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1. Introduction

Conti [1] introduced the notion of t∞-similarity in the set of all m×m continuous ma-
trices A(t) defined on R+ = [0,∞) and showed that t∞-similarity is an equivalence re-
lation preserving strict, uniform, and exponential stability of linear homogeneous dif-
ferential systems. Choi et al. [2] studied the variational stability of nonlinear differen-
tial systems using the notion of t∞-similarity. Trench [3] introduced a definition called
t∞-quasisimilarity that is not symmetric or transitive, but still preserves stability proper-
ties. Their approach included most types of stability.

As a discrete analog of Conti’s definition of t∞-similarity, Trench [4] defined the no-
tion of summable similarity on pairs of m×m matrix functions and showed that if A
and B are summably similar and the linear system Δx(n)= A(n)x(n), n= 0,1, . . . , is uni-
formly, exponential or strictly stable or has linear asymptotic equilibrium, then the linear
system Δy(n) = B(n)y(n) has also the same properties. Also, Choi and Koo [5] intro-
duced the notion of n∞-similarity in the set of all m×m invertible matrices and showed
that two concepts of global h-stability and global h-stability in variation are equivalent by
using the concept of n∞-similarity and Lyapunov functions. Furthermore, they showed
that h-stability of the perturbed system can be derived from h-stability in variation of
the nonlinear system in [6]. Note that the n∞-similarity is not symmetric or transitive
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relation but still preserves h-stability which included the most types of stability. For the
variational stability in difference systems, see [6]. Also, see [7–9] for the asymptotic prop-
erty of difference systems and Volterra difference systems, respectively.

In this paper, we study the variational stability for nonlinear difference systems using
the notion of n∞-summable similarity and show that asymptotic equilibrium for linear
difference system is preserved by n∞-summable similarity. Furthermore, we obtain the
asymptotic equivalence between nonlinear difference system and its variational difference
system using the comparison principle and asymptotic equilibria.

2. Preliminaries

Let N(n0) = {n0,n0 + 1, . . . ,n0 + k, . . .}, where n0 is a nonnegative integer and Rm the
m-dimensional real Euclidean space. We consider the nonlinear difference system

x(n+1)= f
(
n,x(n)

)
, (2.1)

where f : N(n0)×Rm → Rm, and f (n,0) = 0. We assume that fx = ∂ f /∂x exists and is
continuous and invertible on N(n0)×Rm. Let x(n)= x(n,n0,x0) be the unique solution
of (2.1) satisfying the initial condition x(n0,n0,x0) = x0. Also, we consider its associated
variational systems

v(n+1)= fx(n,0)v(n), (2.2)

z(n+1)= fx
(
n,x
(
n,n0,x0

))
z(n). (2.3)

The fundamental matrix solution Φ(n,n0,0) of (2.2) is given by

Φ
(
n,n0,0

)= ∂x
(
n,n0,0

)

∂x0
(2.4)

and the fundamental matrix solution Φ(n,n0,x0) of (2.3) is given by Lakshmikantham
and Trigiante [10],

Φ
(
n,n0,x0

)= ∂x
(
n,n0,x0

)

∂x0
. (2.5)

The symbol | · |will be used to denote any convenient vector norm inRm.Δ is the forward
difference operator with unit spacing, that is, Δu(n) = u(n+ 1)− u(n). Let V : N(n0)×
Rm → R+ be a function with V(n,0) = 0, for all n ≥ n0, and continuous with respect to
the second argument.We denote the total difference of the functionV along the solutions
x of (2.1) by

ΔV(2.1)(n,x)=V
(
n+1,x(n+1,n,x)

)−V
(
n,x(n,n,x)

)
. (2.6)

When we study the asymptotic stability, it is not easy to work with nonexponential
types of stability. Medina and Pinto [11–13] extended the study of exponential stability to
a variety of reasonable systems called h-systems. They introduced the notion of h-stability
for difference systems as well as for differential systems. To study the various stability
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notions of nonlinear difference systems, the comparison principle [10] and the variation
of constants formula by Agarwal [14, 15] play a fundamental role.

Now, we recall some definitions of stability notions in [12–14].

Definition 2.1. The zero solution of system (2.1) (or system (2.1)) is said to be
(SS) strongly stable if for each ε > 0, there is a corresponding δ = δ(ε) > 0 such that

any solution x(n,n0,x0) of system (2.1) which satisfies the inequality |x(n1,n0,x0)| < δ
for some n1 ≥ n0 exists and satisfies the inequality |x(n,n0,x0)| < ε, for all n∈N(n0).

Definition 2.2. Linear system (2.1) with f (n,x(n))= A(n)x(n) is said to be
(RS) restrictively stable if it is stable and its adjoint system y(n)= AT(n)y(n+1) is also

stable.

Strong stability implies uniform stability which, in turn, leads to stability. For linear
homogeneous systems, restrictive stability and strong stability are equivalent. Thus re-
strictive stability implies uniform stability which, in turn, gives stability [14].

Definition 2.3. System (2.1) is called an h-system if there exist a positive function
h :N(n0)→R and a constant c ≥ 1, such that

∣
∣x
(
n,n0,x0

)∣∣≤ c
∣
∣x0
∣
∣h(n)h−1

(
n0
)
, n≥ n0 (2.7)

for |x0| small enough (here h−1(n)= 1/h(n)).
Moreover, system (2.1) is said to be
(hS) h-stable if h is a bounded function in the definition of h-system,
(GhS) globally h-stable if system (2.1) is hS for every x0 ∈D, where D ⊂Rm is a region

which includes the origin,
(hSV) h-stable in variation if system (2.3) is hS,
(GhSV) globally h-stable in variation if system (2.3) is GhS.

The various notions about h-stability given by Definition 2.3 include several types of
known stability properties such as uniform stability, uniform Lipschitz stability, and ex-
ponential asymptotic stability. See [5, 11–13].

Definition 2.4. One says that (2.1) has asymptotic equilibrium if
(i) there exist ξ ∈ Rm and r > 0 such that any solution x(n,n0,x0) of (2.1) with
|x0| < r satisfies

x(n)= ξ + o(1) as n−→∞, (2.8)

(ii) corresponding to each ξ ∈ Rm, there exists a solution of (2.1) satisfying (2.8),
and (2.1) has asymptotic equilibrium in variation if system (2.3) has asymptotic
equilibrium.

