
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2008, Article ID 143723, 6 pages
doi:10.1155/2008/143723

Research Article
The Periodic Character of the Difference Equation
xn+1 = f(xn−l+1, xn−2k+1)

Taixiang Sun1 and Hongjian Xi2

1Department of Mathematics, College of Mathematics and Information Science, Guangxi University,
Nanning 530004, Guangxi, China

2Department of Mathematics, Guangxi College of Finance and Economics, Nanning 530003,
Guangxi, China

Correspondence should be addressed to Taixiang Sun, stx1963@163.com

Received 3 February 2007; Revised 18 September 2007; Accepted 27 November 2007

Recommended by H. Bevan Thompson

In this paper, we consider the nonlinear difference equation xn+1 = f(xn−l+1, xn−2k+1), n = 0, 1, . . . ,
where k, l ∈ {1, 2, . . . } with 2k /= l and gcd (2k, l) = 1 and the initial values x−α, x−α + 1, . . . , x0 ∈
(0,+∞) with α = max{l − 1, 2k − 1}. We give sufficient conditions under which every positive solu-
tion of this equation converges to a ( not necessarily prime ) 2-periodic solution, which extends and
includes corresponding results obtained in the recent literature.
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1. Introduction

In this paper, we consider a nonlinear difference equation and deal with the question of
whether every positive solution of this equation converges to a periodic solution. Recently,
there has been a lot of interest in studying the global attractivity, the boundedness character,
and the periodic nature of nonlinear difference equations (e.g., see [1, 2]). In [3], Grove et al.
considered the following difference equation:

xn+1 =
p + xn−(2m+1)

1 + xn−2r
, n = 0, 1, . . . , (E1)

where p ∈ (0,+∞) and the initial values x−α, x−α+1, . . . , x0 ∈ (0,+∞) with α = max {2r, 2m + 1},
and proved that every positive solution of (E1) converges to (not necessarily prime) a 2s-
periodic solution with s = gcd (m + 1, 2r + 1). In [4], Stević investigated the periodic character
of positive solutions of the following difference equation:

xn+1 = 1 +
xn−2s+1

xn−(2r+1)s+1
, n = 0, 1, . . . , (E2)
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and proved that every positive solution of (E2) converges to (not necessarily prime) a 2s-
periodic solution, which generalized the main result of [5]. Furthermore, Stević [6] studied the
periodic character of positive solutions of the following difference equation:

xn = 1 +

∑ k
i=1αixn−pi

∑m
j=1βjxn−qj

, n = 1, 2, . . . , (E3)

where αi, i ∈ {1, . . . , k}, and βj , j ∈ {1, . . . , m}, are positive numbers such that Σk
i=1αi = Σm

j=1βj =
1, and pi, i ∈ {1, . . . , k}, and qj , j ∈ {1, . . . , m}, are natural numbers such that p1 < p2 < · · · < pk
and q1 < q2 < · · · < qm. For closely related results, see [7, 8].

In this paper, we consider the more general equation

xn+1 = f
(
xn−l+1, xn−2k+1

)
, n = 0, 1, 2, . . . , (1.1)

where k, l ∈ {1, 2, . . . } with 2k /= l and gcd (2k, l) = 1, the initial values x−α, x−α+1, . . . , x0 ∈
(0,+∞)with α = max {l − 1, 2k − 1}, and f satisfies the following hypotheses:

(H1) f ∈C(E×E, (0,+∞))with a= inf (u,v)∈E×Ef(u, v)∈E, where E∈{(0,+∞), [0,+∞)};
(H2) f(u, v) is decreasing in u and increasing in v;
(H3) there exists a decreasing function g ∈ C((a,+∞), (a,+∞)) such that
(i) for any x > a, g(g(x)) = x and x = f(g(x), x);
(ii) lim x→a+g(x) = +∞ and lim x→+∞g(x) = a.

The main result of this paper is the following theorem.

Theorem 1.1. Every positive solution of (1.1) converges to (not necessarily prime) a 2-periodic solu-
tion.

2. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Without loss of generality, we may assume l < 2k
(the proof for the case l > 2k is similar); then

{l, 2l, 3l, . . . , 2kl} = {0, 1, 2, . . . , 2k − 1} mod2k. (2.1)

Lemma 2.1. Let {xn}∞n=−α be a positive solution of (1.1). Then there exists a real number L ∈ (a,+∞)
such that L ≤ xn ≤ g(L) for all n ≥ 1. Furthermore, let lim supxn = M and lim inf xn = m, then
M = g(m) andm = g(M).

