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We consider the following system of Lyness-type difference equations: x1(n + 1) =
(akxk(n) + bk)/xk−1(n − 1), x2(n + 1) = (a1x1(n) + b1)/xk(n − 1), xi(n + 1) =
(ai−1xi−1(n) + bi−1)/xi−2(n− 1), i= 3,4, . . . ,k, where ai, bi, i= 1,2, . . . ,k, are positive con-
stants, k ≥ 3 is an integer, and the initial values are positive real numbers. We study the
existence of invariants, the boundedness, the persistence, and the periodicity of the posi-
tive solutions of this system.
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1. Introduction

Difference equations and systems of difference equations have many applications in bi-
ology, economy, and other sciences. So there exist many papers concerning systems of
difference equations (see [1–10] and the references cited therein).

In [11], Kocić and Ladas investigated the existence of invariants, the boundedness,
the persistence, the periodicity, and the oscillation of the positive solutions of the Lyness
difference equation

xn+1 = xn +A

xn−1
, n= 0,1, . . . , (1.1)

where A is a positive constant and the initial conditions x−1, y−1, x0, y0 are positive real
numbers.
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In [6–8], the authors studied the behavior of the positive solutions of the system of
two Lyness difference equations

xn+1 = byn + c

xn−1
, yn+1 = dxn + e

yn−1
, n= 0,1, . . . , (1.2)

where b, c, d, e are positive constants and the initial conditions x−1, y−1, x0, y0 are positive
numbers.

Now in this paper, we consider the system of difference equations:

x1(n+1)= akxk(n) + bk
xk−1(n− 1)

,

x2(n+1)= a1x1(n) + b1
xk(n− 1)

,

xi(n+1)= ai−1xi−1(n) + bi−1
xi−2(n− 1)

, i= 3,4, . . . ,k,

(1.3)

where ai, bi, i = 1,2, . . . ,k, are positive constant numbers, k ≥ 3 is an integer, and the
initial values xi(−1), xi(0), i= 1,2, . . . ,k, are positive real numbers. For simplicity, system
(1.3) can be written as follows:

xi(n+1)= ai−1xi−1(n) + bi−1
xi−2(n− 1)

, i= 1,2, . . . ,k, (1.4)

where

a0 = ak, b0 = bk, xj(n)= xk+ j(n), j =−1,0, n=−1,0, . . . . (1.5)

We study the existence of invariants, the boundedness, the persistence, and the periodicity
of the positive solutions of the system (1.3).

2. Boundedness and persistence

In this section, we study the boundedness and the persistence of the positive solutions of
(1.3). For this goal, we show the following proposition in which we find conditions so
that system (1.3) has an invariant.

Proposition 2.1. Let k ≥ 3 and

λk+i = λi, i∈ {−2,−1,0,1,2,3,4},
ak+i = ai, i∈ {−3,−2,−1,0,1},
bk+i = bi, i∈ {−2,−1,0}.

(2.1)

Assume that the system of 2k equations, with k unknowns λ1,λ2, . . . ,λk of the form

λi+2bi−1 + λi+3aiai−1 = λi−2bi−3 + λi−3ai−4ai−3, i∈ {1,2, . . . ,k},
λi+4ai+1bi = λi−1ai−2bi−1, i∈ {1,2, . . . ,k}, (2.2)
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has a nontrivial solution λ1,λ2, . . .λk. Then system (1.3) has an invariant of the form

In =
k∑

i=1
λi+2xi(n) +

k∑

i=1
λi+2xi(n− 1)

+
k∑

i=1

(
λibi−1 + λi−1ai−1ai−2

) 1
xi(n)

+
k∑

i=1

(
λibi−1 + λi−1ai−1ai−2

) 1
xi(n− 1)

+
k∑

i=1
λi−1ai−2bi−1

1
xi(n)xi−1(n− 1)

+
k∑

i=1
λiai−1

xi−1(n− 1)
xi(n)

+
k∑

i=1
λi+3ai

xi(n)
xi−1(n− 1)

.

