ext =
∞∑

n=0

G
(h)
n,q(x)

tn

n!
. (3.13)

From (3.13), we note that

∫

Zp

qhy(x + y)ndμ−1(y) =
G

(h)
n+1,q(x)

n + 1
. (3.14)

Let Cpn be the space of primitive pn-th root of unity with

Cpn =
{
ξ ∈ Cp | ξpn = 1

}
, (3.15)
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and let Tp be the direct limit of Cpn , that is,

Tp = lim
n→∞

Cpn =
⋃

n≥0
Cpn , (3.16)

and then Tp is a p-adic locally constant space.
For ξ ∈ Tp, we define the Cangul-Ozden-Simsek type twisted (h, q)-Genocchi

polynomials G(h)
n,q.ξ(x) as follows:

t

∫

Zp

qhyξye(x+y)tdμ−1(y) =
2t

ξqhet + 1
ext =

∞∑

n=0

G
(h)
n,q,ξ(x)

tn

n!
. (3.17)

By (3.17), we have

∫

Zp

qhyξy(x + y)ndμ−1(y) =
G

(h)
n+1,q,ξ(x)

n + 1
. (3.18)

From the result of Cangul et al. [8], we note that

E
(h)
n+1,q,ξ(x) =

G
(h)
n+1,q,ξ(x)

n + 1
, (3.19)

where E(h)
n+1,q,ξ(x) is the twisted (h, q)-Euler polynomials.

Let χ be the Dirichlet character with conductor d ∈ N with d ≡ 1 (mod 2). Then, we
consider the generalized Genocchi numbers attached to χ as follows:

Gn+1,χ

n + 1
=
∫

X

χ(x)xndμ−1(x), G0,χ = 0, (3.20)

where n ∈ Z+.
From (3.3) and (3.20), we note that

t

∫

X

extχ(x)dμ−1(x) =
2
∑d−1

�=0(−1)�χ(�)e�t
edt + 1

t =
∞∑

n=0

Gn,χ

n!
tn. (3.21)
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By (3.20) and (3.21), it is not difficult to show that

Gn+1,χ

n + 1
=
∫

X

χ(x)xndμ−1(x)

= dn
d−1∑

a=0

(−1)aχ(a)
∫

Zp

(
a

d
+ x

)n

dμ−1(x)

= dn
d−1∑

a=0

(−1)aχ(a)Gn+1(a/d)
n + 1

.

(3.22)

Now, we also consider the Cangul-Ozden-Simsek type twisted (h, q)-Genocchi numbers
attached to χ as follows.

For ξ ∈ Tp and h ∈ Z, we have

t

∫

X

χ(x)ξxqhxextdμ−1(x) = t
d−1∑

a=0

(−1)aχ(a)eatξaqha
∫

Zp

exdtξdxqhdxdμ−1(x)

=
2t
∑d−1

a=0(−1)aχ(a)eatξaqha
qhdξdedt + 1

=
∞∑

n=0

G
(h)
n,q,ξ,χ

tn

n!
.

(3.23)

From (3.23), we have

∫

X

χ(x)ξxqhxxndμ−1(x) =
G

(h)
n+1,q,ξ,χ

n + 1
, for n ≥ 0. (3.24)

From the result of Cangul et al. [8], we note that

E
(h)
n,q,ξ,χ

=
G

(h)
n+1,q,ξ,χ

n + 1
, for n ≥ 0, (3.25)

where E(h)
n,q,ξ,χ are called the generalized twisted (h, q)-Euler numbers attached to χ.

4. Zeta functions related to the Genocchi polynomials

In this section, we assume that q ∈ C with |q| < 1. Let F(t, x) be the generating function of
(h, q)-Genocchi polynomials defined as follows:

F(t, x) =
2t

qhet + 1
ext =

∞∑

n=0

G
(h)
n,q(x)

tn

n!
, (4.1)

where |t + h log q| < π .
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Then, we note that

F(t, x) = 2t
∞∑

n=0

(−1)nqnhe(n+x)t. (4.2)

By (4.1) and (4.2), we easily see that

G
(h)
k,q(x) =

dk

dtk
F(t, x)|t=0 = 2k

∞∑

n=0

(−1)nqnh(n + x)k−1, (4.3)

for k ∈ N. Therefore, we obtain the following proposition.

Proposition 4.1. For k ∈ N , one has

G
(h)
k,q

(x)

k
= 2

∞∑

n=0

(−1)nqnh(n + x)k−1. (4.4)

From Proposition 4.1, we can derive the Genocchi zeta function which interpolates
Genocchi polynomials related to (h, q)-Genocchi polynomials at negative integers.

For s ∈ C, we define the Hurwitz-type Genocchi zeta functions related to (h, q)-
Genocchi polynomials and numbers as follows.

Definition 4.2. For s ∈ N , one has

ζG(s, x) = 2
∞∑

n=0

(−1)nqnh
(n + x)s

, ζG(s) = 2
∞∑

n=1

(−1)nqnh
ns

. (4.5)

By Proposition 4.1 and Definition 4.2, we obtain the following theorem.

Theorem 4.3. For k ∈ N , one has

ζG(1 − k, x) =
G

(h)
k,q

(x)

k
, ζG(1 − k) =

G
(h)
k,q

k
. (4.6)

The generating function of the generalized (h, q)-Genocchi numbers attached to χ is
given by

F
(h)
χ (t) =

d−1∑

a=0

2t(−1)aχ(a)eatqha
qhdedt + 1

=
∞∑

n=0

G
(h)
n,χ,q

tn

n!
, (4.7)

where |h log q + t| < π/d, d ∈ N with d ≡ 1 (mod 2). Therefore, we have

F
(h)
χ (t) = 2t

∞∑

n=0

(−1)nχ(n)qhnent, (4.8)
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where χ is a nontrivial character with conductor d ∈ N with d ≡ 1 (mod 2). From (4.8), it
follows that

G
(h)
k,χ,q

=
dk

dtk
F
(h)
χ (t)|t=0 = 2k

∞∑

n=1

(−1)nχ(n)qhnnk−1. (4.9)

This is equivalent to

G
(h)
k,χ,q

k
= 2

∞∑

n=1

(−1)nχ(n)qhnnk−1. (4.10)

For d ∈ N with d ≡ 1 (mod 2), let χ be a primitive Dirichlet character with conductor
d. Then, we define

L
(h)
q (s, χ) = 2

∞∑

n=1

(−1)nχ(n)qhn
ns

(s ∈ C), h ∈ Z. (4.11)

From (4.10) and (4.11), we obtain the following theorem.

Theorem 4.4. For k ∈ N , one has

L
(h)
q (1 − k, χ) =

G
(h)
k,χ,q

k
. (4.12)
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