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1. Introduction

Let T be a time scale with 0, σ2(1)∈ T. Given an interval J of R, we will use the interval
notation

JT := J ∩T. (1.1)

We are concerned with determining values of λ (eigenvalues) for which there exist
positive solutions for the system of dynamic equations

uΔΔ(t) + λa(t) f
(
v
(
σ(t)

))= 0, t ∈ [0,1]T,

vΔΔ(t) + λb(t)g
(
u
(
σ(t)

))= 0, t ∈ [0,1]T,
(1.2)

satisfying the boundary conditions

u(0)= 0= u
(
σ2(1)

)
, v(0)= 0= v

(
σ2(1)

)
, (1.3)
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where
(a) f ,g ∈ C([0,∞),[0,∞)),
(b) a,b ∈ C([0,σ(1)]T, [0,∞)), and each does not vanish identically on any closed

subinterval of [0,σ(1)]T,
(c) all of f0 := lim x→0+( f (x)/x), g0 := lim x→0+(g(x)/x), f∞ := limx→∞( f (x)/x), and

g∞ := lim x→∞(g(x)/x) exist as real numbers.
There is an ongoing flurry of research activities devoted to positive solutions of dy-

namic equations on time scales (see, e.g., [1–7]). This work entails an extension of the
paper by Chyan and Henderson [8] to eigenvalue problems for systems of nonlinear
boundary value problems on time scales. Also, in that light, this paper is closely related
to the works of Li and Sun [9, 10].

On a larger scale, there has been a great deal of study focused on positive solutions of
boundary value problems for ordinary differential equations. Interest in such solutions is
high from a theoretical sense [11–15] and as applications for which only positive solutions
are meaningful [16–19]. These considerations are caste primarily for scalar problems,
but good attention has been given to boundary value problems for systems of differential
equations [20–24].

The main tool in this paper is an application of the Guo-Krasnosel’skii fixed point-
theorem for operators leaving a Banach space cone invariant [12]. A Green function plays
a fundamental role in defining an appropriate operator on a suitable cone.

2. Some preliminaries

In this section, we state the well-known Guo-Krasnosel’skii fixed point-theorem which
we will apply to a completely continuous operator whose kernel, G(t,s), is the Green
function for

−yΔΔ = 0,

y(0)= 0= y
(
σ2(1)

)
.

(2.1)

Erbe and Peterson [6] have found that

G(t,s)= 1
σ2(1)

⎧
⎨

⎩
t
(
σ2(1)− σ(s)

)
, if t ≤ s,

σ(s)
(
σ2(1)− t

)
, if σ(s)≤ t,

(2.2)

from which

G(t,s) > 0, (t,s)∈ (0,σ2(1))T×
(
0,σ(1)

)
T, (2.3)

G(t,s)≤G
(
σ(s),s

)= σ(s)
(
σ2(1)− σ(s)

)

σ2(1)
, t ∈ [0,σ2(1)]T, s∈

[
0,σ(1)

]
T, (2.4)

and it is also shown in [6] that

G(t,s)≥ kG
(
σ(s),s

)= k
σ(s)

(
σ2(1)− σ(s)

)

σ2(1)
, t ∈

[
σ2(1)
4

,
3σ2(1)

4

]

T
, s∈ [0,σ(1)]T,

(2.5)
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where

k =min
{
1
4
,

σ2(1)
4
(
σ2(1)− σ(0)

)
}
. (2.6)

We note that a pair (u(t),v(t)) is a solution of the eigenvalue problem (1.2), (1.3) if and
only if

u(t)= λ
∫ σ(1)

0
G(t,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs, 0≤ t ≤ σ2(1),

v(t)= λ
∫ σ(1)

0
G(t,s)b(s)g

(
u
(
σ(s)

))
Δs, 0≤ t ≤ σ2(1).

(2.7)

Values of λ for which there are positive solutions (positive with respect to a cone) of
(1.2), (1.3) will be determined via applications of the following fixed point-theorem [12].

Theorem 2.1. Let � be a Banach space, and let � ⊂� be a cone in �. Assume that Ω1

and Ω2 are open subsets of � with 0∈Ω1 ⊂Ω1 ⊂Ω2, and let

T : �∩ (Ω2 \Ω1
)−→� (2.8)

be a completely continuous operator such that either
(i) ‖Tu‖ ≤ ‖u‖, u∈�∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u∈�∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u∈�∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u∈�∩ ∂Ω2.

Then, T has a fixed point in �∩ (Ω2 \Ω1).