Proof. By (H1) and (H2), we have

xi = f
(
xi−l, xi−2k

)
> f

(
xi−l + 1, xi−2k

) ≥ a for every 1 ≤ i ≤ α + 1. (2.2)

Then there exists L ∈ (a,+∞) with L < g(L) such that

L ≤ xi ≤ g(L) for every 1 ≤ i ≤ α + 1. (2.3)
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It follows from (2.3) and (H3) that

g(L) = f
(
L, g(L)

) ≥ xα+2 = f
(
xα+2−l, xα+2−2k

) ≥ f
(
g(L), L

)
= L. (2.4)

Inductively, it follows that L ≤ xn ≤ g(L) for all n ≥ 1.
Let lim supxn = M and lim inf xn = m, then there exist A,B,C,D ∈ [m,M] and seque-

nces tn ≥ 1 and rn ≥ 1 such that

lim
n→∞

xtn = M, lim
n→∞

xtn−l = A, lim
n→∞

xtn−2k = B,

lim
n→∞

xrn = m, lim
n→∞

xrn−l = C, lim
n→∞

xrn−2k = D.
(2.5)

Thus by (1.1), (H2), and (H3), we have

f
(
g(M),M

)
= M = f(A,B) ≤ f(m,M),

f
(
g(m), m

)
= m = f(C,D) ≥ f(M,m),

(2.6)

from which it follows that g(M) ≥ m and g(m) ≤ M. Since g is decreasing, it follows that

m = g
(
g(m)

) ≥ g(M), M = g
(
g(M)

) ≤ g(m). (2.7)

Therefore, M = g(m) andm = g(M). The proof is complete.

Proof of Theorem 1.1. Let {xn}∞n=−α be a positive solution of (1.1) with the initial conditions
x0, x−1, . . . , x−α ∈ (0,+∞). It follows from Lemma 2.1 that

a < lim inf xn = m = g(M) ≤ lim supxn = M < +∞. (2.8)

Obviously, every sequence

L, g(L), L, g(L), . . . (2.9)

is a 2-periodic (not necessarily prime) solution of (1.1), where L ∈ {M,m}.
By taking a subsequence, we may assume that there exists a sequence tn ≥ 2kl + 1 such

that

lim
n→∞

xtn = M,

lim
n→∞

xtn−j = Aj ∈
[
g(M),M

]
for j ∈ {1, 2, . . . , 2kl}.

(2.10)

According to (1.1), (2.10), and (H3), we obtain

f
(
g(M),M

)
= M = f

(
Al,A2k

) ≤ f
(
g(M),M

)
, (2.11)

from which it follows that

Al = g(M), A2k = M. (2.12)
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In a similar fashion, we can obtain

f
(
g(M),M

)
= M = A2k = f

(
A2k+l, A4k

) ≤ f
(
g(M),M

)
,

f
(
M,g(M)

)
= g(M) = Al = f

(
A2l, Al+2k

) ≥ f
(
M,g(M)

)
,

(2.13)

from which it follows that

A4k = A2k = A2l = M, A2k+l = Al = g(M). (2.14)

Inductively, we have

Aj2k = M for j ∈ {1, 2, . . . , l},
Ajl = g(M) for j ∈ {1, 3, . . . , 2k − 1},

Ajl = M for j ∈ {0, 2, . . . , 2k},
Ajl+r2k = Ajl for j ∈ {0, 1, . . . , 2k}, r ∈ {0, 1, . . . , l}, jl + r2k ≤ 2kl.

(2.15)

For every r ∈ {0, 1, 2, 3, . . . , 2k − 1}, there exist jr ∈ {0, 1, 2, 3, . . . , 2k − 1} and pr ∈
{0, 1, . . . , l − 1} such that jrl = 2kpr + r, from which, with (2.15), it follows that

A2k(l−1)+r = Ajrl =

{
M for r ∈ {0, 2, 4, . . . , 2k − 2},
g(M) for r ∈ {1, 3, . . . , 2k − 1}, (2.16)

lim
n→∞

xtn−2k(l−1)−j = M for j ∈ {0, 2, . . . , 2k},

lim
n→∞

xtn−2k(l−1)−j = g(M) for j ∈ {1, 3, . . . , 2k − 1}.
(2.17)