(2.3)

Proof. From (1.5), (1.4), (2.1), (2.2), and (2.3), we have

In+1 =
k∑

i=1
λi+2ai−1

xi−1(n)
xi−2(n− 1)

+
k∑

i=1
λi+2bi−1

1
xi−2(n− 1)

+
k∑

i=1
λi+2xi(n)

+
k∑

i=1

(
λibi−1 + λi−1ai−1ai−2 + λi−1ai−2bi−1

1
xi−1(n)

+ λiai−1xi−1(n)
)

× xi−2(n− 1)
ai−1xi−1(n) + bi−1

+
k∑

i=1

(
λibi−1 + λi−1ai−1ai−2

) 1
xi(n)

+
k∑

i=1
λi+3aiai−1

1
xi−2(n− 1)

+
k∑

i=1
λi+3aibi−1

1
xi−1(n)xi−2(n− 1)

=
k∑

i=1
λi+2xi(n) +

k∑

i=1
λixi−2(n− 1)

+
k∑

i=1

(
λibi−1 + λi−1ai−1ai−2

) 1
xi(n)

+
k∑

i=1

(
λi+2bi−1 + λi+3aiai−1

) 1
xi−2(n− 1)

+
k∑

i=1
λi+3aibi−1

1
xi−1(n)xi−2(n− 1)

+
k∑

i=1
λi−1ai−2

xi−2(n− 1)
xi−1(n)

+
k∑

i=1
λi+2ai−1

xi−1(n)
xi−2(n− 1)

= In.

(2.4)

This completes the proof of the proposition. �
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Corollary 2.2. Let k = 3. Then system (1.3) for k = 3 has the following invariant:

In = b1x1(n) + b2x2(n) + b3x3(n) + b1x1(n− 1)+ b2x2(n− 1)

+ b3x3(n− 1)+
(
b2b3 + b1a2a3

) 1
x1(n)

+
(
b3b1 + b2a3a1

) 1
x2(n)

+
(
b1b2 + b3a1a2

) 1
x3(n)

+
(
b2b3 + b1a2a3

) 1
x1(n− 1)

+
(
b3b1 + b2a3a1

) 1
x2(n− 1)

+
(
b1b2 + b3a1a2

) 1
x3(n− 1)

+ b1a2b3
1

x1(n)x3(n− 1)
+ b2a3b1

1
x2(n)x1(n− 1)

+ b3a1b2
1

x3(n)x2(n− 1)
+ b2a3

x3(n− 1)
x1(n)

+ b3a1
x1(n− 1)
x2(n)

+ b1a2
x2(n− 1)
x3(n)

+ b2a1
x1(n)

x3(n− 1)
+ b3a2

x2(n)
x1(n− 1)

+ b1a3
x3(n)

x2(n− 1)
.

(2.5)

Proof. From (2.1) and (2.2), we get λ2b2 = λ1b3, λ3b3 = λ2b1, λ1b1 = λ3b2. We set λ1 = b2,
λ2 = b3, λ3 = b1. Then from (2.3), the proof follows immediately. �

Corollary 2.3. Let k = 4. Suppose that

b1 = b2 = b3 = b4 = b. (2.6)

Then system (1.3) for k = 4 has an invariant of the form

In = a1x1(n) + a2x2(n) + a3x3(n) + a4x4(n) + a1x1(n− 1)

+ a2x2(n− 1)+ a3x3(n− 1)+ a4x4(n− 1)+
(
a3b+ a4a2a3

) 1
x1(n)

+
(
a4b+ a4a3a1

) 1
x2(n)

+
(
a1b+ a4a1a2

) 1
x3(n)

+
(
a2b+ a3a1a2

) 1
x4(n)

+
(
a3b+ a4a2a3

) 1
x1(n− 1)

+
(
a4b+ a4a3a1

) 1
x2(n− 1)

+
(
a1b+ a4a1a2

) 1
x3(n− 1)

+
(
a2b+ a3a1a2

) 1
x4(n− 1)

+ a3a2b
1

x1(n)x4(n− 1)
+ a3a4b

1
x2(n)x1(n− 1)
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+ a1a4b
1

x3(n)x2(n− 1)
+ a1a2b

1
x4(n)x3(n− 1)

+ a1a4
x1(n− 1)
x2(n)

+ a1a2
x2(n− 1)
x3(n)

+ a3a2
x3(n− 1)
x4(n)

+ a3a4
x4(n− 1)
x1(n)

+ a1a4
x4(n)

x3(n− 1)
+ a3a4

x3(n)
x2(n− 1)

+ a3a2
x2(n)

x1(n− 1)
+ a1a2

x1(n)
x4(n− 1)

.