3. Positive solutions in a cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (i.e., positive solu-
tions) of (1.2), (1.3). Assume throughout that [0,σ2(1)]T is such that

ξ =min
{
t ∈ T | t ≥ σ2(1)

4

}
,

ω =max
{
t ∈ T | t ≤ 3σ2(1)

4

}
;

(3.1)

both exist and satisfy

σ2(1)
4

≤ ξ < ω ≤ 3σ2(1)
4

. (3.2)

Next, let τ ∈ [ξ,ω]T be defined by
∫ ω

ξ
G(τ,s)a(s)Δs= max

t∈[ξ,ω]T

∫ ω

ξ
G(t,s)a(s)Δs. (3.3)

Finally, we define

l = min
s∈[0,σ2(1)]T

G
(
σ(ω),s

)

G
(
σ(s),s

) , (3.4)
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and let

m=min{k, l}. (3.5)

For our construction, let � = {x : [0,σ2(1)]T→R} with supremum norm ‖x‖ =
sup {|x(t)| : t ∈ [0,σ2(1)]T} and define a cone �⊂� by

�=
{
x ∈� | x(t)≥ 0 on

[
0,σ2(1)

]
T, and x(t)≥m‖x‖, for t ∈ [ξ,σ(ω)]T

}
. (3.6)

For our first result, define positive numbers L1 and L2 by

L1 :=max
{[

m
∫ ω

ξ
G(τ,s)a(s)Δs f∞

]−1
,
[
m
∫ ω

ξ
G(τ,s)b(s)Δsg∞

]−1}
,

L2 :=min
{[∫ σ(1)

0
G
(
σ(s),s

)
a(s)Δs f0

]−1
,
[∫ σ(1)

0
G
(
σ(s),s

)
b(s)Δsg0

]−1}
,

(3.7)

where we recall that G(σ(s),s)= σ(s)(σ2(1)− σ(s))/σ2(1).

Theorem 3.1. Assume that conditions (a), (b), and (c) are satisfied. Then, for each λ satis-
fying

L1 < λ < L2, (3.8)

there exists a pair (u,v) satisfying (1.2), (1.3) such that u(x) > 0 and v(x) > 0 on (0,σ2(1))T.

Proof. Let λ be as in (3.8). And let ε > 0 be chosen such that

max
{[

m
∫ ω

ξ
G(τ,s)a(s)Δs

(
f∞ − ε

)]−1
,
[
m
∫ ω

ξ
G(τ,s)b(s)Δs

(
g∞ − ε

)]−1}≤ λ,

λ≤ min
{[∫ σ(1)

0
G
(
σ(s),s

)
a(s)Δs

(
f0 + ε

)
]−1

,
[∫ σ(1)

0
G
(
σ(s),s

)
b(s)Δs

(
g0 + ε

)
]−1}

.

(3.9)

Define an integral operator T : �→� by

Tu(t) := λ
∫ σ(1)

0
G(t,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs, u∈�. (3.10)

By the remarks in Section 2, we seek suitable fixed points of T in the cone �.
Notice from (a), (b), and (2.3) that, for u ∈ �, Tu(t) ≥ 0 on [0,σ2(1)]T. Also, for

u∈�, we have from (2.4) that

Tu(t)= λ
∫ σ(1)

0
G(t,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

≤ λ
∫ σ(1)

0
G
(
σ(s),s

)
a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

(3.11)
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so that

‖Tu‖ ≤ λ
∫ σ(1)

0
G
(
σ(s),s

)
a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs. (3.12)

Next, if u∈�, we have from (2.5), (3.5), and (3.10) that

min
t∈[ξ,ω]T

Tu(t)= min
t∈[ξ,ω]T

λ
∫ σ(1)

0
G(t,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

≥ λm
∫ σ(1)

0
G
(
σ(s),s

)
a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

≥m‖Tu‖.
(3.13)

Consequently, T : �→�. In addition, standard arguments show that T is completely con-
tinuous.

Now, from the definitions of f0 and g0, there exists H1 > 0 such that

f (x)≤ ( f0 + ε
)
x, g(x)≤ (g0 + ε

)
x, 0 < x ≤H1. (3.14)

Let u ∈� with ‖u‖ =H1. We first have from (2.4) and choice of ε, for 0 ≤ s ≤ σ(1),
that

λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr ≤ λ

∫ σ(1)

0
G
(
σ(r),r

)
b(r)g

(
u
(
σ(r)

))
Δr

≤ λ
∫ σ(1)

0
G
(
σ(r),r

)
b(r)

(
g0 + ε

)
u(r)Δr

≤ λ
∫ σ(1)

0
G
(
σ(r),r

)
b(r)Δr

(
g0 + ε

)‖u‖
≤ ‖u‖ =H1.

