
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2007, Article ID 40160, 17 pages
doi:10.1155/2007/40160

Research Article
Necessary Conditions of Optimality for Second-Order Nonlinear
Impulsive Differential Equations

Y. Peng, X. Xiang, and W. Wei

Received 2 February 2007; Accepted 5 July 2007

Recommended by Paul W. Eloe

We discuss the existence of optimal controls for a Lagrange problem of systems governed
by the second-order nonlinear impulsive differential equations in infinite dimensional
spaces. We apply a direct approach to derive the maximum principle for the problem at
hand. An example is also presented to demonstrate the theory.

Copyright © 2007 Y. Peng et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that Pontryagin maximum principle plays a central role in optimal
control theory. In 1960, Pontryagin derived the maximum principle for optimal control
problems in finite dimensional spaces (see [1]). Since then, the maximum principle for
optimal control problems involving first-order nonlinear impulsive differential equations
in finite (or infinite) dimensional spaces has been extensively studied (see [2–10]). How-
ever, there are a few papers addressing the existence of optimal controls for the systems
governed by the second-order nonlinear impulsive differential equations. By reducing
wave equation to the customary vector form, Fattorini obtained the maximum principle
for time optimal control problem of the semilinear wave equations (see [6, Chapter 6]).
Recently, Peng and Xiang [11, 12] applied the semigroup theory to establish the existence
of optimal controls for a class of second-order nonlinear differential equations in infinite
dimensional spaces.

Let Y be a reflexive Banach space from which the controls u take the values. We denote
a class of nonempty closed and convex subsets of Y by Pf (Y). Assume that the multifunc-
tion ω : I = [0,T]→ Pf (Y) is measurable and ω(·) ⊂ E where E is a bounded set of Y ,
the admissible control set Uad = {u ∈ Lp([0,T],Y) | u(t) ∈ ω(t) a.e}. Uad �= ∅ (see [13,
Page 142 Proposition 1.7 and Page 174 Lemma 3.2]). In this paper, we develop a direct
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technique to derive the maximum principle for a Lagrange problem of systems governed
by a class of the second-order nonlinear impulsive differential equation in infinite di-
mensional spaces. Consider the following second-order nonlinear impulsive differential
equations:

ẍ(t)= Aẋ(t) + f
(
t,x(t), ẋ(t)

)
+B(t)u(t), t ∈ (0,T] \Θ,

x(0)= x0,Δlx
(
ti
)= J0i

(
x
(
ti
))
, ti ∈Θ, i= 1,2, . . . ,n,

ẋ(0)= x1,Δl ẋ
(
ti
)= J1i

(
ẋ
(
ti
))
, ti ∈Θ, i= 1,2, . . . ,n,

(1.1)

where the A is the infinitesimal generator of a C0-semigroup in a Banach space X , Θ =
{ti ∈ I | 0 = t0 < t1 < ··· < tn < tn+1 = T}, J0i , J1i (i = 1,2, . . . ,n) are nonlinear maps, and
Δlx(ti)= x(ti +0)− x(ti), Δl ẋ(ti)= ẋ(ti +0)− ẋ(ti). We denote the jump in the state x, ẋ
at time ti, respectively, with J0i , J

1
i determining the size of the jump at time ti.

As a first step, we use the semigroup {S(t), t ≥ 0} generated by A to construct the
semigroup generated by the operator matrix A (see Lemma 2.2). Then, the existence and
uniqueness of PCl-mild solution for (1.1) are proved. Next, we consider a Lagrange prob-
lem of system governed by (1.1) and prove the existence of optimal controls. In order to
derive the optimality conditions for the system (1.1), we consider the associated adjoint
equation and convert it to a first-order backward impulsive integro-differential equa-
tion with unbounded impulsive conditions.We note that the resulting integro-differential
equation cannot be turned into the original problem by simple transformation s= T − t
(see (4.9)). Subsequently, we introduce a suitable mild solution for adjoint equation and
give a generalized backward Gronwall inequality to find a priori estimate on the solution
of adjoint equation. Finally, we make use of Yosida approximation to derive the optimal-
ity conditions.

The paper is organized as follows. In Section 2, we give associated notations and pre-
liminaries. In Section 3, the mild solution of second-order nonlinear impulsive differen-
tial equations is introduced and the existence result is also presented. In addition, the
existence of optimal controls for a Lagrange problem (P) is given. In Section 4, we dis-
cuss corresponding the adjoint equation and directly derive the necessary conditions by
the calculus of variations and the Yosida approximation. At last, an example is given for
demonstration.

2. Preliminaries

In this section, we give some basic notations and preliminaries. We present some ba-
sic notations and terminologies. Let £(X) be the class of (not necessary bounded) linear
operators in Banach space X . £b(X) stands for the family of bounded linear operators
in X . For A ∈ £(X), let ρ(A) denote the resolvent set and R(λ,A) the resolvent corre-
sponding to λ ∈ ρ(A). Define PCl(I,X) (PCr(I,X)) = {x : I→ X | x is continuous at t ∈
I \Θ,x is continuous from left (right) and has right- (left-) hand limits at ti ∈Θ}. PC1

l (I,
X)= {x ∈ PCl(I,X) | ẋ ∈ PCl(I,X)}, PC1

r (I,X)= {x ∈ PCr(I,X) | ẋ ∈ PCr(I,X)}. Set

‖x‖PC =max
{
sup
t∈I

∥
∥x(t+0)

∥
∥, sup

t∈I

∥
∥x(t− 0)

∥
∥
}
, ‖x‖PC1 = ‖x‖PC +‖ẋ‖PC. (2.1)
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It can be seen that endowed with the norm ‖ · ‖PC(‖ · ‖PC1 )PCl(I,X)(PC1
l (I,X)) and

PCr(I,X)(PC1
r (I,X)) are Banach spaces.

In order to construct the C0-semigroup generated by A, we need the following lemma
([14, Theorem 5.2.2]).