(2.7)

Proof. From (2.1), (2.2), and (2.6), we obtain

λ2b+ λ3a4a3 = λ2b+ λ1a4a1,

λ1b+ λ2a2a3 = λ1b+ λ4a4a3,

λ3b+ λ4a4a1 = λ3b+ λ2a2a1,

λ4b+ λ1a2a1 = λ4b+ λ3a2a3,

λ1a4b = λ2a3b,

λ2a1b = λ3a4b,

λ3a2b = λ4a1b,

λ4a3b = λ1a2b.

(2.8)

We set in (2.8) λ1 = a3, λ2 = a4, λ3 = a1, λ4 = a2. Then from (2.3), the proof follows
immediately. �

Corollary 2.4. Consider system (1.3), where k = 5. Suppose that

a4a5 = b2,

a3a2 = b5,

a5a1 = b3,

a4a3 = b1,

a1a2 = b4.

(2.9)

Then system (1.3), with k = 5, has an invariant of the form

In = λ3x1(n) + λ4x2(n) + λ5x3(n) + λ1x4(n) + λ2x5(n)

+ λ3x1(n− 1)+ λ4x2(n− 1)+ λ5x3(n− 1)

+ λ1x4(n− 1)+ λ2x5(n− 1)

+
(
λ1a2a3 + λ5a4a5

) 1
x1(n)

+
(
λ2a3a4 + λ1a5a1

) 1
x2(n)
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+
(
λ3a4a5 + λ2a1a2

) 1
x3(n)

+
(
λ4a1a5 + λ3a2a3

) 1
x4(n)

+
(
λ5a1a2 + λ4a3a4

) 1
x5(n)

+
(
λ1a2a3 + λ5a4a5

) 1
x1(n− 1)

+
(
λ2a3a4 + λ1a5a1

) 1
x2(n− 1)

+
(
λ3a4a5 + λ2a1a2

) 1
x3(n− 1)

+
(
λ4a1a5 + λ3a2a3

) 1
x4(n− 1)

+
(
λ5a1a2 + λ4a3a4

) 1
x5(n− 1)

+ λ5a4a3a2
1

x1(n)x5(n− 1)
+ λ1a5a4a3

1
x2(n)x1(n− 1)

+ λ2a1a4a5
1

x3(n)x2(n− 1)
+ λ3a2a5a1

1
x4(n)x3(n− 1)

+ λ4a3a1a2
1

x5(n)x4(n− 1)

+ λ1a5
x5(n− 1)
x1(n)

+ λ2a1
x1(n− 1)
x2(n)

+ λ3a2
x2(n− 1)
x3(n)

+ λ4a3
x3(n− 1)
x4(n)

+ λ5a4
x4(n− 1)
x5(n)

+ λ4a1
x1(n)

x5(n− 1)
+ λ5a2

x2(n)
x1(n− 1)

+ λ1a3
x3(n)

x2(n− 1)

+ λ2a4
x4(n)

x3(n− 1)
+ λ3a5

x5(n)
x4(n− 1)

,

(2.10)

where λi, i= 1,2,3,4,5, are real numbers.

Proof. Using (2.1), (2.2), and (2.9), we get

λ1a1a5 + λ2a4a3 = λ2a3a4 + λ1a5a1,

λ2a2a1 + λ3a4a5 = λ3a4a5 + λ2a1a2,

λ5a4a5 + λ1a3a2 = λ1a2a3 + λ5a4a5,

λ3a3a2 + λ4a1a5 = λ4a1a5 + λ3a2a3,

λ4a4a3 + λ5a2a1 = λ5a1a2 + λ4a3a4,

λ1a3a4a5 = λ1a3a4a5,

λ2a4a5a1 = λ2a4a5a1,

λ3a5a1a2 = λ3a5a1a2,

λ4a1a2a3 = λ4a1a2a3,

λ5a2a3a4 = λ5a2a3a4,

(2.11)
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which are satisfied for any real numbers λi, i= 1,2,3,4,5. Then from (2.3), the corollary
is proved. �

3. Periodicity

We study the periodicity of the positive solutions of (1.3) by investigating three cases:
k = 3, k = 4, and k ∈ {5,6, . . .}. For the first case, we show the following proposition.