Two difference systems x(n+ 1) = f (n,x(n)) and y(n+ 1) = g(n, y(n)) are said to be
asymptotically equivalent if, for every solution x(n), there exists a solution y(n) such that

x(n)= y(n) + o(1) as n−→∞, (2.9)
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and conversely, for every solution y(n), there exists a solution x(n) such that the above
asymptotic relation holds.

The problem of asymptotic equivalence in difference equations has been initiated by
H. Poincaré (1885) and O. Perron (1921), and it shows an asymptotic relationship be-
tween equations. In [16], Pinto studied asymptotic equivalence between difference sys-
tems by using the concept of dichotomy. Also, Medina and Pinto in [17] investigated this
problem by replacing the dichotomy conditions and the Lipschitz condition by a global
domination of the fundamental matrix of the linear difference system and a general majo-
ration on the perturbing term, respectively. Moreover, Medina in [18] established asymp-
totic equivalence by using the general discrete inequality combined with the Schauder’s
fixed point theorem. Also, Galescu and Talpalaru [8], Morchało [19], and Zafer [20] stud-
ied the asymptotic equivalence for difference systems.

Conti [1] defined twom×mmatrix functions A and B on R+ to be t∞-similar if there
is anm×mmatrix function S defined onR+ such that S′(t) is continuous, S(t) and S−1(t)
are bounded on R+, and

∫∞

0
|S′ + SB−AS|dt <∞. (2.10)

Now, we introduce the notion of n∞-summable similarity which is the corresponding
t∞-similarity for the discrete case.

LetM denote the set of allm×m invertible matrix-valued functions defined onN(n0)
and let S be the subset of M consisting of those nonsingular bounded matrix-valued
functions S such that S−1(n) is also bounded.

Definition 2.5. A matrix-valued function A ∈M is n∞-summably similar to a matrix-
valued function B ∈M if there exists an m×m matrix F(n) absolutely summable over
N(n0), that is,

∞∑

l=n0

∣
∣F(l)

∣
∣ <∞, (2.11)

such that

S(n+1)B(n)−A(n)S(n)= F(n) (2.12)

for some S∈S.

Example 2.6. Let A and B be matrix-valued functions defined on N(0) by

A(n)=
(
e−n 0
0 1

)

, B(n)=
⎛

⎜
⎝

e−n

2
√
2

0

0 1

⎞

⎟
⎠ . (2.13)
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If we put

S(n)=

⎛

⎜
⎜
⎝

2+
∑n−2

l=0 e−l(l+1)

2+
∑n−3

l=0 e−l(l+1)
0

0 1

⎞

⎟
⎟
⎠ , n∈N(0), (2.14)

where
∑−3

l=0 =
∑−2

l=0 = −1 and
∑−1

l=0 = 0, then S(n) and S−1(n) are bounded nonsingular
matrices.

Moreover, we have

S(n+1)B(n)−A(n)S(n)

=

⎛

⎜
⎜
⎝

2+
∑n−1

l=0 e−l(l+1)

2+
∑n−2

l=0 e−l(l+1)
0

0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

e−n

2
√
2

0

0 1

⎞

⎟
⎟
⎠−

⎛

⎝
e−n 0

0 1

⎞

⎠

⎛

⎜
⎜
⎝

2+
∑n−2

l=0 e−l(l+1)

2+
∑n−3

l=0 e−l(l+1)
0

0 1

⎞

⎟
⎟
⎠

=
(
p(n) 0

0 0

)

= F(n),

(2.15)

where

p(n)=
(
2+
∑n−1

l=0 e−l(l+1)

2+
∑n−2

l=0 e−l(l+1)

)
e−n

2
√
2
−
(
2+
∑n−2

l=0 e−l(l+1)

2+
∑n−3

l=0 e−l(l+1)

)

e−n,

F(n)=
(
p(n) 0
0 0

)

.

(2.16)

Thus we have

∞∑

n=0

∣
∣F(n)

∣
∣≤

∞∑

n=0
e−n
∣
∣
∣
∣
∣

(

1+
e−n(n−1)

2+
∑n−2

l=0 e−l(l+1)

)

−
(

1+
e−(n−1)(n−2)

2+
∑n−3

l=0 e−l(l+1)

)∣∣
∣
∣
∣

≤
∞∑

n=0
e−n

2
+

∞∑

n=0
e−n(n−2) <∞.

(2.17)

This implies that A and B are n∞-summably similar.

Remark 2.7. We can easily show that the n∞-summable similarity is an equivalence rela-
tion by the same method of Trench in [4]. Also if A and B are n∞-summably similar with
F(n)= 0, then we say that they are kinematically similar.

3. h-stability in variation for nonlinear difference systems

For the linear difference systems, Medina and Pinto [13] showed that

GhSV⇐⇒GhS⇐⇒ hS⇐⇒ hSV. (3.1)
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Also, the associated variational system inherits the property of hS from the original non-
linear system. That is, (2.2) is hS when (2.1) is hS in [13, Theorem 2]. Our purpose is to
characterize the global stability in variation via n∞-summable similarity and Lyapunov
functions. To do this, we need the following lemmas.

Lemma 3.1 [13]. The linear difference system

y(n+1)= A(n)y(n), y
(
n0
)= y0, (3.2)

where A(n) is anm×mmatrix, is an h-system if and only if there exist a constant c ≥ 1 and
a positive function h defined on N(n0) such that for every y0 ∈Rm,

∣
∣Φ
(
n,n0, y0

)∣∣≤ ch(n)h−1
(
n0
)
, (3.3)

for n≥ n0, where Φ is a fundamental matrix solution of (3.2).

Lemma 3.2. If two matrix-valued functions A and B in the setM are n∞-summably similar,
then for n≥ n0, one has

X−1(n)S(n)Y(n)= X−1
(
n0
)
S
(
n0
)
Y
(
n0
)
+

n−1∑

l=n0
X−1(l+1)F(l)Y(l), (3.4)

where X and Y are fundamental matrix solutions of the linear homogeneous difference sys-
tem (3.2) with the coefficient matrix functions A(n) and B(n), respectively.