Lemma 2.1. LetA be a densely defined linear operator inX with ρ(A) �= ∅. Then the Cauchy
problem

ẋ(t)= Ax(t), t > 0,

x(0)= x0
(2.2)

has a unique classical solution for each x0 ∈D(A) if, and only if, A is the infinitesimal gen-
erator of a C0-semigroup {S(t), t ≥ 0} in X .

In the following lemma we construct the C0-semigroup generated by A.

Lemma 2.2 [12, Lemma 1]. Suppose A is the infinitesimal generator of a C0-semigroup
{S(t), t ≥ 0} onX . ThenA= (0 I

0 A) is the infinitesimal generator of a C0-semigroup {S(t), t ≥
0} on X ×X , given by

S(t)=
(
I
∫ t
0 S(τ)dτ

0 S(t)

)

. (2.3)

Proof. Obviously, A is a densely defined linear operator in X ×X with ρ(A) �= ∅ accord-
ing to assumption.

Consider the following initial value problem:

ẍ(t)= Aẋ(t), t ∈ (0,T], x(0)= x0, ẋ(0)= x1 ∈D(A). (2.4)

It is to see that the classical solution of (2.4) can be given by

x(t)= x0 +
∫ t

0
S(τ)x1dτ, ẋ(t)= S(t)x1. (2.5)

Setting v0(t) = x(t), v1(t) = ẋ(t), v(t) = ( v0(t)v1(t)
), v0 = ( x0x1 ) ∈ D(A) = X ×D(A), (2.4)

can be rewritten as

v̇(t)=Av(t), t ∈ (0,T], v(0)= v0 ∈D(A), (2.6)

and (2.6) has a unique classical solution v given by

v(t)=
(
I
∫ t
0 S(τ)dτ

0 S(t)

)

v0. (2.7)

Using Lemma 2.1, A generates a C0-semigroup {S(t), t ≥ 0}. �

In order to study the existence of optimal control and necessary conditions of optimal-
ity, we also need some important lemmas. For reader’s convenience, we state the following
results.



4 Advances in Difference Equations

Lemma 2.3 [7, Lemma 3.2]. SupposeA is the infinitesimal generator of a compact semigroup
{S(t), t ≥ 0} in X . Then the operator Q : Lp([0,T],X)→ C([0,T],X) with p > 1 given by

(Q f )(t)=
∫ t

0
S(t− τ) f (τ)dτ (2.8)

is strongly continuous.

Lemma 2.4 [15, Lemma 1.1]. Let ϕ∈ C([0,T],X) satisfy the following inequality:

∥
∥ϕ(t)

∥
∥≤ a+ b

∫ t

0

∥
∥ϕ(s)

∥
∥ds+ c

∫ t

0

∥
∥ϕs

∥
∥
Bds ∀t ∈ [0, t], (2.9)

where a,b,c ≥ 0 are constants, and ‖ϕs‖B = sup0≤τ≤s‖ϕ(τ)‖. Then
∥
∥ϕ(t)

∥
∥≤ ae(b+c)t . (2.10)

3. Existence of optimal controls

In this section, we not only present the existence of PCl-mild solution of the controlled
system (1.1) but also give the existence of optimal controls of systems governed by (1.1).

We consider the following controlled system:

ẍ(t)= Aẋ(t) + f
(
t,x(t), ẋ(t)

)
+B(t)u(t), t ∈ (0,T] \Θ,

Δlx
(
ti
)= J0i

(
x
(
ti
))
, Δl ẋ

(
ti
)= J1i

(
ẋ
(
ti
))
, ti ∈Θ,

x(0)= x0, ẋ(0)= x1, u∈Uad,

(3.1)

and naturally introduce its mild solution.

Definition 3.1. A function x ∈ PC1
l (I,X) is said to be a PCl-mild solution of the system

(3.1) if x satisfies the following integral equation:

x(t)= x0 +
∫ t

0
S(s)x1ds+

∫ t

0

∫ t

τ
S(s− τ)

[
f
(
τ,x(τ), ẋ(τ)

)
+B(τ)u(τ)

]
dsdτ

+
∑

0<ti<t

[
J0i
(
x
(
ti
))

+
∫ t

ti
S
(
s− ti

)
J1i
(
ẋ
(
ti
))
ds
]
.

(3.2)

For the forthcoming analysis, we need the following assumptions:
[B]: B ∈ L∞(I,£(Y ,X));
[F]: (1) f : I×X ×X → X is measurable in t ∈ I and locally Lipschitz continuous with

respect to last two variables, that is, for all x1,x2, y1, y2 ∈ X , satisfying ‖x1‖,‖x2‖,‖y1‖,
‖y2‖ ≤ ρ, we have

∥
∥ f
(
t,x1, y1

)− f
(
t,x2, y2

)∥∥≤ L(ρ)
(∥∥x1− x2

∥
∥+

∥
∥y1− y2

∥
∥); (3.3)

(2) there exists a constant a > 0 such that

∥
∥ f (t,x, y)

∥
∥≤ a

(
1+‖x‖+‖y‖) ∀x, y ∈ X ; (3.4)
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[J]: (1) J0i (J
1
i ) : X → X (i= 1,2, . . . ,n) map bounded set of X to bounded set of X ;

(2) There exist constants e0i ,e
1
i ≥ 0 such that maps J0i , J

1
i : X → X satisfy

∥
∥J0i (x)− J0i (y)

∥
∥≤ e0i ‖x− y‖, ∥

∥J1i (x)− J1i (y)
∥
∥≤ e1i ‖x− y‖ ∀x, y ∈ X (i= 1,2, . . . ,n).

(3.5)

Similar to the proof of existence ofmild solution for the first-order impulsive evolution
equation (see [16]), one can verify the basic existence result. Here, we have to deal with
space PC1

l (I,X) instead.

Theorem 3.2. Suppose that A is the infinitesimal generator of a C0-semigroup. Under as-
sumptions [B], [F], and [J](1), the system (3.1) has a unique PCl-mild solution for every
u∈Uad.