(3.15)

As a consequence, we next have from (2.4) and choice of ε, for 0≤ t ≤ σ2(1), that

Tu(t)= λ
∫ σ(1)

0
G(t,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

≤ λ
∫ σ(1)

0
G
(
σ(s),s

)
a(s)

(
f0 + ε

)
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
ΔrΔs

≤ λ
∫ σ(1)

0
G
(
σ(s),s

)
a(s)

(
f0 + ε

)
H1Δs

≤H1 = ‖u‖.

(3.16)

So, ‖Tu‖ ≤ ‖u‖. If we set
Ω1 =

{
x ∈� | ‖x‖ <H1

}
, (3.17)

then

‖Tu‖ ≤ ‖u‖, for u∈�∩ ∂Ω1. (3.18)
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Next, from the definitions of f∞ and g∞, there exists H2 > 0 such that

f (x)≥ ( f∞ − ε
)
x, g(x)≥ (g∞ − ε

)
x, x ≥H2. (3.19)

Let

H2 =max
{
2H1,

H2

m

}
. (3.20)

Let u∈� and ‖u‖ =H2. Then,

min
t∈[ξ,ω]T

u(t)≥m‖u‖ ≥H2. (3.21)

Consequently, from (2.5) and choice of ε, for 0≤ s≤ σ(1), we have that

λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr ≥ λ

∫ ω

ξ
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr

≥ λ
∫ ω

ξ
G(τ,r)b(r)g

(
u
(
σ(r)

))
Δr

≥ λ
∫ ω

ξ
G(τ,r)b(r)

(
g∞ − ε

)
u(r)Δr

≥mλ
∫ ω

ξ
G(τ,r)b(r)

(
g∞ − ε

)
Δr‖u‖

≥ ‖u‖ =H2.

(3.22)

And so, we have from (2.5) and choice of ε that

Tu(τ)= λ
∫ σ(1)

0
G(τ,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

≥ λ
∫ σ(1)

0
G(τ,s)a(s)

(
f∞ − ε

)
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
ΔrΔs

≥ λ
∫ σ(1)

0
G(τ,s)a(s)

(
f∞ − ε

)
H2Δs

≥mH2 >H2 = ‖u‖.

(3.23)

Hence, ‖Tu‖ ≥ ‖u‖. So, if we set

Ω2 =
{
x ∈� | ‖x‖ <H2

}
, (3.24)

then

‖Tu‖ ≥ ‖u‖, for u∈�∩ ∂Ω2. (3.25)
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Applying Theorem 2.1 to (3.18) and (3.25), we obtain that T has a fixed point u ∈
�∩ (Ω2 \Ω1). As such, and with v being defined by

v(t)= λ
∫ σ(1)

0
G(t,s)b(s)g

(
u
(
σ(s)

))
Δs, (3.26)

the pair (u,v) is a desired solution of (1.2), (1.3) for the given λ. The proof is complete.
�

Prior to our next result, we introduce another hypothesis.
(d) g(0)= 0, and f is an increasing function.

We now define positive numbers L3 and L4 by

L3 :=max
{[

m
∫ ω

ξ
G(τ,s)a(s)Δs f0

]−1
,
[
m
∫ ω

ξ
G(τ,s)b(s)Δsg0

]−1}
,

L4 :=min
{[∫ σ(1)

0
G
(
σ
(
s(s)
))
a(s)Δs f∞

]−1
,
[∫ σ(1)

0
G
(
σ
(
s(s)
))
b(s)Δsg∞

]−1}
.

(3.27)

Theorem 3.2. Assume that conditions (a)–(d) are satisfied. Then, for each λ satisfying

L3 < λ < L4, (3.28)

there exists a pair (u,v) satisfying (1.2), (1.3) such that u(x) > 0 and v(x) > 0 on (0,σ2(1))T.

Proof. Let λ be as in (3.28). And let ε > 0 be chosen such that

max
{[

m
∫ ω

ξ
G(τ,s)a(s)Δs

(
f0− ε

)
]−1

,
[
m
∫ ω

ξ
G(τ,s)b(s)Δs

(
g0− ε

)
]−1}

≤ λ,

λ≤ min
{[∫ σ(1)

0
G
(
σ(s),s

)
a(s)Δs

(
f∞ + ε

)
]−1

,
[∫ σ(1)

0
G
(
σ(s),s

)
b(s)Δs

(
g∞ + ε

)
]−1}

.

(3.29)

Let T be the cone preserving, completely continuous operator that was defined by
(3.10).