Proof. Note that A(n)= X(n+1)X−1(n) and B(n)= Y(n+1)Y−1(n). Since A and B are
n∞-summably simliar, we can rewrite (2.12) as

F(n)= S(n+1)Y(n+1)Y−1(n)−X(n+1)X−1(n)S(n), (3.5)

for some S ∈ S and m×m matrix F(n) with an absolutely summable property over
N(n0). Thus we easily obtain

X−1(n+1)F(n)Y(n)

= X−1(n+1)S(n+1)Y(n+1)−X−1(n)S(n)Y(n)= Δ
(
X−1(n)S(n)Y(n)

)
.

(3.6)

Summing this difference equation (3.6) from l = n0 to l = n− 1 yields the difference equa-
tion (3.4). This completes the proof. �

Lemma 3.3. Assume that fx(n,0) is n∞-summably similar to fx(n,x(n,n0,x0)) for n≥ n0 ≥
0 and |x0| ≤ δ for some constant δ > 0 and

∑∞
n=n0 (h(n)/h(n+1))|F(n)| <∞. Then (2.3) is

an h-system provided (2.2) is an h-system with the positive function h(n) defined on N(n0).

Proof. It follows from Lemma 3.1 that there exist a constant c ≥ 1 and a positive function
h defined on N(n0) such that for every x0 ∈Rm,

∣
∣Φ
(
n,n0,0

)∣∣≤ ch(n)h−1
(
n0
)

(3.7)

for all n≥ n0 ≥ 0, whereΦ(n,n0,0) is a fundamental matrix solution of (2.2). LetΦ(n,n0,
x0) denote a fundamental matrix solution of (2.3). Since Φ(n,n0,0) and Φ(n,n0,x0) are
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fundamental matrix solutions of the variational systems (2.2) and (2.3), respectively, they
satisfy

Φ
(
n+1,n0,0

)= fx(n,0)Φ
(
n,n0,0

)
,

Φ
(
n+1,n0,x0

)= fx
(
n,x(n)

)
Φ
(
n,n0,x0

)
.

(3.8)

Note that

Φ
(
n,n0,x0

)=Φ
(
n, l,x

(
l,n0,x0

))
Φ
(
l,n0,x0

)
(3.9)

for all n≥ n0 ≥ 0. Then we have

Φ
(
n,n0,x0

)= S−1(n)

[

Φ
(
n,n0,0

)
S
(
n0
)
+

n−1∑

l=n0
Φ(n, l+1,0)F(l)Φ

(
l,n0,x0

)
]

, (3.10)

in view of Lemma 3.2. Then, from Lemma 3.1 and the boundedness of S(n) and S−1(n),
there are positive constants c1 and c2 such that

∣
∣Φ
(
n,n0,x0

)∣∣≤ c1c2h(n)h−1
(
n0
)
+ c1c2

n−1∑

l=n0
h(n)h−1(l+1)

∣
∣F(l)

∣
∣
∣
∣Φ
(
l,n0,x0

)∣∣. (3.11)

It follows that

∣
∣Φ
(
n,n0,x0

)∣∣h−1(n)≤ c1c2h
−1(n0

)
+ c1c2

n−1∑

l=n0

h(l)
h(l+1)

∣
∣F(l)

∣
∣h−1(l)

∣
∣Φ
(
l,n0,x0

)∣∣.

(3.12)

Applying the discrete Bellman’s inequality [14], we have

∣
∣Φ
(
n,n0,x0

)∣∣≤ dh(n)h−1
(
n0
) n−1∏

l=n0

(
1+

h(l)
h(l+1)

∣
∣F(l)

∣
∣
)

≤ dh(n)h−1(n0)exp

( n−1∑

l=n0

h(l)
h(l+1)

∣
∣F(l)

∣
∣
)

≤ ch(n)h−1
(
n0
)
,

(3.13)

where c = d exp(
∑∞

l=n0 (h(l)/h(l+1))|F(l)|) and d = c1c2.
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Therefore

∣
∣Φ
(
n,n0,x0

)∣∣≤ ch(n)h−1
(
n0
)
, n≥ n0 ≥ 0, (3.14)

for some positive constant c ≥ 1. This implies that (2.3) is an h-system. �

Corollary 3.4. Under the same conditions of Lemma 3.3, (2.1) is hSV.

Letting h(n) be bounded on N(n0), we obtain the following result [13, Theorem 4] as
a corollary of Lemma 3.3.

Corollary 3.5. If (2.2) is hS and for some δ > 0,

∞∑

l=n0

h(l)
h(l+1)

∣
∣ fx
(
l,x
(
n,n0,x0

))− fx(l,0)
∣
∣ <∞, n0 ≥ 0 (3.15)

for |x0| ≤ δ, holds, then (2.3) is also hS.

Proof. Setting F(n) = fx(n,x(n,n0,x0))− fx(n,0) and S(n) = I , for n ≥ n0 ≥ 0, we can
easily see that fx(n,x(n,n0,x0)) and fx(n,0) are n∞-summably similar. Thus all conditions
of Lemma 3.3 are satisfied, and hence (2.3) is hS. �

Remark 3.6. If h(n) is a positive bounded function on N(n0), then h(n)/h(n+1) is not
bounded in general.

For example, letting h(n) = exp(−∑n−1
s=n0 s), h(n) is a positive bounded function on

N(n0) but limn→∞(h(n)/h(n+1))= limn→∞ exp(n)=∞. Thus if h(n)/h(n+1) is bound-
ed, then the condition (h(n)/h(n+1))|F(n)| ∈ l1(N(n0)) in Lemma 3.3 can be replaced
by |F(n)| ∈ l1(N(n0)).