Proof. Consider the map H given by

(Hx)(t)= x0 +
∫ t

0
S(s)x1ds+

∫ t

0

∫ t

τ
S(s− τ)

[
f
(
τ,x(τ), ẋ(τ)

)
+B(τ)u(τ)

]
dsdτ (3.6)

on

B
(
x0,x1,1

)=
{
x ∈ C1([0,T1

]
,X
) | ∥∥ẋ(t)− x1

∥
∥+

∥
∥x(t)− x0

∥
∥≤ 1, 0≤ t ≤ T1

}
, (3.7)

where T1 would be chosen. Using assumptions and properties of semigroup, we can show
that H is a contraction map and obtain local existence of mild solution for the following
differential equation without impulse:

ẍ(t)= Aẋ(t) + f
(
t,x(t), ẋ(t)

)
+B(t)u(t), t ∈ (0,T],

x(0)= x0, ẋ(0)= x1, u∈Uad.
(3.8)

The global existence comes from a priori estimate ofmild solution in spaceC1(I,X) which
can be proved by Gronwall lemma.

Step by step, the existence of PCl-mild solution of (3.1) can be derived. �

Let xu denote the PCl-mild solution of system (3.1) corresponding to the control u∈
Uad, then we consider the Lagrange problem (P):

find u0 ∈Uad such that

J
(
u0
)≤ J(u), ∀u∈Uad, (3.9)

where

J(u)=
∫ T

0
l
(
t,xu(t), ẋu(t),u(t)

)
dt. (3.10)

Suppose that
[L]: (1) the functional l : I×X ×X ×Y → R∪{∞} is Borel measurable;
(2) l(t,·,·,·) is sequentially lower semicontinuous on X ×Y for almost all t ∈ I;
(3) l(t,x, y,·) is convex on Y for each (x, y)∈ X ×X and almost all t ∈ I;
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(4) there exist constants b ≥ 0, c > 0 and ϕ∈ L1(I,R) such that

l(t,x, y,u)≥ ϕ(t) + b
(‖x‖+‖y‖)+ c‖u‖pY ∀x, y ∈ X , u∈ Y. (3.11)

Now we can give the following result on existence of the optimal controls for problem
(P).

Theorem 3.3. Suppose that A is the infinitesimal generator of a compact semigroup. Under
assumptions [F], [L], and [J](2), the problem (P) has a solution.

Proof. If inf{J(u) | u∈Uad} = +∞, there is nothing to prove.
We assume that inf{J(u) | u∈Uad} =m< +∞. By assumption [L], we havem>−∞.
By definition of infimum, there exists a sequence {un} ⊂ Uad such that J(un)→ m.

Since {un} is bounded in Lp(I,Y), there exists a subsequence, relabeled as {un}, and u0 ∈
Lp(I,Y) such that

un
w−→ u0 in Lp(I,Y). (3.12)

Since Uad is closed and convex, from the Mazur lemma, we have u0 ∈Uad.
Suppose xn is the PCl-mild solution of (3.1) corresponding to un (n= 0,1,2, . . .). Then

xn satisfies the following integral equation

xn(t)= x0 +
∫ t

0
S(s)x1ds+

∫ t

0

∫ t

τ
S(s− τ)

[
f
(
τ,xn(τ), ẋn(τ)

)
+B(τ)un(τ)

]
dsdτ

+
∑

0<ti<t

J0i
(
xn
(
ti
))

+
∑

0<ti<t

∫ t

ti
S
(
s− ti

)
J1i
(
ẋn
(
ti
))
ds.

(3.13)

Using the boundedness of {un} and Theorem 3.2, there exists a number ρ > 0 such that
‖xn‖PC1

l (I,X)
≤ ρ.

Define

ηn(t)=
∫ t

0

∫ t

τ
S(s− τ)B(τ)un(τ)dsdτ −

∫ t

0

∫ t

τ
S(s− τ)B(τ)u0(τ)dsdτ. (3.14)

According to Lemma 2.3, we have

ηn −→ 0 in C(I,X) as un
w−→ u0. (3.15)

By assumptions [F], [J](2), Theorem 3.2, and Gronwall lemma with impulse (see [17,
Lemma 1.7.1]), there exists a constantM > 0 such that

∥
∥xn(t)− x0(t)

∥
∥+

∥
∥ẋn(t)− ẋ0(t)

∥
∥≤M

∥
∥ηn

∥
∥
C1(I,X), (3.16)

that is,

xn −→ x0 in PC1
l (I,X) as n−→∞. (3.17)
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Since PC1
l (I,X)↩L1(I,X), using the assumption [L] and Balder’s theorem (see [18]),

we can obtain

m= lim
n→∞

∫ T

0
l
(
t,xn(t),un(t)

)
dt ≥

∫ T

0
l
(
t,x0(t),u0(t)

)
dt = J

(
u0
)≥m. (3.18)

This means that J attains its minimum at u0 ∈Uad. �

4. Necessary conditions of optimality

In this section, we present necessary conditions of optimality for Lagrange problem (P).
Let (x0,u0) be an optimal pair.

[F∗] f satisfies the assumptions [F], f is continuously Frechet differentiable at x0 and
ẋ0, respectively, f 0x ∈ L1(I,£(X)), f 0ẋ ∈ L∞(I,£(X)), f 0x (ti± 0)= f 0x (ti), f

0
ẋ (ti± 0)= f 0ẋ (ti)

for ti ∈Θ, where f 0x (t)= fx(t,x0(t), ẋ0(t)), f 0ẋ (t)= fẋ(t,x0(t), ẋ0(t)).
[L∗] l is continuously Frechet differentiable on x, ẋ and u, respectively, l0x(·) ∈ L1(I,

X∗), l0ẋ(·)∈W1,1(I,X∗), l0u(·)∈ L1(I,Y∗), l0ẋ(T)∈ X∗, l0ẋ(ti± 0)= l0ẋ(ti) for ti ∈Θ, where
l0x(·) = lx(·,x0(·), ẋ0(·),u0(·)), l0ẋ(·) = lẋ(·,x0(·), ẋ0(·),u0(·)), l0u(·) = lu(·,x0(·), ẋ0(·),
u0(·)).

