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We show that every solution of the following system of difference equations x(1)
n+1 = x

(2)
n /(x(2)

n − 1),

x
(2)
n+1 = x

(3)
n /(x(3)

n − 1), . . . , x(k)
n+1 = x

(1)
n /(x(1)

n − 1) as well as of the system x
(1)
n+1 = x

(k)
n /(x(k)

n − 1), x(2)
n+1 =

x
(1)
n /(x(1)

n − 1), . . . , x(k)
n+1 = x

(k−1)
n /(x(k−1)

n − 1) is periodic with period 2k if k /= 0 (mod2), and with
period k if k = 0 (mod 2)where the initial values are nonzero real numbers for x(1)

0 , x
(2)
0 , . . . , x

(k)
0 /= 1.
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1. Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions of
differential and delay differential equations having applications in biology, ecology, economy,
physics, and so on [1]. So, recently there has been an increasing interest in the study of
qualitative analysis of rational difference equations and systems of difference equations.
Although difference equations are very simple in form, it is extremely difficult to understand
thoroughly the behaviors of their solutions. (see [1–12] and the references cited therein.)

Papaschinopoulos and Schinas [9, 10] studied the behavior of the positive solutions of
the system of two Lyness difference equations

xn+1 =
byn + c

xn−1
, yn+1 =

dxn + e

yn−1
, n = 0, 1, 2, . . . , (1.1)

where b, c, d, e are positive constants and the initial values x−1, x0, y−1, y0 are positive.
In [2] Camouzis and Papaschinopoulos studied the behavior of the positive solutions of

the system of two difference equations

xn+1 = 1 +
xn

yn−m
, yn+1 = 1 +

yn

xn−m
, n = 0, 1, 2, . . . , (1.2)
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where the initial values xi, yi, i = −m,−m + 1, . . . , 0 are positive numbers and m is a positive
integer.

Moreover, Çinar [3] investigated the periodic nature of the positive solutions of the
system of difference equations

xn+1 =
1
yn

, yn+1 =
yn

xn−1yn−1
, zn+1 =

1
xn−1

, n = 0, 1, 2, . . . , (1.3)

where the initial values x−1, x0, y−1, y0, z−1, z0 are positive real numbers.
Also, Özban [7] investigated the periodic nature of the solutions of the system of rational

difference equations

xn+1 =
1

yn−k
, yn+1 =

yn

xn−myn−m−k
, n = 0, 1, 2, . . . , (1.4)

where k is a nonnegative integer, m is a positive integer, and the initial values
x−m, x−m+1, . . . , x0, y−m−k, y−m−k+1, . . . , y0 are positive real numbers.

In [12] Irićanin and Stević studied the positive solution of the following two systems of
difference equations

x
(1)
n+1 =

1 + x
(2)
n

x
(3)
n−1

, x
(2)
n+1 =

1 + x
(3)
n

x
(4)
n−1

, . . . , x
(k)
n+1 =

1 + x
(1)
n

x
(2)
n−1

, (1.5)

x
(1)
n+1 =

1 + x
(2)
n + x

(3)
n−1

x
(4)
n−2

, x
(2)
n+1 =

1 + x
(3)
n + x

(4)
n−1

x
(5)
n−2

, . . . , x
(k)
n+1 =

1 + x
(1)
n + x

(2)
n−1

x
(3)
n−2

, (1.6)

where k ∈ N fixed.
In [11] Papaschinopoulos et al. studied the system of difference equations

x1(n + 1) =
akxk(n) + bk
xk−1(n − 1)

,

x2(n + 1) =
a1x1(n) + b1
xk(n − 1)

,

xi(n + 1) =
ai−1xi−1(n) + bi−1

xi−2(n − 1)
, for i = 3, 4, . . . , k,

(1.7)

where ai, bi (for i = 1, 2, . . . , k) are positive constants, k � 3 is an integer, and the initial values
xi(−1), xi(0) (for i = 1, 2, . . . , k) are positive real numbers.