Theorem 3.7. Assume that fx(n,0) is n∞-summably similar to fx(n,x(n,n0,x0)) for n ≥
n0 ≥ 0 and every x0 ∈ Rm with (h(n)/h(n+1))|F(n)| ∈ l1(N(n0)). Then (2.1) is GhS if
and only if there exists a function V(n,z) defined on N(n0)×Rm such that the following
properties hold:

(i) V(n,z) is defined on N(n0)×Rm and continuous with respect to the second argu-
ment;

(ii) |x− y| ≤V(n,x− y)| ≤ c|x− y|, for (n,x, y)∈N(n0)×Rm×Rm;
(iii) |V(n,z1)−V(n,z2)| ≤ c|z1− z2|, for n∈N(n0), z1,z2 ∈Rm;
(iv) ΔV(n,x−y)/V(n,x−y)≤ Δh(n)/h(n), for (n,x, y)∈N(n0)×Rm×Rm with x �= y.

Proof. Define the function V by

V(n,x− y)= sup
τ∈N(0)

∣
∣x(n+ τ,n,x)− x(n+ τ,n, y)

∣
∣h−1(n+ τ)h(n). (3.16)

Then, this theorem can be easily proved by following the proof of Theorem 2.1 in [6] and
and Theorem 3.2 in [12]. �

Note that Theorem 3.2 in [12] was improved by Theorem 2.1 in [6] and our Theorem
3.7 as we replace the fundamental matrixΦ(n+1,n0,x0) byΦ(n,n0,x0) in [12, Theorems
3.1 and 3.2]. See [6, Remark 2.1].
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4. Asymptotic equilibrium of linear difference systems

We consider two linear systems

x(n+1)=A(n)x(n), (4.1)

y(n+1)= B(n)y(n), (4.2)

where A and B are nonsingularm×mmatrix-valued functions defined on N(n0).

Lemma 4.1 [4, Theorem 1]. Equation (4.1) has asymptotic equilibrium if and only if
limn→∞X(n) exists and is invertible, where X(n) is a fundamental matrix solution of (4.1).

Lemma 4.2. If (4.1) has asymptotic equilibrium, then (4.1) is strongly stable.

Proof. It follows from Lemma 4.1 that

lim
n→∞X(n)X

−1(n)= lim
n→∞X(n) limn→∞X

−1(n)= X∞ lim
n→∞X

−1(n)= I , (4.3)

where X∞ = limn→∞X(n) is invertible. Then we obtain

lim
n→∞X

−1(n)= X−1∞ . (4.4)

Hence there exists a positive constantM such that

∣
∣X(n)

∣
∣≤M,

∣
∣X−1(n)

∣
∣≤M, n≥ n0. (4.5)

This implies that (4.1) is strongly stable by [14, Theorem 5.5.1]. �

Example 4.3. We give an example which shows the converse of Lemma 4.2 is not true in
general. We consider the difference system

x(n+1)= A(n)x(n)=
(
1 0
0 −1

)

x(n), n≥ 0, (4.6)

where A(n)= (1 0
0 −1

)
is the invertible 2× 2 matrix.

Then we easily see that a fundamental matrix solution X(n) of (4.6) is given by

X(n)=
(
1 0
0 (−1)n

)

= X−1(n), n≥ 0, (4.7)

and there exists a positive constantM ≥ 2 such that

∣
∣X(n)

∣
∣≤M,

∣
∣X−1(n)

∣
∣≤M, n≥ 0. (4.8)

Thus (4.6) is strongly stable. But, since limn→∞X(n) does not exist, (4.6) does not have
asymptotic equilibrium.

The following lemma comes from [4, Theorem 4].

Lemma 4.4. Assume that two matrix-valued functions A and B are n∞-summably similar.
If (4.1) is strongly stable, then (4.2) is also strong stable.
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Proof. From [4, Theorem 1], we see that |X(n)X−1(m)| is bounded for each n,m ≥ n0.
Thus it suffices to show that |Y(n)Y−1(m)| is also bounded for each n,m ≥ n0. First, it
follows from Lemma 3.3 that

∣
∣Y(n)Y−1(m)

∣
∣= ∣∣Y(n,m)

∣
∣≤ d exp

( ∞∑

l=n0

h(l)
h(l+1)

∣
∣F(l)

∣
∣
)

≤M, (4.9)

for each n ≥m ≥ n0 and by letting h(n) = 1n. Next, we show that |Y(n)Y−1(m)| is also
bounded for each n0 ≤ n≤m. Summing (3.6) from l = n to l =m− 1 yields

X−1(n)S(n)Y(n)= X−1(m)S(m)Y(m)−
m−1∑

l=n
X−1(l+1)F(l)Y(l). (4.10)

Then we have

Y(n)Y−1(m)= S−1(n)X(n)X−1(m)S(m)− S−1(n)
m−1∑

l=n
X(n)X−1(l+1)F(l)Y(l)Y−1(m),

(4.11)

for each n0 ≤ n ≤m. From this and the strong stability of (4.1), there exist two positive
constants α and β such that

∣
∣S−1(n)X(n)X−1(m)S(m)

∣
∣≤ α, n≤m,

∣
∣S−1(n)X(n)X−1(l+1)

∣
∣≤ β, n≤ l ≤m− 1.

(4.12)

Thus we obtain

∣
∣Y(n)Y−1(m)

∣
∣≤ α+β

m−1∑

l=n

∣
∣F(l)

∣
∣
∣
∣Y(l)Y−1(m)

∣
∣

= vm,n, n0 ≤ n≤m,

(4.13)

where vm,n = α+β
∑m−1

l=n |F(l)||Y(l)Y−1(m)|. Since

vm,n+1− vm,n =−β
∣
∣F(n)

∣
∣
∣
∣Y(n)Y−1(m)

∣
∣≥−β∣∣F(n)∣∣vm,n, n0 ≤ n≤m, (4.14)

we have

vm,n+1 ≥
(
1−β

∣
∣F(n)

∣
∣)vm,n, n0 ≤ n≤m. (4.15)

Since
∑∞

n=n0 |F(n)| <∞, we can choose m0 ≥ n0 so large that β|F(n)| < 1/2 for each n ≥
m0. Then we have

1
1−β

∣
∣F(n)

∣
∣ ≤ 1+2β

∣
∣F(n)

∣
∣, n≥m0 ≥ n0. (4.16)

Thus (4.13) implies that

vm,n ≤ vm,n+1
(
1+2β

∣
∣F(n)