[J∗] J0i (J
1
i ) is continuously Frechet differentiable on x0(ẋ0), and J10∗iẋ (ti)D(A∗) ⊆

D(A∗), where J00ix (ti)= J0ix(x
0(ti)), J10iẋ (ti)= J1iẋ(ẋ

0(ti)) (i= 1,2, . . . ,n).
In order to derive a priori estimate on solution of adjoint equation, we need the fol-

lowing generalized backward Gronwall lemma.

Lemma 4.1. Let ϕ∈ C(I,X∗) satisfy the following inequality:

∥
∥ϕ(t)

∥
∥
X∗ ≤ a+ b

∫ T

t

∥
∥ϕ(s)

∥
∥
X∗ds+ c

∫ T

t

∥
∥ϕs

∥
∥
B0
ds ∀t ∈ I, (4.1)

where a,b,c ≥ 0 are constants, and ‖ϕs‖B0 = sups≤τ≤T ‖ϕ(τ)‖X∗ . Then
∥
∥ϕ(t)

∥
∥
X∗ ≤ aexp

[
(b+ c)(T − t)

]
. (4.2)

Proof. Setting ϕ(T − t)= ψ(t) for t ∈ I, ‖ψt‖B = sup0≤τ≤t ‖ϕ(τ)‖X∗ , we have

∥
∥ψ(t)

∥
∥
X∗ ≤ a+ b

∫ t

0

∥
∥ψ(s)

∥
∥
X∗ds+ c

∫ t

0

∥
∥ψs

∥
∥
Bds. (4.3)

Using Lemma 2.4, we obtain

∥
∥ψ(t)

∥
∥
X∗ ≤ aexp

[
(b+ c)t

]
; (4.4)

further,

∥
∥ϕ(t)

∥
∥
X∗ ≤ aexp

[
(b+ c)(T − t)

]
. (4.5)

The proof is completed. �
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LetX be a reflexive Banach space, letA∗ be the adjoint operator ofA, and let {S∗(t), t ≥
0} be the adjoint semigroup of {S(t), t ≥ 0}. It is a C0-semigroup and its generator is just
A∗ (see [14, Theorem 2.4.4]).

We consider the following adjoint equation:

ϕ′′(t)=−(A∗ϕ(t))′ − ( f 0∗ẋ (t)ϕ(t)
)′
+ f 0∗x (t)ϕ(t) + l0x(t)− l0

′
ẋ (t), t ∈ [0,T) \Θ,

ϕ(T)= 0, Δrϕ
(
ti
)= J10∗iẋ

(
ti
)
ϕ
(
ti
)
, ti ∈Θ,

ϕ′(T)=−l0ẋ(T), Δrϕ
′(ti
)=Gi

(
ϕ
(
ti
)
,ϕ′
(
ti
))
, ti ∈Θ,

(4.6)

where

Gi
(
ϕ
(
ti
)
,ϕ′
(
ti
))

=[J00∗ix

(
ti
)(
A∗+ f 0∗ẋ

(
ti
))−(A∗+ f 0∗ẋ

(
ti
))
J10∗iẋ

(
ti
)]
ϕ
(
ti
)
+J00∗ix

(
ti
)
ϕ′
(
ti
)
+ J00∗ix

(
ti
)
l0ẋ
(
ti
)
.

(4.7)

A function ϕ∈ PC1
r (I,X

∗)
⋂
PCr(I,D(A∗)) is said to be a PCr-mild solution of (4.6)

if ϕ is given by

ϕ(t)=
∫ T

t
S∗(τ− t)

[∫ T

τ

(
f 0∗x (s)ϕ(s)− l0x(s) + l0

′
ẋ (s)

)
ds+ f 0∗ẋ (τ)ϕ(τ) + l0ẋ(T)

]
dτ

+
∑

ti>t

S∗
(
ti− t

)
J10∗iẋ

(
ti
)
ϕ
(
ti
)
+
∑

ti>t

∫ ti

t
S∗(τ − t)Gi

(
ϕ
(
ti
)
,ϕ′
(
ti
))
dτ.

(4.8)

Lemma 4.2. Assume that X is a reflexive Banach space. Under the assumptions [F∗], [L∗],
[J∗], the evolution (4.6) has a unique PCr-mild solution ϕ∈ PC1

r (I,X
∗).

Proof. Consider the following equation:

ϕ′(t) +
(
A∗ + f 0∗ẋ (t)

)
ϕ(t) +

∫ T

t

[
f 0∗x (s)ϕ(s) + l0x(s)− l0

′
ẋ (s)

]
ds

=
∑

ti>t

Gi
(
ϕ
(
ti
)
,ϕ′
(
ti
))− l0ẋ(T), t ∈ I \Θ,

ϕ(T)= 0, Δrϕ
(
ti
)= J10∗iẋ

(
ti
)
ϕ
(
ti
)
, ti ∈Θ.

(4.9)

Equation (4.9) is a linear impulsive integro-differential equation. Setting t = T − s, ψ(s)=
ϕ(T − s), (4.9) can be rewritten as

ψ′(s)= (A∗ + f 0∗ẋ (T − s)
)
ψ(s) +F(s) +

∑

si<s

gi
(
ψ
(
si
)
,ψ′
(
si
))
, s∈ [0,T) \Λ,

ψ(0)= 0, Δlψ
(
si
)= J10∗iẋ

(
ti
)
ψ
(
si
)
, si ∈Λ= {si = T − ti | ti ∈Θ

}
,

(4.10)
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where

gi
(
ψ
(
si
)
,ψ′
(
si
))= [(A∗ + f 0∗ẋ

(
ti
))
J10∗iẋ

(
ti
)− J00∗ix

(
ti
)(
A∗ + f 0∗ẋ

(
ti
))]

ψ
(
si
)

+ J00∗ix

(
ti
)
ψ′
(
ti
)− J00∗ix

(
ti
)
l0ẋ
(
ti
)
,

F(s)=
∫ T

T−s

[
f 0∗x (θ)ψ(T − θ) + l0x(θ)− l0

′
ẋ (θ)

]
dθ + l0ẋ(T).