Proposition 3.1. Consider system (1.3) for k = 3. If

a1 = a2 = a3 = a,

b1 = b2 = b3 = b,

a2 = b,

(3.1)

then every positive solution of system (1.3) is periodic of period 15.

Proof. We have

x1(n+5)= ax3(n+4)+ a2

x2(n+3)
= a

((
ax2(n+3)+ a2

)
/x1(n+2)

)
+ a2

x2(n+3)

= a2x2(n+3)+ a3 + a2x1(n+2)
x1(n+2)x2(n+3)

= a2
((
ax1(n+2)+ a2

)
/x3(n+1)

)
+ a3 + a2x1(n+2)

x1(n+2)((ax1(n+2)+ a2)/x3(n+1))

= a3x1(n+2)+ a4 + a3x3(n+1)+ a2x1(n+2)x3(n+1)
x1(n+2)

[
ax1(n+2)+ a2

]

=
[
ax1(n+2)+ a2

][
ax3(n+1)+ a2

]

x1(n+2)
[
ax1(n+2)+ a2

]

= ax3(n+1)+ a2

x1(n+2)
= x2(n).

(3.2)

Working in a similar way, we can prove that

x2(n+5)= x3(n),

x3(n+5)= x1(n).
(3.3)

Thus,

x1(n+15)= x2(n+10)= x3(n+5)= x1(n). (3.4)

Similarly,

x2(n+15)= x2(n),

x3(n+15)= x3(n),
(3.5)

and the proof of the proposition is complete. �



8 Advances in Difference Equations

In the sequel, we prove the following proposition which concerns the case k = 4.

Proposition 3.2. Consider system (1.3) for k = 4. If

a1 = a2 = a3 = a4 = a,

b1 = b2 = b3 = b4 = b,

a2 = b,

(3.6)

then every positive solution of system (1.3) is periodic of period 20.

Proof. We have

x1(n+5)= ax4(n+4)+ a2

x3(n+3)
= a

(
(ax3(n+3)+ a2)/x2(n+2)

)
+ a2

x3(n+3)

= a2x3(n+3)+ a3 + a2x2(n+2)
x2(n+2)x3(n+3)

= a2
((
ax2(n+2)+ a2

)
/x1(n+1)

)
+ a3 + a2x2(n+2)

x2(n+2)((ax2(n+2)+ a2)/x1(n+1))

= a3x2(n+2)+ a4 + a3x1(n+1)+ a2x1(n+1)x2(n+2)
x2(n+2)

[
ax2(n+2)+ a2

]

=
[
ax2(n+2)+ a2

][
ax1(n+1)+ a2

]

x2(n+2)
[
ax2(n+2)+ a2

]

= ax1(n+1)+ a2

x2(n+2)
= x4(n).

(3.7)

Arguing as above, we can show that

x2(n+5)= x1(n),

x3(n+5)= x2(n),

x4(n+5)= x3(n).

(3.8)

So,

x1(n+20)= x4(n+15)= x3(n+10)= x2(n+5)= x1(n). (3.9)

Similarly,

x2(n+20)= x2(n),

x3(n+20)= x3(n),

x4(n+20)= x4(n),

(3.10)

and the proof of the proposition is complete. �
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Finally, we study the case k ∈ {5,6, . . .}. To this end, we have at first to prove the fol-
lowing lemma.