∣
∣), vn,n = α, n≥m0 ≥ n0. (4.17)
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It follows from the easy calculation that

vm,n ≤ α
m−1∏

l=n

(
1+2β

∣
∣F(l)

∣
∣)≤ αexp

(m−1∑

l=n
2β
∣
∣F(l)

∣
∣
)

≤M, (4.18)

whereM = αexp(
∑∞

l=n0 2β|F(l)|). In view of inequality (4.13), we have

∣
∣Y(n)Y−1(m)

∣
∣≤M, n0 ≤m0 ≤ n≤m. (4.19)

Also, we can easily see that this estimation holds for each n,m ≥ n0. This completes the
proof. �

We remark that for linear homogeneous systems, restrictive stability and strong sta-
bility are equivalent [14, Theorem 5.5.2]. Also the linear difference system is restrictively
stable if and only if it is reducible to zero [14, Theorem 5.5.3]. Lemma 4.4 can be eas-
ily proved by using the notion of reducibility in [14]. The linear difference system (4.1)
is reducible (reducible to zero) if there exists an m×m matrix L(n) which, together with
its inverse L−1(n), is defined and bounded on N(n0) such that L−1(n+ 1)A(n)L(n) is a
constant (identity) matrix on N(n0).

Corollary 4.5. Assume that two matrix-valued functions A and B are n∞-summably sim-
ilar with F(n)= 0. If (4.1) is strongly stable, then (4.2) is also strongly stable.

Proof. Since (4.1) is strongly stable, there exists an m×m matrix L(n) which, together
with its inverse L−1(n), is defined and bounded on N(n0) such that L−1(n+ 1)A(n)L(n)
is the identity matrix on N(n0) by Theorem 5.5.5 in [14]. Putting T(n)= S−1(n)L(n), we
obtain

T−1(n+1)B(n)T(n)= L−1(n+1)S(n+1)B(n)S−1(n)L(n)

= L−1(n+1)S(n+1)S−1(n+1)L(n+1)L−1(n)S(n)S−1(n)L(n)

= I ,
(4.20)

by the definition of n∞-similarity between A and B. Thus (4.2) is reducible to zero. It
follows from [14, Theorems 5.5.2 and 5.5.3] that (4.2) is strongly stable. �

The following theorem means that asymptotic equilibrium for linear system is pre-
served by the notion of n∞-summable similarity.

Theorem 4.6. Suppose that two matrix-valued functions A and B are n∞-summably sim-
ilar with limn→∞ S(n) = S∞ <∞. If (4.1) has asymptotic equilibrium, then (4.2) also has
asymptotic equilibrium.

Proof. It follows from Lemmas 4.2 and 4.13 that (4.2) is strongly stable. In particular,
Y−1(n) is bounded. Also, our assumption on S(n) implies that limn→∞ S(n)= S∞ is invert-
ible and limn→∞ S−1(n)= S−1∞ . Since

∑∞
n=n0 |F(n)| <∞, we easily see that Y(n) is Cauchy.

It follows from the boundedness ofY−1(n) that limn→∞Y(n)= Y∞ is invertible. Therefore
(4.2) has asymptotic equilibrium by Lemma 4.1. �



12 Advances in Difference Equations

By using asymptotic equilibria of linear difference systems, we obtain the asymptotic
equivalence between two linear difference systems (4.1) and (4.2).

Theorem 4.7. In addition to the assumption of Theorem 4.6 assume that limn→∞X(n) =
X∞ exists and |det(X(n))| > α > 0 for each n≥ n0 and some positive constant α. Then (4.1)
and (4.2) are asymptotically equivalent.

Proof. We easily see that (4.1) and (4.2) have asymptotic equilibria by the assumption
and Theorem 4.6. Let x(n,n0,x0) be any solution of (4.1). Then limn→∞ x(n)= x∞ exists.
For x∞ ∈Rm, the condition on asymptotic equilibrium for (4.2) implies that there exists
a solution y(n,n0, y0) of (4.2) such that limn→∞ y(n)= x∞. This implies that

y(n)= x(n) + o(1) as n→∞. (4.21)

Also, the converse asymptotic relationship holds. �

Next, we study the asymptotic equivalence between homogeneous linear system and
nonhomogeneous system by means of asymptotic equilibrium of homogeneous system.
So we consider the perturbation of (4.1)

x(n+1)=A(n)x(n) + g(n), (4.22)

where g(n) is a vector function on N(n0).

Lemma 4.8. Assume that (4.1) has asymptotic equilibrium and |g(n)| ∈ l1(N(n0)). Then
(4.22) has also asymptotic equilibrium.

Proof. Let y(n,n0, y0) be any solution (4.22). Then the solution y(n) of (4.22) is given by

y(n)=Ψ
(
n,n0

)
y0 +Ψ

(
n,n0

) n−1∑

s=n0
Ψ−1

(
s+1,n0

)
g(s), (4.23)

where Ψ(n,n0) is a fundamental matrix solution of (4.1). Putting p(n) =∑n−1
s=n0 Ψ

−1(s+
1,n0)g(s), we easily see that p(n) is Cauchy by the fact that |g(n)| ∈ l1(N(n0)) and the
boundedness of Ψ−1(n). Thus y(n) converges to a vector ξ ∈Rm.

Conversely, let ξ be any vector in Rm. Then there exists a solution y(n,n0, y0) of (4.22)
with the initial point y0 =Ψ−1∞ ξ − p∞ such that

lim
n→∞ y(n)= lim

n→∞

[

Ψ
(
n,n0

)
y0 +Ψ

(
n,n0

) n−1∑

s=n0
Ψ−1

(
s+1,n0

)
g(s)

]

=Ψ∞
[
y0 + p∞

]

=Ψ∞
[
Ψ−1∞ ξ − p∞ + p∞

]

= ξ,

(4.24)

where limn→∞ p(n)= p∞ and limn→∞Ψ(n)=Ψ∞. This completes the proof. �

As a consequence of Lemma 4.8, we easily obtain the following result.
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Theorem 4.9. Suppose that (4.1) has asymptotic equilibrium and |g(n)| ∈ l1(N(n0)). Then
(4.1) and (4.22) are asymptotically equivalent.