(4.11)

Obviously, if ϕ is the classical solution of (4.9), then it must be the PCr-mild solution
of (4.6). Now we show that (4.9) has a unique classical solution ϕ ∈ PC1(I,X∗)

⋂
PC(I,

D(A∗)).
For s∈ [0,sn], prove that the following equation:

ψ′(s)= A∗ψ(s) + f 0∗ẋ (T − s)ψ(s) +F(s),

ψ(0)= 0,
(4.12)

has a unique classical solution ψ ∈ C1([0,sn],X∗)
⋂
C([0,sn],D(A∗)) given by

ψ(s)=
∫ s

0
S∗(s− τ)

(
f 0∗ẋ (T − τ)ψ(τ) +F(τ)

)
dτ. (4.13)

By following the same procedure as in [16, Theorem 4.A], one can verify that (4.12)
has a unique mild solution ψ ∈ C([0,sn],X∗) given by expression (4.13).

By the definition of F, it is easy to see that F ∈ L1([0,sn],X∗)
⋂
C((0,sn),X∗). Using

(4.13) and the basic properties of C0-semigroup, we obtain ψ(s) ∈ D(A∗) for s ∈ [0,sn]
and

ψ′(s)= f 0∗ẋ (T − s)ψ(s) +F(s) +A∗
∫ s

0
S∗(s− τ)

(
f 0∗ẋ (T − τ)ψ(τ) +F(τ)

)
dτ. (4.14)

This impliesψ ∈ C1((0,sn),X∗) andψ′(sn−)= ψ′(sn). Using [14, Theorem 5.2.13], (4.12)
has a unique classical solution ψ ∈ C1((0,sn),X∗)

⋂
C([0,sn],D(X∗)) given by the expres-

sion (4.13). In addition, the expressions (4.13) and (4.12) imply ψ(0)= 0, ψ′(0)= l0ẋ(T),
and ψ(sn− 0), ψ′(sn− 0) exist. Furthermore, ψ ∈ C1([0,sn],X∗)

⋂
C([0,sn],D(A∗)).

By assumption [J∗], we have

ψ0
n = ψ

(
sn
)
+ J10∗nẋ

(
tn
)
ψ
(
sn
)∈D(A∗), ψ1

n = ψ′
(
sn
)
+ gn

(
ψ
(
sn
)
,ψ′
(
sn
))∈ X∗.

(4.15)

For s∈ (sn,sn−1], consider the following equation:

ψ′(s)= (A∗ + f 0∗ẋ (T − s)
)
ψ(s) +

∫ T−sn

T−s

[
f 0∗x (θ)ψ(T − θ) + l0x(θ)− l0

′
ẋ (θ)

]
dθ +ψ1

n ,

ψ
(
sn +

)= ψ0
n ,

(4.16)
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that is, study the following equation:

ψ′(s)= (A∗ + f 0∗ẋ (T − s)
)
ψ(s) +F(s) + gn

(
ψ
(
sn
)
,ψ′
(
sn
))
,

ψ
(
sn +

)= ψ0
n.

(4.17)

By following the same procedure as on time interval [0,sn], it has a unique classical solu-
tion given by

ψ(s)= S∗
(
s− sn

)
ψ0
n +
∫ s

sn
S∗(s− τ)

[
f 0∗ẋ (T − τ)ψ(τ) +F(τ) + gn

(
ψ
(
sn
)
,ψ′
(
sn
))]

dτ.

(4.18)

In general, for s∈ (si,si−1] (i= 0,1, . . . ,n), consider the following equation:

ψ′(s)= (A∗ + f 0∗ẋ (T − s)
)
ψ(s) +F(s) + gi

(
ψ
(
si
)
,ψ′
(
si
))
,

ψ
(
si
)= ψ

(
si
)
+ J10∗iẋ

(
ti
)
ψ
(
si
)∈D

(
A∗
)
.

(4.19)

It has a unique classical solution given by

ψ(s)= S∗
(
s− si

)
ψ0
i +
∫ s

si
S∗(s− τ)

[
f 0∗ẋ (T − τ)ψ(τ) +F(τ) + gi

(
ψ
(
si
)
,ψ′
(
si
))]

dτ.

(4.20)

Repeating the procedure till the time interval which is expanded, and combining all of
the solutions on [ti, ti+1] (i= 0,1, . . . ,n), we obtain classical solution of (4.10) given by

ψ(s)=
∫ s

0
S∗(s− τ)

[
f 0∗ẋ (T − τ)ψ(τ) +F(τ)

]
dτ

+
∑

0<si<s

[
S∗
(
s− si

)
J10∗iẋ

(
ti
)
ψ
(
si
)
+
∫ s

si
S∗(s− τ)gi

(
ψ
(
si
)
,ψ′
(
si
))
dτ
]
.

(4.21)

Further, (4.9) has a unique classical solution ϕ ∈ PC1(I,X∗)
⋂
PC(I,D(A∗)) given by

(4.8). �

Using the assumption [F∗], [3, Corollary 3.2], and [2, Theorem 2], {A∗(t) = A∗ +
f 0∗ẋ (t) | t ∈ I} generates a strongly continuous evolution operatorU∗(t,s), 0≤ s≤ t ≤ T .
For simplicity, we have the following result.

Remark 4.3. The PC-mild solution ϕ of (4.6) can be rewritten as

ϕ(t)=
∫ T

t
U∗(τ, t)

[∫ T

τ

(
f 0∗x (s)ϕ(s) + l0x(s)− l0

′
ẋ (s)

)
ds+ l0ẋ(T)

]
dτ

+
∑

ti>t

U∗(ti, t
)
J10∗iẋ

(
ti
)
ϕ
(
ti
)
+
∑

ti>t

∫ ti

t
U∗(τ, t)Gi

(
ϕ
(
ti
)
,ϕ′
(
ti
))
dτ.

