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Abstract
Vaccination is an important tool in disease control to suppress disease, and
vaccine-influenced diseases no longer conform to the general pattern of
transmission. In this paper, by assuming that the infection rate is affected by the
Ornstein–Uhlenbeck process, we obtained a stochastic SIRV model. First, we prove
the existence and uniqueness of the global positive solution. Sufficient conditions for
the extinction and persistence of the disease are then obtained. Next, by creating an
appropriate Lyapunov function, the existence of the stationary distribution for the
model is proved. Further, the explicit expression for the probability density function of
the model around the quasi-equilibrium point is obtained. Finally, the analytical
outcomes are examined by numerical simulations.
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1 Introduction
Vaccination is an effective means of preventing infectious diseases. On the one hand, after
vaccination, people can gain immunity to diseases, effectively reducing the risk of illness,
severe illness, and death. On the other hand, through orderly vaccination, an immune bar-
rier can be gradually established in the population, blocking the spread of diseases, and
protecting people’s daily lives. Many diseases that have plagued humans for many years,
such as measles, rabies, and hepatitis B, have been effectively mitigated by vaccination. In
a number of articles [1–7], various dynamic behaviors of disease transmission with vacci-
nation have been analyzed. Based on [8–10], Oke et al. [11] established a SIRV infectious
disease model in 2019, which is shown below:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = A – μS – λSI – ρS + δ1R + δ2V ,
dI
dt = λSI – (μ + α + γ + r)I,
dR
dt = γ I – (μ + δ1)R,
dV
dt = ρS – (μ + δ2)V ,

(1)
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where S(t) denotes the susceptible individuals, I(t) denotes the infected individuals, R(t)
denotes the recovered individuals and V (t) denotes the vaccinated individuals; A indicates
the natural input rate, μ indicates the natural mortality of the individuals, α indicates the
mortality rate of the individuals due to disease, λ indicates infection rate between suscepti-
ble individuals and infected individuals; ρ indicates the rate of vaccination of susceptible
individuals, δ1 and δ2 indicate the rate of loss of immunity in recovered individuals and
vaccinated individuals separately, γ indicates the natural recovery rate of the infected in-
dividuals, r indicates the treatment rate of the infected individuals.

The real environment is constantly changing, which leads to randomness everywhere in
the natural environment, and the parameters of the model constantly fluctuate above or
below the average value. Therefore, the construction of an infectious disease model con-
sidering the impact of environmental noise can better reflect the actual situation of the
spread of infectious diseases in real world situations. In order to simulate the impact of
environmental noise, there are generally two methods. The first method is to establish a
linear function about white Gaussian noise by adding white Gaussian noise to parameters
[12–20], and the second method is to introduce Ornstein–Ulenbeck process into param-
eters to make them driven by Ornstein–Ulenbeck process [21–31]. Kang et al. [32] noted
that Gaussian colored noise, produced by the Ornstein–Ulenbeck process, is appropriate
for modeling the correlation of environmental fluctuations, while Gaussian white noise,
which is the formal derivative of Wiener process of stationary independent increments, is
not able to represent the correlation of environmental fluctuations. Allen [33] also com-
pared these two types of noise and reached the following conclusion:

(i) Assuming that the infection rate is affected by white Gaussian noise, its form is as
follows:

λ(t) = λ + σ
dB(t)

dt
, (2)

where B(t) denotes the standard Brownian movement, σ denotes environmental fluctua-
tion intensity. Dividing by t on both sides after integrating the previous equation from 0
to t, we have

1
t

∫ t

0
λ(s) ds = λ̄ + σ

dB(t)
dt

∼
(

λ̄,
σ 2

t

)

.

It can be seen that the variance of λ(t) goes to infinity as t approaches 0. That is to say,
successive averages of this linear function undergoes significant random fluctuations. At
the same time, introducing the Ornstein–Uhlenbeck process into the infection rate gives

λ(t) = λ + m(t), (3)

where m(t) obeys

dm(t) = –θm(t) dt + ξ dB(t),

where θ represents the reverse speed, ξ represents the fluctuation intensity, B(t) repre-
sents the standard Brownian motion. Integrating Eq. (3) from 0 to t, we obtain

m(t) = m0e–θ t + ξ

∫ t

0
e–θ (t–s) dB(s), (4)
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where m0 = m(0). Obviously, m(t) follows the normal distribution in the form of N(m0e–θ t ,
ξ2

2θ
(1 – e–2θ t)). As t approaches 0, the variance of the Ornstein–Uhlenbeck process also

tends to 0. Obviously, using Ornstein–Ulenbeck process to simulate biological model is
more appropriate.