Proof. Let x(n) be any solution of (4.1). Then we have limn→∞ x(n) = x∞ by means of
asymptotic equilibrium of (4.1). Setting y0 =Ψ−1∞ x∞ − p∞ as in Lemma 4.8, there exists a
solution y(n,n0, y0) of (4.22) such that

lim
n→∞

[
y(n)− x(n)

]=Ψ∞
[
y0 + p∞ − x∞

]

=Ψ∞
[(
Ψ−1∞ x∞ − p∞

)
+ p∞ − x∞

]

= 0.

(4.25)

Conversely, we easily see that the asymptotic relationship also holds by setting x0 = y0 +
p∞. This completes the proof. �

Remark 4.10. Note that we can obtain the same result as Theorem 4.9 by putting y0 =
x0 − p∞ in the process of the proof. Also, note that the difference system does not have
asymptotic equilibrium even though it is asymptotically stable.

We give an example to illustrate Theorem 4.9.

Example 4.11. Consider the homogeneous difference equation

x(n+1)=A(n)x(n)= (1+ an
)
x(n) (4.26)

and nonhomogeneous difference equation

y(n+1)=A(n)y(n) + g(n)= (1+ an
)
y(n) +αn, (4.27)

where A(n) = 1 + an with the constant a (0 < a < 1) and g(n) = αn with 0 < α < 1. Then
(4.26) and (4.27) are asymptotically equivalent.

Proof. A fundamental matrix solution Ψ(n,n0) of (4.26) is given by
∏n−1

s=n0 (1 + as). Note
that Ψ(n,n0) is bounded since 1 + an ≤ expan for n ≥ n0 ≥ 0 and is nondecreasing on
N(n0). Thus limn→∞Ψ(n,n0)=Ψ∞ exists and is a nonzero constant. In fact, this implies
that

lim
n→∞Ψ

−1(n,n0
)=Ψ−1∞ . (4.28)

Hence it follows from Lemma 4.1 that (4.26) has asymptotic equilibrium. Also, the solu-
tion y(n,n0, y0) of (4.27) is given by

y(n)=
n−1∏

s=n0

(
1+ as

)
y0 +

n−1∑

s=n0

[ n−1∏

τ=s+1

(
1+ aτ

)
αs
]

, n≥ n0 ≥ 0. (4.29)



14 Advances in Difference Equations

Since αn ∈ l1(N(n0)) and all conditions of Lemma 4.8 are satisfied, we see that (4.27)
has asymptotic equilibrium. Therefore two systems (4.26) and (4.27) are asymptotically
equivalent by Theorem 4.9. This completes the proof. �

5. Variationally asymptotic equilibrium of nonlinear difference systems

In this section, we study the asymptotic equilibrium of nonlinear difference system by
using n∞-summable similarity. Furthermore, we show that two concepts of asymptotic
equilibrium and asymptotic equilibrium in variation for nonlinear difference systems are
equivalent.

Setting fx(n,0) = A(n) and using the mean value theorem, the nonlinear difference
system (2.1) can be written as

x(n+1)= A(n)x(n) + f
(
n,x(n)

)− fx(n,0)x(n)

= A(n)x(n) +G
(
n,x(n)

)
,x
(
n0
)= x0,

(5.1)

where G(n,x)= ∫ 10 [ fx(n,θx)− fx(n,0)]dθx.
We show that the associated variational difference system (2.2) inherits the property

of asymptotic equilibrium from the original nonlinear difference system (2.1) in the fol-
lowing theorem.

Theorem 5.1. If (2.1) has asymptotic equilibrium, then (2.2) has also asymptotic equilib-
rium.

Proof. We begin by showing that a fundamental matrix Φ(n,n0,0) of (2.2) given by (∂/
∂x0)x(n,n0,0) is convergent as n→∞. Let x0 be a vector of length δ in the jth coordinate
direction for each j = 1, . . . ,m. Then the hypothesis implies that limn→∞ x(n,n0,x0)= x∞
exists for fixed nonzero δ. For any given ε > 0, there exists a positive integer N such that
|x(n,n0,x0)− x(m,n0,x0)| < |δ|2 for any n,m ≥ N and j = 1, . . . ,m, since x(n,n0,x0) is
Cauchy for each j = 1, . . . ,m. Then we obtain for each j = 1, . . . ,m,

∣
∣
∣
∣

∂

∂x0 j
x
(
n,n0,0

)− ∂

∂x0 j
x
(
m,n0,0

)
∣
∣
∣
∣

=
∣
∣
∣
∣ lim
δ→0

x
(
n,n0,x0

)− x
(
n,n0,0

)

δ
− lim

δ→0

x
(
m,n0,x0

)− x
(
m,n0,0

)

δ

∣
∣
∣
∣

=
∣
∣
∣
∣ lim
δ→0

x
(
n,n0,x0

)− x
(
m,n0,x0

)

δ

∣
∣
∣
∣ < lim

δ→0

∣
∣δ2
∣
∣

|δ| < ε, for n,m≥N.

(5.2)

This implies that limn→∞Φ(n,n0,0)=Φ∞ exists.
Now, by using Lemma 4.1, it suffices to prove that limitΦ∞ is invertible. Given linearly

independent vectors x̂0 j ∈ Rm in the j-coordinate direction for each j = 1, . . . ,m, it fol-
lows from the asymptotic equilibrium of (2.1) that there exist the solutions xj(n,n0,x0 j)
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of (2.1) which are convergent to δx̂0 j for each j = 1, . . . ,m and fixed δ �= 0. Then we have

lim
n→∞Φ

(
n,n0,0

)

= lim
n→∞

[
∂

∂x01
x1
(
n,n0,x01

)
, . . . ,

∂

∂x0m
xm
(
n,n0,x0m

)]

= lim
n→∞

[
lim
δ→0

x1
(
n,n0,x01

)− x1
(
n,n0,0

)

δ
, . . . , lim

δ→0

xm
(
n,n0,x0m

)− xm
(
n,n0,0

)

δ

]

=
[
lim
δ→0

limn→∞ x1
(
n,n0,x01

)

δ
, . . . , lim

δ→0

limn→∞ xm
(
n,n0,x0m

)

δ

]

= [x̂01, . . . , x̂0m
]=Φ∞.