It is well known that all well-defined solutions of the difference equation

xn+1 =
xn

xn − 1
(1.8)

are periodic with period two. Motivated by (1.8), we investigate the periodic character of the
following two systems of difference equations:

x
(1)
n+1 =

x
(2)
n

x
(2)
n − 1

, x
(2)
n+1 =

x
(3)
n

x
(3)
n − 1

, . . . , x
(k)
n+1 =

x
(1)
n

x
(1)
n − 1

, (1.9)

x
(1)
n+1 =

x
(k)
n

x
(k)
n − 1

, x
(2)
n+1 =

x
(1)
n

x
(1)
n − 1

, . . . , x
(k)
n+1 =

x
(k−1)
n

x
(k−1)
n − 1

(1.10)

which can be considered as a natural generalizations of (1.8).
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In order to provemain results of the paper we need an auxiliary result which is contained
in the following simple lemma from number theory. LetGCD(k, l) denote the greatest common
divisor of the integers k and l.

Lemma 1.1. Let k ∈ N and GCD(k, 2) = 1, then the numbers al = 2l + 1 (or al = −2l + 1) for
l = 0, 1, . . . , k − 1 satisfy the following property:

al1 − al2 /= 0 (mod k) when l1 /= l2. (1.11)

Proof. Suppose the contrary, then we have 2(l1 − l2) = al1 − al2 = ks for some s ∈ Z \ {0}.
Since GCD(k, 2) = 1, it follows that k is a divisor of l1 − l2. On the other hand, since

l1, l2 ∈ {0, 1, . . . , k − 1}, we have |l1 − l2| < k which is a contradiction.

Remark 1.2. From Lemma 1.1 we see that the rests bl for l = 0, 1, . . . , k−1 of the numbers al = 2l+
1 for l = 0, 1, . . . , k−1, obtained by dividing the numbers al by k, are mutually different, they are
contained in the setA = {0, 1, . . . , k − 1}, make a permutation of the ordered set (0, 1, . . . , k − 1),
and finally ak = 2k+ 1 is the first number of the form 2l+ 1, l ∈ N, such that a1 −a0 ≡ 0 (mod k).

2. The main results

In this section, we formulate and prove the main results in this paper.

Theorem 2.1. Consider (1.9) where k � 1. Then the following statements are true:

(a) if k /= 0 (mod2), then every solution of (1.9) is periodic with period 2k,

(b) if k = 0 (mod2), then every solution of (1.9) is periodic with period k.

Proof. First note that the system is cyclic. Hence it is enough to prove that the sequence (x(1)
n )

satisfies conditions (a) and (b) in the corresponding cases.
Further, note that for every s ∈ N system (1.9) is equivalent to a system of ks difference

equations of the same form, where

x
(i)
n = x

(rk+i)
n , ∀n ∈ N, i ∈ {1, . . . , k}, r = 0, 1, . . . , s − 1. (2.1)

On the other hand, we have

x
(1)
n+1 =

x
(2)
n

x
(2)
n − 1

=
x
(3)
n−1/(x

(3)
n−1 − 1)

(x(3)
n−1/(x

(3)
n−1 − 1)) − 1

= x
(3)
n−1. (2.2)

(a) Let bl for l = 0, 1, . . . , k − 1 be the rests mentioned in Remark 1.2. Then from (2.2) and
Lemma 1.1 we obtain that

x
(1)
n+1 = x

(3)
n−1 = x

(5)
n−3 = · · · = x

(2k−1)
n+1−2(k−1) = x

(2k+1)
n+1−2k. (2.3)

Using (2.1) for sufficently large s, we obtain that (2.3) is equivalent to (here we use
the condition GCD(k, 2) = 1)

x
(1)
n+1 = x

(b1)
n−1 = x

(b2)
n−3 = · · · = x

(bk−1)
n+1−2(k−1) = x

(1)
n+1−2k. (2.4)

From this and since by Lemma 1.1 the numbers 1, b1, b2, . . . , bk−1 are pairwise different,
the result follows in this case.
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(b) Let k = 2s, for some s ∈ N. By (2.1) we have

x
(1)
n+1 = x

(3)
n−1 = x

(5)
n−3 = · · · = x

(2s+1)
n+1−2s = x

(1)
n+1−2s (2.5)

which yields the result.