Lemma 3.3. Let k ≥ 5. If

a1 = a2 = ··· = ak = a, b1 = b2 = ··· = bk = b, a2 = b (3.11)

then

xi(n+5)= xk−5+i(n), i∈ {1,2, . . . ,5},
xi(n+5)= xi−5(n), i∈ {6,7, . . . ,k}. (3.12)

Proof. From (1.3), we have

x1(n+5)= axk(n+4)+ a2

xk−1(n+3)
= a

((
axk−1(n+3)+ a2

)
/xk−2(n+2)

)
+ a2

xk−1(n+3)

= a2xk−1(n+3)+ a3 + a2xk−2(n+2)
xk−2(n+2)xk−1(n+3)

= a2
((
axk−2(n+2)+ a2

)
/xk−3(n+1)

)
+ a3 + a2xk−2(n+2)

xk−2(n+2)
((
axk−2(n+2)+ a2

)
/xk−3(n+1)

)

= a3xk−2(n+2)+ a4 + a3xk−3(n+1)+ a2xk−2(n+2)xk−3(n+1)
xk−2(n+2)

(
axk−2(n+2)+ a2

)

=
(
axk−2(n+2)+ a2

)(
axk−3(n+1)+ a2

)

xk−2(n+2)
(
axk−2(n+2)+ a2

) .

(3.13)

Then since, from (1.3),

xk−4(n)= axk−3(n+1)+ a2

xk−2(n+2)
, (3.14)

it follows that

x1(n+5)= xk−4(n). (3.15)

Similarly, we can prove that

xi(n+5)= xk−5+i(n), i∈ {2,3, . . . ,5}. (3.16)
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Let i∈ {6,7, . . . ,k}. Then

xi(n+5)= axi−1(n+4)+ a2

xi−2(n+3)
= a

((
axi−2(n+3)+ a2

)
/xi−3(n+2)

)
+ a2

xi−2(n+3)

= a2xi−2(n+3)+ a3 + a2xi−3(n+2)
xi−2(n+3)xi−3(n+2)

= a2
((
axi−3(n+2)+ a2

)
/xi−4(n+1)

)
+ a3 + a2xi−3(n+2)

xi−3(n+2)
((
axi−3(n+2)+ a2

)
/xi−4(n+1)

)

= a3xi−3(n+2)+ a4 + a3xi−4(n+1)+ a2xi−3(n+2)xi−4(n+1)
xi−3(n+2)

(
axi−3(n+2)+ a2

)

=
(
axi−3(n+2)+ a2

)(
axi−4(n+1)+ a2

)

xi−3(n+2)
(
axi−3(n+2)+ a2

) .

(3.17)

Then since, from (1.3),

xi−5(n)= axi−4(n+1)+ a2

xi−3(n+2)
, (3.18)

it follows that

xi(n+5)= xi−5(n), i∈ {6,7, . . . ,k}. (3.19)

Now we can show the following proposition. �

Proposition 3.4. Consider system (1.3), where k ≥ 5. Assume that relations (3.11) hold.
Then the following statements are true.

(i) Every positive solution of system (1.3) is periodic of period k if k = 5r, r = 1,2, . . . .
(ii) Every positive solution of system (1.3) is periodic of period 5k if k �= 5r, r = 1,2, . . . .

Proof. Consider an arbitrary solution (x1(n), . . . ,xk(n)) of (1.3).
(i) Suppose that k = 5r, r = 1,2, . . . . Then from (3.12), we have

xi(n+5)= x5r−5+i(n), i∈ {1,2, . . . ,5},
xi(n+5)= xi−5(n), i∈ {6,7, . . . ,5r}. (3.20)

We claim that for i= 1,2, . . . ,5,

xi(n+5s)= x5r−5s+i(n), s= 1,2, . . . ,r. (3.21)

From (3.20), it is obvious that (3.21) is true for s = 1. Suppose that for i = 1,2, . . . ,5,
relation (3.21) is true for s = 1,2, . . . ,r − 1. Then since 6 ≤ 5r − 5s+ i ≤ 5r, from (3.20)
and (3.21), we get for i= 1,2, . . . ,5,

xi(n+5+5s)= x5r−5s+i(n+5)= x5r−5(s+1)+i(n), (3.22)
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and so (3.21) is true. Then from (3.21) for s= r, we have

xi(n+5r)= xi(n), i= 1,2, . . . ,5. (3.23)

Therefore the sequences xi(n), i = 1,2, . . . ,5 are periodic of period 5. Then from (3.20),
all the sequences xi(n), i= 1,2, . . . ,k, are periodic of period k.