(4.22)

Now we can give the necessary conditions of optimality for Lagrange problem (P).
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Theorem 4.4. Suppose both X and Y be reflexive Banach spaces. Under the assumption of
Theorem 3.2 and assumptions [B], [F∗], [L∗], and [J∗], then, in order that the pair {x0,u0}
be optimal, it is necessary that there exists a function ϕ∈ PC1

r (I,X
∗)
⋂
PCr(I,D(A∗)) such

that the following evolution equations and inequality hold:

ẍ0(t)= Aẋ0(t) + f
(
t,x0(t), ẋ0(t)

)
+B(t)u0(t), t ∈ (0,T] \Θ,

x0(0)= x0,Δlx
0(ti
)= J0i

(
x0
(
ti
))
, ti ∈Θ,

ẋ0(0)= x1,Δl ẋ
0(ti
)= J1i

(
ẋ0
(
ti
))
, ti ∈Θ;

(4.23)

ϕ′′(t)=−(A∗ϕ(t))′ + f 0∗x (t)ϕ(t)− ( f 0∗ẋ (t)ϕ(t)
)′
+ l0x(t)− l0

′
ẋ (t), t ∈ [0,T) \Θ,

ϕ(T)= 0,Δrϕ
(
ti
)= J10iẋ

(
ti
)
ϕ
(
ti
)
, ti ∈Θ,

ϕ′(T)= l0ẋ(T),Δrϕ
′(ti
)=Gi

(
ϕ
(
ti
)
,ϕ′
(
ti
))
, ti ∈Θ;

(4.24)
∫ T

0

〈
l0u(t) +B∗(t)ϕ(t),u(t)−u0(t)

〉
Y∗,Ydt ≥ 0, ∀u∈Uad. (4.25)

Proof. Since (x0,u0)∈ PC1
l (I,X)×Uad is an optimal pair, it must satisfy (4.23).

Since Uad is convex, it is clear that uε = u0 + ε(u−u0)∈Uad for ε ∈ [0,1], u∈Uad. Let
xε denote the PCl-mild solution of (3.1) corresponding to the control uε. Using assump-
tion [J∗], J is Gateaux differentiable, and the G-derivative of J at u0 in the direction u−u0

can be given by

lim
ε→0

J
(
uε
)− J

(
u0
)

ε

=
∫ T

0

〈
l0x(t), y(t)

〉
X∗,Xdt+

∫ T

0

〈
l0ẋ(t), ẏ(t)

〉
X∗,Xdt+

∫ T

0

〈
l0u(t),u(t)−u0(t)

〉
Y∗,Ydt

=
∫ T

0

〈
l0x(t)− l0

′
ẋ (t), y(t)

〉
X∗,Xdt+

∫ T

0

〈
l0u(t),u(t)−u0(t)

〉
Y∗,Ydt

+
〈
l0ẋ(T), y(T)

〉
X∗,X −

〈
l0ẋ(0), y(0)

〉
X∗,X −

n∑

i=1

〈
l0ẋ
(
ti
)
,Δl y

(
ti
)〉

X∗,X ,

(4.26)

where the process y ∈ PC1
l (I,X) is the Gateaux derivative of solution x at u0 in the direc-

tion u−u0 which satisfies the following equation:

ÿ(t)= (A+ f 0ẋ (t)
)
ẏ(t) + f 0x (t)y(t) +B(t)

[
u(t)−u0(t)

]
, t ∈ (0,T] \Θ,

y(0)= 0, Δl y
(
ti
)= J00ix

(
ti
)
y
(
ti
)
, ti ∈Θ,

ẏ(0)= 0, Δl ẏ
(
ti
)= J10iẋ

(
ti
)
ẏ
(
ti
)
, ti ∈Θ.

(4.27)

This is usually known as the variational equation. By following the same procedure as in
Theorem 3.2, one can easily establish that (4.27) has a unique PCl-mild solution y given
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by

y(t)=
∫ t

0

∫ t−τ

0
S(ν)

[
f 0x (τ)y(τ) + f 0ẋ (τ) ẏ(τ) +B(τ)

(
u(τ)−u0(τ)

)]
dνdτ

+
∑

0<ti<t

[
J00ix
(
ti
)
y
(
ti
)
+
∫ t

ti
S
(
ν− ti

)
J10iẋ
(
ti
)
ẏ
(
ti
)
dν
]
.

(4.28)

Since u0 is the optimal control, we have the following inequality:

∫ T

0

〈
l0x(t)− l0

′
ẋ (t), y(t)

〉
X∗,Xdt+

∫ T

0

〈
l0u(t),u(t)−u0(t)

〉
Y∗,Ydt

+
〈
l0ẋ(T), y(T)

〉
X∗,X −

n∑

i=1

〈
l0ẋ
(
ti
)
,Δl y

(
ti
)〉

X∗,X ≥ 0.
(4.29)

Due to the reflexivity of Banach space X , we have the Yosida approximation λkR(λk,
A∗)→ I∗ as λk →∞, where R(λk,A∗) is the resolvent of A∗ for λk ∈ ρ(A∗) and I∗ stands
for the identity operator in X∗. Consider the Yosida approximation of f 0∗x , f 0∗ẋ , l0x , l

0′
ẋ ,

l0ẋ(T), J
00∗
iẋ (ti), J10∗ix (ti) given by

f k∗x (·)= λkR
(
λk,A∗

)
f 0∗x (·), lkx(·)= λkR

(
λk,A∗

)
l0x(·), l

′k
ẋ (·)= λkR

(
λk,A∗

)
l0
′

ẋ (·),
Jk∗ix
(
ti
)=λkR

(
λk,A∗

)
J00∗ix

(
ti
)
, Jk∗iẋ

(
ti
)=λkR

(
λk,A∗

)
J10∗iẋ

(
ti
)
, lkẋ(T)=λkR

(
λk,A∗

)
l0ẋ(T),
(4.30)

which take values in D(A∗).
Consider the following evolution equation:

ϕ′′k (t)=−
(
A∗(t)ϕk(t)

)′
+ f k∗x (t)ϕk(t) + lkx(t)− lk

′
ẋ (t), t ∈ [0,T) \Θ,

ϕk(T)= 0, Δrϕk
(
ti
)= Jk∗iẋ

(
ti
)
ϕk
(
ti
)
, ti ∈Θ,

ϕ′k(T)= lkẋ(T), Δrϕ
′
k

(
ti
)=Gk

i

(
ϕk
(
ti
)
,ϕ′k
(
ti
))
, ti ∈Θ,

(4.31)

where

Gk
i

(
ϕk
(
ti
)
,ϕ′k
(
ti
))= [Jk∗x

(
ti
)
A∗
(
ti
)−A∗

(
ti
)
J1k∗iẋ

(
ti
)]
ϕk
(
ti
)
+ Jk∗ix

(
ti
)
ϕ′k
(
ti
)
+ Jk∗ix

(
ti
)
lkẋ
(
ti
)
.