Remark 2.2. In order to make the proof of Theorem 2.1 clear to the reader, we explain what
happens in the cases k = 2 and k = 3.

For k = 2, system (1.9) is equivalent to the system

x
(1)
n+1 =

x
(2)
n

x
(2)
n − 1

, x
(2)
n+1 =

x
(3)
n

x
(3)
n − 1

, x
(3)
n+1 =

x
(4)
n

x
(4)
n − 1

,

x
(4)
n+1 =

x
(5)
n

x
(5)
n − 1

, x
(5)
n+1 =

x
(6)
n

x
(6)
n − 1

, x
(6)
n+1 =

x
(1)
n

x
(1)
n − 1

,

(2.6)

where we consider that

x
(1)
n = x

(3)
n = x

(5)
n , x

(2)
n = x

(4)
n = x

(6)
n , ∀n ∈ N. (2.7)

From this and (2.2), we have

x
(1)
n+1 = x

(3)
n−1 = x

(1)
n−1 ∀n ∈ N. (2.8)

Using again (2.2), we get x(1)
n+1 = x

(1)
n−1, which means that the sequence x

(1)
n is periodic

with period equal to 2. If k = 3, system (1.9) is equivalent to system (2.6) where we consider
that x(1)

n = x
(4)
n , x

(2)
n = x

(5)
n , and x

(3)
n = x

(6)
n . Using this and (2.2) subsequently, it follows that

x
(1)
n+1 = x

(3)
n−1 = x

(5)
n−3 = x

(2)
n−3 = x

(4)
n−5 = x

(1)
n−5, (2.9)

that is, the sequence x(1)
n is periodic with period 6.

Remark 2.3. The fact that every solution of (1.8) is periodic with period two can be considered
as the case k = 1 in Theorem 2.1, that is, we can take that

x
(1)
n = x

(2)
n = · · · = x

(k)
n , ∀n ∈ N. (2.10)

Similarly to Theorem 2.1, using Lemma 1.1 with al = −2l + 1 for l = 0, 1, . . . , k − 1, the
following theorem can be proved.

Theorem 2.4. Consider (1.10) where k � 1. Then the following statements are true:

(a) if k /= 0 (mod2), then every solution of (1.10) is periodic with period 2k,

(b) if k = 0 (mod2), then every solution of (1.10) is periodic with period k.
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Proof. First note that the system is cyclic. Hence, it is enough to prove that the sequence (x(1)
n )

satisfies conditions (a) and (b) in the corresponding cases.
Indeed, similarly to (2.2), we have

x
(1)
n+1 =

x
(k)
n

x
(k)
n − 1

=
x
(k−1)
n−1 /(x(k−1)

n−1 − 1)

(x(k−1)
n−1 /(x(k−1)

n−1 − 1)) − 1
= x

(k−1)
n−1 . (2.11)

(a) Let bl for l = 0, 1, . . . , k − 1 be the rests mentioned in Remark 1.2. Then from (2.11) and
Lemma 1.1 we obtain that

x
(1)
n+1 = x

(k−1)
n−1 = x

(k−3)
n−3 = · · · = x

(−2k+3)
n+1−2(k−1) = x

(−2k+1)
n+1−2k . (2.12)

Using (2.1) for sufficiently large s, we obtain that (2.12) is equivalent to (here we use
the condition GCD(k, 2) = 1)

x
(1)
n+1 = x

(b1)
n−1 = x

(b2)
n−3 = · · · = x

(bk−1)
n+1−2(k−1) = x

(1)
n+1−2k. (2.13)

From this and since by Lemma 1.1 the numbers 1, b1, b2, . . . , bk−1 are pairwise different,
the result follows in this case.

(b) Let k = 2s for some s ∈ N. By (2.1)we have

x
(1)
n+1 = x

(k−1)
n−1 = x

(k−3)
n−3 = · · · = x

(1)
n+1−2s (2.14)

which yields the result.

Corollary 2.5. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.9) with the initial values x(1)

0 , x
(2)
0 , . . . , x

(k)
0 .

Assume that

x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 > 1, (2.15)

then all solutions of (1.9) are positive.