In view of (2.17), for any 0 < ε < M − a, there exists some tβ ≥ 4kl such that

M − ε < xtβ−2k(l−1)−j < M + ε if j ∈ {0, 2, . . . , 2k},

g(M + ε) < xtβ−2k(l−1)−j < g(M − ε) if j ∈ {1, 3, . . . , 2k − 1}.
(2.18)

By (1.1) and (2.18), we have

xtβ−2k(l−1)+1 = f
(
xtβ−2k(l−1)−l+1, xtβ−2kl+1

)
< f

(
M − ε, g(M − ε)

)
= g(M − ε). (2.19)

Also (1.1), (2.18), and (2.19) imply that

xtβ−2k(l−1)+2 = f
(
xtβ−2k(l−1)−l+2, xtβ−2kl+2

)
> f

(
g(M − ε),M − ε

)
= M − ε. (2.20)

Inductively, it follows that

xtβ−2k(l−1)+2n > M − ε ∀n ≥ 0,

xtβ−2k(l−1)+2n+1 < g(M − ε) ∀n ≥ 0.
(2.21)
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Therefore,

lim
n→∞

x2n = M, lim
n→∞

x2n+1 = g(M) (2.22)

or

lim
n→∞

x2n = g(M), lim
n→∞

x2n+1 = M. (2.23)

The proof is complete.

Remark 2.2. (1) The proofs of Lemma 2.1 and Theorem 1.1 draw on ideas from the proofs of
Theorems 2.1 and 2.2 in [6].

(2) Consider the nonlinear difference equation

xn+1 = f
(
xn−ls+1, xn−2ks+1

)
, n = 0, 1, . . . , (2.24)

where s, k, l ∈ {1, 2, . . . } with 2k /= l and gcd (2k, l) = 1, the initial values x−α, x−α+1, . . . , x0 ∈
(0,+∞) with α = max {ls − 1, 2ks − 1}, and f satisfies (H1)–(H3). Let yi

n+1 = xns+i+1 for every
0 ≤ i ≤ s − 1 and n = 0, 1, 2, . . . , then (2.24) reduces to the equation

yi
n+1 = f

(
yi
n−l+1, y

i
n−2k+1

)
, 0 ≤ i ≤ s − 1, n = 0, 1, 2, . . . . (2.25)

It follows from Theorem 1.1 that for any 0 ≤ i ≤ s − 1, every positive solution of the equation
yi
n+1 = f(yi

n−l+1, y
i
n−2k+1) converges to (not necessarily prime) a 2-periodic solution. Thus every

positive solution of (2.24) converges to (not necessarily prime) a 2s-periodic solution.

3. Examples

To illustrate the applicability of Theorem 1.1, we present the following examples.

Example 3.1. Consider the equation

xn+1 =
p +

∑m+1
i=1 xi

n−2k+1
∑m

i=0x
i
n−2k+1 + xn−l+1

, n = 0, 1, . . . , (3.1)

where m, k, l ∈ {1, 2, . . . } with 2k /= l and gcd (2k, l) = 1 and the initial values x−α, x−α+1, . . . ,
x0 ∈ (0,+∞) with α = max {l − 1, 2k − 1}, 0 < p ≤ 1. Let E = [0,+∞) and

f(x, y) =
p +

∑m+1
i=1 yi

∑m
i=0y

i + x
(x ≥ 0, y ≥ 0), g(x) =

p

x
(x > 0). (3.2)
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It is easy to verify that (H1)–(H3) hold for (3.1). It follows from Theorem 1.1 that every solution
of (3.1) converges to (not necessarily prime) a 2-periodic solution.

Example 3.2. Consider the equation

xn+1 = 1 +
xm+1
n−2k+1

∑m
i=1x

i
n−2k+1 + xn−l+1

, n = 0, 1, . . . , (3.3)

where m, k, l ∈ {1, 2, . . . } with 2k /= l and gcd (2k, l) = 1 and the initial values x−α, x−α+1, . . . ,
x0 ∈ (0,+∞) with α = max {l − 1, 2k − 1}. Let E = (0,+∞) and

f(x, y) = 1 +
ym+1

∑m
i=1y

i + x
(x > 0, y > 0), g(x) =

x

x − 1
(x > 1). (3.4)

It is easy to verify that (H1)–(H3) hold for (3.3). It follows from Theorem 1.1 that every solution
of (3.3) converges to (not necessarily prime) a 2-periodic solution.
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