(4.32)

Similar to the proof of Lemma 4.2, one can show that (4.31) has a unique class solution
ϕk given by

ϕk(t)=
∫ T

t
U∗(τ, t)

[∫ T

τ

(
f k∗x (s)ϕk(s) + lkx(s)− lk

′
ẋ (s)

)
ds+ lkẋ(T)

]
dτ

+
∑

ti>t

[
U∗(ti, t

)
Jk∗iẋ
(
ti
)
ϕk
(
ti
)
+
∫ ti

t
U∗(τ, t)Gk

i

(
ϕk
(
ti
)
,ϕ′k
(
ti
))
dτ
]
.

(4.33)
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Next, show that

ϕk −→ ϕ in PC1
r

(
I,X∗

)
as λk −→∞. (4.34)

Employing the method of proof for Lemma 4.2, there exists a numberM0 > 0 such that

‖ϕ‖PC1(I,X∗),
∥
∥ϕk

∥
∥
PC1(I,X∗) ≤M0 (k = 1,2, . . .). (4.35)

Setting

Fk(t)=
∫ T

t

(
f k∗x (s)ϕk(s) + lkx(s)− lk

′
ẋ (s)

)
ds+ lkẋ(T) (k = 0,1,···),

ak =
∥
∥lkx − l

′k
ẋ − l0x + l0

′
ẋ

∥
∥
L1(I,X∗) +

∥
∥lkẋ(T)− l0ẋ(T)

∥
∥
X∗ +M0

∥
∥ f k∗x − f 0∗x

∥
∥
L1(I,£(X∗)),

(4.36)

it follows that

∥
∥Fk(t)−F0(t)

∥
∥
X∗

≤ ak +
∥
∥ f 0∗x

∥
∥
L1(I,£(X∗))

∥
∥(ϕk)t −ϕt

∥
∥
B0
+
∥
∥ f 0∗x

∥
∥
L1(I,£(X∗))

∥
∥ϕk(t)−ϕ(t)

∥
∥
X∗ .

(4.37)

For t ∈ [tn,T], we have

∥
∥ϕk(t)−ϕ(t)

∥
∥
X∗ ≤ αTak +αθ

∫ T

t

∥
∥ϕk(τ)−ϕ(τ)

∥
∥
X∗dτ +αθ

∫ T

t

∥
∥(ϕk

)
τ −ϕτ

∥
∥
B0
dτ,

(4.38)

where θ = ‖ f 0∗x ‖L1([0,T],£(X∗)), α = sup{‖U∗(t,s)‖£(X∗) | 0 ≤ s ≤ t ≤ T}. By Lemma 4.1,
we obtain

∥
∥ϕk(t)−ϕ(t)

∥
∥
X∗ ≤ akαTe

2αTθ. (4.39)

Further,

∥
∥ϕ′k(t)−ϕ′(t)

∥
∥
X∗ ≤ λake

2αTθ , (4.40)

where ω = sup0≤t≤T ‖A∗(t)‖£(D(A∗),X∗), λ= (1+T)(1+αω+2αθ). Hence

∥
∥ϕk(t)−ϕ(t)

∥
∥
X∗ +

∥
∥ϕ′k(t)−ϕ′(t)

∥
∥
X∗ ≤ 2λake2αTθ for t ∈ [tn,T

]
. (4.41)
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Using (4.8), (4.33), and (4.41), we have

∥
∥ϕk

(
tn− 0

)−ϕ
(
tn− 0

)∥∥
X∗ ≤ hk ≡ bk + ck + λ(2δ +1)ake2αTθ ,

∥
∥ϕ′k

(
tn− 0

)−ϕ′
(
tn− 0

)∥∥
X∗ ≤ hk,

(4.42)

where

bk =M0(ω+1)
n∑

i=1

(
2
∥
∥Jk∗ix

(
ti
)− J00∗ix

(
ti
)∥∥

£(X∗) +
∥
∥Jk∗iẋ

(
ti
)− J10iẋ

(
ti
)∥∥

£(X∗)

)
,

ck =
n∑

i=1

∥
∥Jk∗ix

(
ti
)
lkẋ
(
tn
)− J00∗ix

(
ti
)
l0ẋ
(
tn
)∥∥

X∗ ,

δ = (ω+1)
n∑

i=1

(
2
∥
∥J00∗ix

(
ti
)∥∥

£(X∗) +
∥
∥J10∗iẋ

(
ti
)∥∥

£(X∗)

)
.