Proof. We consider solutions of (1.9)with the initial values x(1)
0 , x

(2)
0 , . . . , x

(k)
0 satisfying (2.15). If

k = 0 (mod2), then from (1.9) and (2.15), we have

if i is odd, thenx(m)
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x
(i+m)
0

x
(i+m)
0 − 1

for (i +m) ≤ k,

x
(i+m−k)
0

x
(i+m−k)
0 − 1

for (i +m) > k,

if i is even, thenx(m)
i =

⎧
⎨

⎩

x
(i+m)
0 for (i +m) ≤ k,

x
(i+m−k)
0 for (i +m) > k,

(2.16)

for i = 1, 2, . . . , k andm = 1, 2, . . . , k.
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If k /= 0 (mod2), then from (1.9) and (2.15), we have

If i is odd, thenx(m)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
(i+m)
0

x
(i+m)
0 − 1

for (i +m) ≤ k or (i +m) = 2k,

x
(i+m−k)
0

x
(i+m−k)
0 − 1

for k < (i +m) < 2k,

x
(i+m−2k)
0

x
(i+m−2k)
0 − 1

for 2k < (i +m) < 3k,

If i is even, thenx(m)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x
(i+m)
0 for (i +m) ≤ k,

x
(i+m−k)
0 for k < (i +m) < 2k,

x
(i+m−2k)
0 for 2k < (i +m) ≤ 3k,

(2.17)

for i = 1, 2, . . . , 2k andm = 1, 2, . . . , k.
From (2.16) and (2.17), all solutions of (1.9) are positive.

Corollary 2.6. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.9) with the initial values x(1)

0 , x
(2)
0 , . . . , x

(k)
0 .

Assume that

0 < x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 < 1, (2.18)

then {x(1)
2n , x

(2)
2n , . . . , x

(k)
2n } are positive, {x

(1)
2n+1, x

(2)
2n+1, . . . , x

(k)
2n+1} are negative for all n � 0.

Proof. From (2.16), (2.17), and (2.18), the proof is clear.

Corollary 2.7. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.9) with the initial values x(1)

0 , x
(2)
0 , . . . , x

(k)
0 .

Assume that

x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 < 0, (2.19)

then {x(1)
2n , x

(2)
2n , . . . , x

(k)
2n } are negative, {x

(1)
2n+1, x

(2)
2n+1, . . . , x

(k)
2n+1} are positive for all n � 0.

Proof. From (2.16), (2.17), and (2.19), the proof is clear.

Corollary 2.8. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.9) with the initial values x(1)

0 , x
(2)
0 , . . . , x

(k)
0 ,

then the following statements are true (for all n � 0 and i = 1, 2, . . . , k) :

(i) if x(i)
0 → ∞, then {x(i)

2n} → ∞ and {x(i)
2n+1} → 1+,

(ii) if x(i)
0 → 1+, then {x(i)

2n} → 1+ and {x(i)
2n+1} → ∞,

(iii) if x(i)
0 → 1−, then {x(i)

2n} → 1− and {x(i)
2n+1} → −∞,

(iv) if x(i)
0 → 0+, then {x(i)

2n} → 0+ and {x(i)
2n+1} → 0−,

(v) if x(i)
0 → 0−, then {x(i)

2n} → 0− and {x(i)
2n+1} → 0+,

(vi) if x(i)
0 → −∞, then {x(i)

2n} → −∞ and {x(i)
2n+1} → 1−.
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Proof. From (2.16) and (2.17), the proof is clear.

Corollary 2.9. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.10)with the initial values x(1)

0 , x
(2)
0 , . . . , x

(k)
0 .

Assume that

x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 > 1, (2.20)

then all solutions of (1.10) are positive.

Proof. We consider solutions of (1.10) with the initial values x(1)
0 , x

(2)
0 , . . . , x

(k)
0 satisfying (2.20).