(ii) Suppose that k �= 5r, r = 1,2, . . . . Let k = 5r +1, r = 1,2, . . . . Then from (3.12), we
have

xi(n+5)= x5r−4+i(n), i∈ {1,2, . . . ,5},
xi(n+5)= xi−5(n), i∈ {6,7, . . . ,5r +1}. (3.24)

Applying (3.24) and using the same argument to show (3.21), we can prove that for i =
1,2, . . . ,5

xi(n+5s)= x5r−5s+i+1(n), s= 1,2, . . . ,r. (3.25)

So from (3.24) and (3.25) for i= 1, s= r, we get

x1(n+25r +5)= x2(n+20r +5)= x3(n+15r +5)= x4(n+10r +5),

x5(n+5r +5)= x6(n+5)= x1(n).
(3.26)

Therefore x1(n) is a periodic sequence of period 5(5r +1)= 5k. Hence by (3.24), all the
sequences xi(n), i= 1,2, . . . ,k, are periodic of period 5k.

Let k = 5r +2. Then from (3.12), we have

xi(n+5)= x5r−3+i(n), i∈ {1,2, . . . ,5},
xi(n+5)= xi−5(n), i∈ {6,7, . . . ,5r +2}. (3.27)

Then from (3.27) and using the same argument to prove (3.21), we can prove that for
i= 1,2, . . . ,5,

xi(n+5s)= x5r−5s+i+2(n), s= 1,2, . . . ,r. (3.28)

Then from (3.27) and (3.28) for i= 1, s= r, we get

x1(n+25r +10)= x3(n+20r +10)= x5(n+15r +10)

= x7(n+10r +10)= x2(n+10r +5)= x4(n+5r +5)

= x6(n+5)= x1(n),

(3.29)

which implies that x1(n) is a periodic sequence of period 5k. Then by relations (3.27), we
can prove that the sequences xi(n), i= 2,3, . . . ,k, are periodic of period 5k.

Let k = 5r +3. Then from (3.12), we have

xi(n+5)= x5r−2+i(n), i∈ {1,2, . . . ,5},
xi(n+5)= xi−5(n), i∈ {6,7, . . . ,5r +3}. (3.30)
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Then from (3.30) and using the same argument to show (3.21), we can prove that for
i= 1,2, . . . ,5,

xi(n+5s)= x5r−5s+i+3(n), s= 1,2, . . . ,r. (3.31)

Then from (3.30) and (3.31) for i= 1, s= r, we get

x1(n+25r +15)= x4(n+20r +15)= x7(n+15r +15)

= x2(n+15r +10)= x5(n+10r +10)

= x8(n+5r +10)= x3(n+5r +5)= x6(n+5)= x1(n),

(3.32)

which implies that x1(n) is a periodic sequence of period 5(5r + 3) = 5k. Then from re-
lations (3.30), we can prove that the sequences xi(n), i= 1,2, . . . ,k, are periodic of period
5k.

Let k = 5r +4. Then from (3.12), we have

xi(n+5)= x5r−1+i(n), i∈ {1,2, . . . ,5},
xi(n+5)= xi−5(n), i∈ {6,7, . . . ,5r +4}. (3.33)

Then from (3.33) and using the same argument to show (3.21), we can prove that for
i= 1,2, . . . ,5,

xi(n+5s)= x5r−5s+i+4(n), s= 1,2, . . . ,r. (3.34)

Then from (3.33) and (3.34) for i= 1, s= r, we get

x1(n+25r +20)= x5(n+20r +20)= x9(n+15r +20)

= x4(n+15r +15)= x8(n+10r +15)= x3(n+10r +10)

= x7(n+5r +10)= x2(n+5r +5)= x6(n+5)= x1(n),

(3.35)

which implies that x1(n) is a periodic sequence of period 5(5r + 4) = 5k. Then from re-
lations (3.33), we can prove that the sequences xi(n), i= 1,2, . . . ,k, are periodic of period
5k. This completes the proof of the proposition. �
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