From the definitions of f0 and g0, there exists H1 > 0 such that

f (x)≥ ( f0− ε
)
x, g(x)≥ (g0− ε

)
x, 0 < x ≤H1. (3.30)

Now, g(0)= 0, and so there exists 0 <H2 <H1 such that

λg(x)≤ H1
∫ σ(1)
0 G

(
σ(s),s

)
b(s)Δs

, 0≤ x ≤H2. (3.31)

Choose u∈� with ‖u‖ =H2. Then, for 0≤ s≤ σ(1), we have

λ
∫ σ(1)
0 G

(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr ≤

∫ σ(1)
0 G

(
σ(s),r

)
b(r)H1Δr

∫ σ(1)
0 G

(
σ(s),s

)
b(s)Δs

≤H1. (3.32)
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Then,

Tu(τ)= λ
∫ σ(1)

0
G(τ,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
Δr
)
Δs

≥ λ
∫ ω

ξ
G(τ,s)a(s)

(
f0− ε

)
λ
∫ σ(1)

0
G
(
σ(s),r

)
b(r)g

(
u
(
σ(r)

))
ΔrΔs

≥ λ
∫ ω

ξ
G(τ,s)a(s)

(
f0− ε

)
λ
∫ ω

ξ
G(τ,r)b(r)g

(
u
(
σ(r)

))
ΔrΔs

≥ λ
∫ ω

ξ
G(τ,s)a(s)

(
f0− ε

)
λm
∫ ω

ξ
G(τ,r)b(r)

(
g0− ε

)‖u‖ΔrΔs

≥ λ
∫ ω

ξ
G(τ,s)a(s)

(
f0− ε

)‖u‖Δs

≥ λm
∫ ω

ξ
G(τ,s)a(s)

(
f0− ε

)‖u‖Δs≥ ‖u‖.

(3.33)

So, ‖Tu‖ ≥ ‖u‖. If we put

Ω1 =
{
x ∈� | ‖x‖ <H2

}
, (3.34)

then

‖Tu‖ ≥ ‖u‖, for u∈�∩ ∂Ω1. (3.35)

Next, by definitions of f∞ and g∞, there exists H1 such that

f (x)≤ ( f0− ε
)
x, g(x)≤ (g0− ε

)
x, x ≥H1. (3.36)

There are two cases: (a) g is bounded, and (b) g is unbounded.
For case (a), suppose N > 0 is such that g(x)≤ N for all 0 < x <∞. Then, for 0≤ s≤

σ(1) and u∈�,

λ
∫ σ(1)

0
G
(
σ
(
s(r)

))
b(r)g

(
u
(
σ(r)

))
Δr ≤Nλ

∫ σ(1)

0
G
(
σ(r),r

)
b(r)Δr. (3.37)

Let

M =max
{
f (x) | 0≤ x ≤Nλ

∫ σ(1)

0
G
(
σ(r),r

)
b(r)Δr

}
, (3.38)

and let

H3 >max
{
2H2,Mλ

∫ σ(1)

0
G
(
σ(s),s

)
a(s)Δs

}
. (3.39)

Then, for u∈� with ‖u‖ =H3,

Tu(t)≤ λ
∫ σ(1)

0
G
(
σ(s),s

)
a(s)MΔs

≤H3 = ‖u‖
(3.40)
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so that ‖Tu‖ ≤ ‖u‖. If

Ω2 =
{
x ∈� | ‖x‖ <H3

}
, (3.41)

then

‖Tu‖ ≤ ‖u‖, for u∈�∩ ∂Ω2. (3.42)

For case (b), there exists H3 > max{2H2,H1} such that g(x) ≤ g(H3), for 0 < x ≤
H3. Similarly, there exists H4 >max{H3,λ

∫ σ(1)
0 G(σ(r),r)b(r)g(H3)Δr)} such that f (x)≤

f (H4), for 0 < x ≤H4. Choosing u∈� with ‖u‖ =H4 we have by (d) that

Tu(t)≤ λ
∫ σ(1)

0
G(t,s)a(s) f

(
λ
∫ σ(1)

0
G
(
σ(r),r

)
b(r)g

(
H3
)
Δr
)
Δs

≤ λ
∫ σ(1)

0
G(t,s)a(s) f

(
H4
)
Δs

≤ λ
∫ σ(1)

0
G
(
σ(s),s

)
a(s)Δs

(
f∞ + ε

)
H4

≤H4 = ‖u‖,

(3.43)

and so ‖Tu‖ ≤ ‖u‖. For this case, if we let

Ω2 =
{
x ∈� | ‖x‖ <H4

}
, (3.44)

then

‖Tu‖ ≤ ‖u‖, for u∈�∩ ∂Ω2. (3.45)

In either cases, application of part (ii) of Theorem 2.1 yields a fixed point u of T be-
longing to �∩ (Ω2 \Ω1), which in turn yields a pair (u,v) satisfying (1.2), (1.3) for the
chosen value of λ. The proof is complete. �
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