If k = 0 (mod2), then from (1.10) and (2.20), we have

if i is odd, thenx(m)
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x
(m−i)
0

x
(m−i)
0 − 1

for 0 < (m − i) < k,

x
(k+m−i)
0

x
(k+m−i)
0 − 1

for (m − i) ≤ 0,

if i is even, thenx(m)
i =

⎧
⎨

⎩

x
(m−i)
0 for 0 < (m − i) < k,

x
(k+m−i)
0 for (m − i) ≤ 0,

(2.21)

for i = 1, 2, . . . , k andm = 1, 2, . . . , k.
If k /= 0 (mod2), then from (1.10) and (2.20), we have

if i is odd, thenx(m)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
(k+m−i)
0

x
(k+m−i)
0 − 1

for (m − i) ≤ 0,

x
(m−i)
0

x
(m−i)
0 − 1

for 0 < (m − i) < k,

x
(2k+m−i)
0

x
(2k+m−i)
0 − 1

for − 2k < (m − i) ≤ −k,

if i is even, thenx(m)
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x
(k+m−i)
0 for (m − i) ≤ 0,

x
(m−i)
0 for 0 < (m − i) < k,

x
(m−i+2k)
0 for − 2k < (m − i) ≤ −k,

(2.22)

for i = 1, 2, . . . , 2k andm = 1, 2, . . . , k.
From (2.21) and (2.22), all solutions of (1.10) are positive.

Corollary 2.10. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.10) with the initial values x(1)

0 , x
(2)
0 , . . . ,

x
(k)
0 . Assume that

0 < x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 < 1, (2.23)

then {x(1)
2n , x

(2)
2n , . . . , x

(k)
2n } are positive, {x

(1)
2n+1, x

(2)
2n+1, . . . , x

(k)
2n+1} are negative for all n � 0.
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Table 1

i 1 2 3 4 5 6 7 8 9 10 11 12

x
(1)
i

q

q − 1
r

p

p − 1
q

r

r − 1
p

q

q − 1
r

p

p − 1
q

r

r − 1
p

x
(2)
i

r

r − 1
p

q

q − 1
r

p

p − 1
q

r

r − 1
p

q

q − 1
r

p

p − 1
q

x
(3)
i

p

p − 1
q

r

r − 1
p

q

q − 1
r

p

p − 1
q

r

r − 1
p

q

q − 1
r

Proof. From (2.21), (2.22) and (2.23), the proof is clear.

Corollary 2.11. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.10) with the initial values x(1)

0 , x
(2)
0 , . . . ,

x
(k)
0 . Assume that

x
(1)
0 , x

(2)
0 , . . . , x

(k)
0 < 0, (2.24)

then {x(1)
2n , x

(2)
2n , . . . , x

(k)
2n } are negative, {x

(1)
2n+1, x

(2)
2n+1, . . . , x

(k)
2n+1} are positive for all n � 0.

Proof. From (2.21), (2.22) and (2.24), the proof is clear.

Corollary 2.12. Let {x(1)
n , x

(2)
n , . . . , x

(k)
n } be solutions of (1.10) with the initial values x(1)

0 , x
(2)
0 , . . . ,

x
(k)
0 , then following statements are true (for all n � 0 and i = 1, 2, . . . , k) :

(i) if x(i)
0 → ∞, then {x(i)

2n} → ∞ and {x(i)
2n+1} → 1+,

(ii) if x(i)
0 → 1+, then {x(i)

2n} → 1+ and {x(i)
2n+1} → ∞,

(iii) if x(i)
0 → 1−, then {x(i)

2n} → 1− and {x(i)
2n+1} → −∞,

(iv) if x(i)
0 → 0+, then {x(i)

2n} → 0+ and {x(i)
2n+1} → 0−,

(v) if x(i)
0 → 0−, then {x(i)

2n} → 0− and {x(i)
2n+1} → 0+,

(vi) if x(i)
0 → −∞, then {x(i)

2n} → −∞ and {x(i)
2n+1} → 1−.

Proof. From (2.21), (2.22), and (2.24), the proof is clear.

Example 2.13. Let k = 3. Then the solutions of (1.9), with the initial values x(1)
0 = p, x

(2)
0 = q and

x
(3)
0 = r, in its invertal of periodicity can be represented by Table 1.
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[3] C. Çinar, “On the positive solutions of the difference equation system xn+1 = 1/yn, yn+1 =
yn/xn−1yn−1,” Applied Mathematics and Computation, vol. 158, no. 2, pp. 303–305, 2004.
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