(5.3)

Since the vectors x̂01, . . . , x̂0m are linearly independent, Φ∞ is invertible. This completes
the proof. �

Note that the converse of Theorem 5.1 does not hold in general. We give the following
example.

Example 5.2. We consider the nonlinear difference equation

x(n+1)= f
(
n,x(n)

)= x(n) + x2(n),x
(
n0
)= x0 = 1 (5.4)

and its variational difference equation

v(n+1)= fx(n,0)v(n)= v(n), v(n0)= v0 �= 0, (5.5)

where fx(n,x)= 1+2x.
Since the fundamental solution φ(n)= 1 of (5.5) is nonzero, (5.5) has asymptotic equi-

librium. But (5.4) does not have asymptotic equilibrium because of the unboundedness
of the solution x(n,n0,x0) of (5.4). In fact, there exists a solution x(n,0,1) of (5.4) such
that

x(n,0,1)= x(n) > n, (5.6)

for each n≥ 1.

Now, for the converse of Theorem 5.1, we examine the asymptotic equilibrium for the
perturbed system of linear difference system (2.2) by using the comparison principle. To
do this we need the following comparison principle in [5] which is a slight modification
of [10].

Lemma 5.3 [5, Lemma 9]. Let ι(n,r) be a nondecreasing function in r for any fixed n ∈
N(n0). Suppose that for n≥ n0,

v(n)−
n−1∑

l=n0
ι
(
l,v(l)

)
< u(n)−

n−1∑

l=n0
ι
(
l,u(l)

)
. (5.7)

If v(n0) < u(n0), then v(n) < u(n), for all n≥ n0.
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Theorem 5.4. Assume that
(i) equation (2.2) has asymptotic equilibrium,
(ii) for each n≥ s≥ n0 and x ∈Rm,

∣
∣G(n,x)

∣
∣≤ ω

(
n,|x|), (5.8)

where ω :N(n0)×R+ → R+ and ω(n,u) is continuous and nondecreasing in u for
n≥ n0.

Also, we consider the scalar difference equation

u(n+1)= u(n) +M2ω
(
n,u(n)

)
, u

(
n0
)= u0 > 0, (5.9)

whereM is a positive constant, and suppose that
(iii) all solutions of (5.9) are bounded on N(n0).
Then (2.1) has asymptotic equilibrium provided d < u0 with d =M|x0|.

Proof. Let x(n,n0,x0) be any solution of (2.1). From the variation of constants formula in
[14] and conditions (i) and (ii), we obtain

∣
∣x(n)

∣
∣=

∣
∣
∣
∣
∣Ψ
(
n,n0

)
[

x0 +
n−1∑

s=n0
Ψ−1

(
s+1,n0

)
G
(
s,x(s)

)
]∣∣
∣
∣
∣

≤ ∣∣Ψ(n,n0
)∣∣
∣
∣x0
∣
∣+

∣
∣Ψ
(
n,n0

)∣∣
n−1∑

s=n0

∣
∣Ψ−1

(
s+1,n0

)∣∣
∣
∣G
(
s,x(s)

)∣∣

≤M
∣
∣x0
∣
∣+M2

n−1∑

s=n0
ω
(
s,
∣
∣x(s)

∣
∣)

= d+M2
n−1∑

s=n0
ω
(
s,
∣
∣x(s)

∣
∣),

(5.10)

where M is a bounded constant of Ψ(n,m) for each n,m ≥ n0 and d =M|x0|. Then we
have the following summable inequality:

∣
∣x(n)

∣
∣−M2

n−1∑

s=n0
ω
(
s,
∣
∣x(s)

∣
∣)= d < u0 = u(n)−M2

n−1∑

s=n0
ω
(
s,u(s)

)
. (5.11)

By letting ι(n,u)=M2ω(s,u) and using Lemma 5.3, we obtain

∣
∣x(n)

∣
∣≤ u(n), for each n≥ n0, (5.12)

provided d < u0.
Now, we prove that the solution x(n) of (2.1) which can be written as (5.1) is conver-

gent. Consider the sequence

v(n)=
n−1∑

s=n0
Ψ−1

(
s+1,n0

)
G
(
s,x(s)

)
. (5.13)
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By using the monotonicity of the function ω and asymptotic equilibrium of (2.2), we
obtain

∣
∣v(n)− v(m)

∣
∣≤

n−1∑

s=m

∣
∣Ψ−1

(
s+1,n0

)∣∣
∣
∣G
(
s,x(s)

)∣∣

≤M
n−1∑

s=m
ω
(
s,
∣
∣x(s)

∣
∣)≤M

n−1∑

s=m
ω
(
s,u(s)

)

=M
(
u(n)−u(m)

)
,

(5.14)

for any n≥m≥ n0. Since u(n) is convergent, v(n) is Cauchy. Thus v(n) is also convergent.
Hence there exist a vector ξ ∈Rm and r > 0 such that any solution x(n,n0,x0) of (5.1) with
|x0| < r satisfies the following asymptotic relationship:

x(n)= ξ + o(1) as n−→∞. (5.15)

Conversely, let ξ ∈ Rm be any vector. Setting x0 = Ψ−1∞ ξ − v∞ with v∞ = limn→∞ v(n),
any solution x(n) of (5.1) equivalent to (2.1) satisfies

x
(
n,n0,x0

)=Ψ
(
n,n0

)
[
x0 +

∞∑

s=n0
Ψ−1

(
s+1,n0

)
G
(
s,x(s)

)
]

−Ψ
(
n,n0

) ∞∑

s=n
Ψ−1

(
s+1,n0

)
G
(
s,x(s)

)

= ξ + o(1) as n−→∞,

(5.16)

since

Ψ
(
n,n0

) ∞∑

s=n
Ψ−1

(
s+1,n0

)
G
(
s,x(s)

)−→ 0 as n−→∞. (5.17)

This completes the proof. �

As a consequence of Theorem 5.4 we obtain the following corollary.