(ii) Compared with white Gaussian noise, the Ornstein–Uhlenbeck process is a contin-
uous process that changes over time. For example, the correlation coefficient λ1(t) of the
Ornstein–Uhlenbeck process admits ρ(λ1(t),λ1(t + 
t)) = 1 – o(t), while the correlation
coefficient λ2(t) of white Gaussian noise admits ρ(λ2(t),λ2(t +
t)) = 0. This indicates that
adding white Gaussian noise as a disturbance to models with short-term is more suitable.
However, in reality, environmental fluctuations are influenced by multiple relationships,
which are also constantly changing. Hence, introducing the Ornstein–Uhlenbeck process
is more realistic for simulating this longer period interaction, suitable for the assumption
that continuous fluctuations in environmental noise lead to parameter oscillations near
the mean value over a period of time. This is consistent with the viewpoint of Kang et
al. [32].

Considering Eq. (4) again, it can be concluded that

ξ

∫ t

0
e–θ (t–s) dB(s) =

ξ√
2θ

√
1 – e–2θ t dB(t)

dt
a.e.

Then, Eq. (4) becomes

m(t) = m0e–θ t +
ξ√
2θ

√
1 – e–2θ t dB(t)

dt
.

From this equation, it can be seen that no matter how m(t) changes in the previous mo-
ment, it will continue to develop towards 0 in the next moment. This is also one of the
advantages of the Ornstein–Uhlenbeck process [34].

Recently, many experts and scholars have studied the property of the Ornstein–
Uhlenbeck process and incorporated it into existing dynamic models with remarkable
results. Zhang et al. [35] studied a stochastic SVEIR epidemic model, where the trans-
mission rate follows the log-normal Ornstein–Uhlenbeck process. They established suf-
ficient conditions for the persistence and extinction of the disease, and studied the local
asymptotic stability of equilibrium points in the specific deterministic system with bilin-
ear incidence and σ = 1. Zhang et al. [36] studied a stochastic constantizer model with
mean-reverting Ornstein–Uhlenbeck process and Monod–Haldane response function
and found that the rate of regression and volatility intensity had important effects on
microbial extinction and persistence. These results can demonstrate the effectiveness of
adding the Ornstein–Uhlenbeck process to the biological model. In this article, we assume
that the infection rate is affected by the Ornstein–Uhlenbeck process and then establish
the following stochastic SIRV model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = (A – μS – λSI – mSI – ρS + δ1R + δ2V ) dt,

dI = [λSI + mSI – (μ + α + γ + r)I] dt,

dR = [γ I – (μ + δ1)R] dt,

dV = [ρS – (μ + δ2)V ] dt,

dm = –θm dt + ξ dB(t).

(5)
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Suppose (�, {Ft}t≥0,P) is a whole space of probabilities with normal condition (Right
continuous, F0 includes all zero measurement sets), where {Ft}t≥0 is a σ algebra in �.

The main structure of this article is as follows. First, in Sect. 2, we demonstrate the ex-
istence and uniqueness of the global positive solution for model (5). In Sects. 3 and 4, we
derive the conditions leading to the extinction and persistence of the disease by construct-
ing appropriate functions. The sufficient conditions for the ergodic stationary distribution
of model (5) are obtained in Sect. 5. In Sect. 6, the exact expression of the probability den-
sity function is obtained by solving the corresponding Fokker-Planck equation. Then we
confirm the theoretical results by numerical simulations in Sect. 7.

2 Existence and uniqueness of global solution
Before studying this SIRV model, we first need to prove the existence and uniqueness of
the global positive solutions of model (5) to demonstrate the feasibility of its dynamic
behavior.

Theorem 1 Model (5) has a particular global solution (m(t), S(t), I(t), R(t), V (t)), specified
for any t ≥ 0, and the solution stays in R × R

4
+ with probability one for any initial value

(m(0), S(0), I(0), R(0), V (0)) ∈R×R
4
+.