(4.43)

Hence, for t ∈ (tn−1, tn), we also obtain

∥
∥ϕk(t)−ϕ(t)

∥
∥
X∗ +

∥
∥ϕ′k(t)−ϕ′(t)

∥
∥
X∗ ≤ 2λ

(
ak +hk

)
e2αTθ. (4.44)

By the same procedure, there exists γ > 0 such that

∥
∥ϕk(t)−ϕ(t)

∥
∥
X∗ +

∥
∥ϕ′k(t)−ϕ′(t)

∥
∥
X∗ ≤ γ

(
ak + bk + ck

)
for t ∈ I. (4.45)

This proves that

ϕk −→ ϕ in PC1
r

(
I,X∗

)
as λk −→∞. (4.46)

Define

ηk =
∫ T

0

〈
ϕ(t)−ϕk(t),B(t)

(
u(t)−u0(t)

)〉
X∗,Xdt, (4.47)

and observe that ηk → 0 as k→∞. Thus

∫ T

0

〈
ϕ(t),B(t)

(
u(t)−u0(t)

)〉
X∗,Xdt

=
∫ T

0

〈
ϕ(t)−ϕk(t),B(t)

(
u(t)−u0(t)

)〉
X∗,Xdt+

∫ T

0

〈
ϕk(t),B(t)

(
u(t)−u0(t)

)〉
X∗,Xdt

= ηk +
∫ T

0

〈
lkx(t)− l̇kẋ(t), y(t)

〉
X∗,Xdt+

〈
lkẋ(T), y(T)

〉
X∗,X −

n∑

i=1

〈
lkẋ
(
ti
)
,Δl y

(
ti
)〉

X∗,X

(4.48)
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for λk ∈ ρ(A∗) > 0. Taking the limit k→∞, we find that

∫ T

0

〈
ϕ(t),B(t)

(
u(t)−u0(t)

)〉
X∗,Xdt

=
∫ T

0

〈
l0x(t)− l̇0ẋ(t), y(t)

〉
X∗,Xdt+

〈
l0ẋ(T), y(T)

〉
X∗,X −

n∑

i=1

〈
l0ẋ
(
ti
)
,Δl y

(
ti
)〉

X∗,X .

(4.49)

Further,

∫ T

0

〈
lu
(
t,x0(t),u0(t)

)
+B∗(t)ϕ(t),u(t)−u0(t)

〉
Y∗,Ydt ≥ 0, ∀u∈Uad. (4.50)

Thus, we have proved all the necessary conditions of optimality given by (4.23)–(4.25).
�

At the end of this section, an example is given to illustrate our theory. Consider the
following problem:

∂2

∂t2
x(t, y)

= Δ
∂

∂t
x(t, y)+

√
x2(t, y) + 1+

√
√
√
(
∂

∂t
x(t, y)

)2
+ 1+u(t, y), y ∈Ω, t ∈ (0,1] \

{
1
3
,
2
3

}
,

x(0, y)= 0, x
(
i

3
+0, y

)
− x
(
i

3
− 0, y

)
= x
(
i

3
, y
)
, i= 1,2, y ∈Ω,

∂

∂t
x(t, y)|t=0 = 0,

∂

∂t
x(t, y)|t=i/3+0− ∂

∂t
x(t, y)|t=i/3−0 = ∂

∂t
x(t, y)|t=i/3, i= 1,2, y ∈Ω,

x(t, y)|[0,1]×∂Ω = 0,
∂

∂t
x(t, y)|[0,1]×∂Ω = 0,

(4.51)

with the cost function

J(u)=
∫ 1

0

∫

Ω

∣
∣x(t,ξ)

∣
∣2dξ dt+

∫ 1

0

∫

Ω

∣
∣
∣
∣
∂

∂t
x(t,ξ)

∣
∣
∣
∣

2

dξ dt+
∫ 1

0

∫

Ω

∣
∣u(t,ξ)

∣
∣2dξ dt, (4.52)

where Ω⊂ R3 is bounded domain, ∂Ω∈ C3.
For the problem (4.51), one can show the following theorem.

Theorem 4.5. In order that the pair {x0,u0} ∈ PC1
l ([0,1], L2(Ω))× L2([0,1],L2(Ω)) be

optimal, it is necessary that there exists a ϕ ∈ PC1
r ([0,1],L2(Ω)) such that the following
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evolution equations and inequality hold:

∂2

∂t2
x0(t, y)= Δ

∂

∂t
x0(t, y) +

√(
x0(t, y)

)2
+ 1+

√
√
√
(
∂

∂t
x0(t, y)

)2
+ 1+u0(t, y),

y ∈Ω, t ∈ (0,1] \
{
1
3
,
2
3

}
,

x0(0, y)= 0, x0
(
i

3
+0, y

)
− x0

(
i

3
− 0, y

)
= x0

(
i

3
, y
)
, i= 1,2, y ∈Ω,

∂

∂t
x0(t, y)t=0 = 0,

∂

∂t
x0(t, y)|t=i/3+0− ∂

∂t
x0(t, y)|t=i/3−0 = ∂

∂t
x0(t, y)|t=i/3,

i= 1,2, y ∈Ω,

x0(t, y)|[0,1]×∂Ω = 0,
∂

∂t
x0(t, y)|[0,1]×Ω = 0;

∂2

∂t2
ϕ(t, y)=− ∂

∂t

(
Δϕ(t, y) +

(∂/∂t)x0(t, y)ϕ(t, y)
√(

(∂/∂t)x0(t, y)
)2
+ 1

)

+
x0(t, y)ϕ(t, y)
√(

x0(t, y)
)2
+ 1

+2x0(t, y)− ∂2

∂t2
x0(t, y), y ∈Ω, t ∈ [0,1) \

{
1
3
,
2
3

}
,

ϕ
(
i

3
− 0, y

)
−ϕ

(
i

3
+0, y

)
= ϕ(t, y)|t=i/3, i= 1,2, y ∈Ω,

∂

∂t
ϕ(t, y)|t=i/3−0− ∂

∂t
ϕ(t, y)|t=i/3+0 = ∂

∂t

[
ϕ(t, y) + 2x0(t, y)

]∣∣
t=i/3, i= 1,2, y ∈Ω,

ϕ(1, y)= 0,
∂

∂t
ϕ(t, y)|t=1 = 2

∂

∂t
x(t, y)|t=1, y ∈Ω,

ϕ(t, y)|[0,1]×∂Ω = 0,
∂

∂t
ϕ(t, y)|[0,1]×∂Ω = 0;

∫ 1

0

∫

Ω

〈
2u0(t,ξ) +ϕ(t,ξ),u(t,ξ)−u0(t,ξ)

〉
L2(Ω),L2(Ω)dξ dt ≥ 0, ∀u∈Uad.

(4.53)
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