Corollary 5.5. Instead of the condition (i) of Theorem 5.4, one assumes that limn→∞Φ(n)=
Ψ∞ exists and |det(Φ(n))| > α > 0, for each n≥ n0 and some positive constant α. Then (2.1)
has asymptotic equilibrium.

Proof. Since detΨ∞ = limn→∞detΦ(n) ≥ α, Ψ∞ is invertible. It follows from Lemma 4.1
that (2.2) has asymptotic equilibrium. Hence (2.1) has also asymptotic equilibrium by
Theorem 5.4. �

Theorem 5.6. Let the assumptions be the same as in Theorem 5.4. Then (2.1) and (2.2) are
asymptotically equivalent.

Proof. We can prove this by the same method as in Theorem 4.9. �
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Corollary 5.7. Assume that (2.1) has asymptotic equilibrium and for some δ > 0, one has

∞∑

n=n0

∣
∣ fx(n,0)− fx

(
n,x
(
n,n0,x0

))∣∣ <∞, (5.18)

for some |x0| ≤ δ. Then (2.1) has asymptotic equilibrium in variation.

Proof. It follows from Theorem 5.1 that (2.2) has asymptotic equilibrium. Letting F(n)=
| fx(n,n0,0)− fx(n,x(n,n0,x0))| with S(n)= I for each n≥ n0 ≥ 0, we obtain that F(n) is
absolutely summable. Thus fx(n,x(n,n0)) and fx(n,0) are n∞-summably similar. This
implies that (2.3) has also asymptotic equilibrium by Theorem 4.6. �

Corollary 5.8. Let the assumptions except the condition (i) be the same as in Theorem 5.4.
Suppose that (2.1) has asymptotic equilibrium in variation and for some δ > 0

∞∑

n=n0

∣
∣ fx(n,0)− fx

(
n,x
(
n,n0,x0

))∣∣ <∞, (5.19)

for some |x0| ≤ δ. Then (2.1) has also asymptotic equilibrium. Furthermore (2.1) and (2.2)
are asymptotically equivalent.

Remark 5.9. We see that two concepts of asymptotic equilibrium and asymptotic equi-
librium in variation for nonlinear difference system (2.1) are equivalent by means of
n∞-similarity of the associated variational difference systems and the results of Theorem
5.4 and Corollary 5.7.

Example 5.10. To illustrate Theorem 5.6, we consider the nonlinear difference equation

x(n+1)= f
(
n,x(n)

)= x(n) +
anx(n)

√
1+2x2(n)

(5.20)

and its associated variational difference equation

v(n+1)= fx(n,0)v(n)=
(
1+ an

)
v(n), (5.21)

where f (n,x) = x + anx/
√
1+2x2 and fx(n,x) = 1 + an/(1+2x2)3/2 with 0 < a < 1. Then

(5.20) and (5.21) are asymptotically equivalent. Furthermore, (5.20) has asymptotic equi-
librium in variation.

Proof. Setting fx(n,0) = A(n) and using the mean value theorem, (5.20) can be written
as

x(n+1)=A(n)x(n) +G
(
n,x(n)

)= (1+ an
)
x(n) + an

[
1

√
1+2x2(n)

− 1
]
x(n), (5.22)

where G(n,x)= ∫ 10 [ fx(n,θx)− fx(n,0)]dθx.
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Then we obtain

∣
∣G(n,x)

∣
∣≤

∣
∣
∣
∣a

n
[∫ 1

0

dθ
√
1+2(θx)2

− 1
]
dθx

∣
∣
∣
∣

=
∣
∣
∣
∣a

n
[

1√
1+2x2

− 1
]
x
∣
∣
∣
∣

≤ an|x| = ω
(
n,|x|),

(5.23)

where ω(n,u)= anu is nondecreasing in u > 0. For the scalar difference equation

u(n+1)= u(n) +M2ω
(
n,u(n)

)= u(n) +M2anu(n), u(0)= u0 > 0, (5.24)

we have

u(n)= u0 +M2
n−1∑

s=0
as = u0 +M2

(
1− an

1− a

)
, n≥ n0 = 0. (5.25)

Thus all solutions u(n) of (5.24) are bounded on N(0). Putting d = limn→∞
∏n−1

s=0 (1 +
as)|x0|, we easily see that (5.21) has asymptotic equilibrium.

Also, all conditions of Theorem 5.6 are satisfied. It follows that (5.20) and (5.21) are
asymptotically equivalent by Theorem 5.6.

Next, we consider associated variational difference equation

z(n+1)= fx
(
n,x
(
n,n0,x0

))
z(n)=

[

1+
an

[
1+2x2(n)

]3/2

]

z(n). (5.26)

Then fx(n,0) and fx(n,x(n)) are n∞-summably similar with S(n)= I and F(n)= fx(n,0)−
fx(n,x(n)). Note that we have

∞∑

n=0

∣
∣F(n)

∣
∣=

∞∑

n=0
an
[

1− 1
[
1+2x2(n)

]3/2

]

≤
∞∑

n=0
an <∞, (5.27)

where 0 < a < 1. It follows from Theorem 4.7 that (5.26) has asymptotic equilibrium.
Hence (5.20) has asymptotic equilibrium in variation. This completes the proof. �

Theorem 5.11. Assume that (2.1) and (2.3) are asymptotically equivalent. If (2.1) has as-
ymptotic equilibrium, then (2.3) has also asymptotic equilibrium. Also the converse holds.

Proof. Let z(n,n0,v0) be any solution of (2.3). Then there exists a solution x(n) of (2.1)
such that the following asymptotic relationship holds:

z(n)= x(n) + o(1) as n−→∞, (5.28)

by means of asymptotic equivalence between (2.1) and (2.3). Since (2.1) has asymptotic
equilibrium, x(n) is convergent to x∞. This implies that limn→∞ z(n) = x∞ by the above
asymptotic relationship.
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For the converse, let ξ be any vector in Rm. Then there exists a solution z(n) of (2.3)
such that

z(n)= ξ + o(1) as n−→∞, (5.29)

by the above method. Hence (2.3) has asymptotic equilibrium. This completes the proof.
�
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