Proof Obviously, the coefficients in model (5) all satisfy the local Lipschitz condition,
therefore, for any initial value (m(0), S(0), I(0), R(0), V (0)) ∈ R×R

4
+, there exists a unique

local solution (m(t), S(t), I(t), R(t), V (t)) ∈ on t ∈ [0, τe], where τe an explosion time. In or-
der to demonstrate that this particular solution is global, we need to establish that τe = ∞.
Determine a constant n that is sufficient for m(0), S(0), I(0), R(0), V (0) to fall totally within
the range [ 1

n , n]. For each instance of the integer k ≥ n, define the stopping time

τk = inf

{

t ∈ [0, τe] : min
{

em(t), S(t), I(t), R(t), V (t)
}

≤ 1
k

or max
{

em(t), S(t), I(t), R(t), V (t)
} ≥ k

}

.

In this article, we set inf∅=∞. It is worth noting that τk increases monotonically with k →
∞. Here we make τ∞= limk→∞ τk and τ∞ ≤ τe a.s. If we can prove τ∞=∞, then Theorem 1
can be shown to be complete.

Now we assume this situation is wrong, there is a pair of constants T > 0, ε ∈ (0, 1) obeys
P{τ∞ ≤ T} > ε. Accordingly, set an integer k1 ≥ n satisfies P{τk ≤ T} > ε (∀k ≥ k1). Then
define a nonnegative C2-function

V1 = S – 1 – ln S + I – 1 – ln I + R – 1 – ln R + V – 1 – ln V +
1
2

m2.

By Itô’s formula, we obtain

LV1 =
(

1 –
1
S

)

dS +
(

1 –
1
I

)

dI +
(

1 –
1
R

)

dR +
(

1 –
1
V

)

dV + m dm +
1
2
ξ 2

= A – μS – μI – μR – μV – αI –
A
S

+ μ + λI + ρ –
δ1R
S

–
δ2V

S
+ mI – λS – mS

+ (μ + α + γ + r) –
γ I
R

+ (μ + δ1) –
ρS
V

+ (μ + δ2) – θm2 +
1
2
ξ 2 (6)
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≤ A + μ + λI + ρ + |m|S + |m|I + (μ + α + γ + r) + (μ + δ1)

+ (μ + δ2) – θm2 +
1
2
ξ 2.

From model (5), we can easily obtain that

d(S + I + R + V ) = A – μS – μI – αI – rI – μR – μV ≤ A – μ(S + I + R + V ),

then

S(t) + I(t) + R(t) + V (t)

≤
⎧
⎨

⎩

A
μ

, S(0) + I(0) + R(0) + V (0) ≤ A
μ

,

S(0) + I(0) + R(0) + V (0), S(0) + I(0) + R(0) + V (0) > A
μ

.

(7)

Set K := max{ A
μ

, S(0) + I(0) + R(0) + V (0)}, then S(t) ≤ K , I(t) ≤ K , R(t) ≤ K and V (t) ≤ K .
Equation (6) can be reduced to that

LV1 ≤ A + μ + λI + ρ + 2|m|K + (μ + α + γ + r) + (μ + δ1) + (μ + δ2) – θm2 +
1
2
ξ 2

≤ A + 4μ + λK + ρ + α + γ + r + δ1 + δ2 +
K2

θ
+

1
2
ξ 2


= k̃,

(8)

where k̃ is a positive constant that is independent of the original value. By integrating
inequality (8) from 0 to t, there is

∫ τk∧T

0
dV1 ≤

∫ τk∧T

0
k̃ dt +

∫ τk∧T

0
m3ξ dB(t). (9)

Taking expectations on the both sides of inequality (9), one obtains

E
[
V1

(
m(τk ∧ T), S(τk ∧ T), I(τk ∧ T), R(τk ∧ T), V (τk ∧ T)

)]

≤ V1
(
m(0), S(0), I(0), R(0), V (0)

)
+ E

∫ τk∧T

0
k̃ dt

≤ V1
[
m(0), S(0), I(0), R(0), V (0)

]
+ k̃T .

For k ≥ k1, we let �k = {τk ≤ T}, and there exists P(�k) ≥ ε. It is noting that for all w ∈ �k ,
there exists at minimum one in em(τk ,w), S(τk , w), I(τk , w), R(τk , w), V (τk , w) reaches either
k or 1

k . Therefore,

V1
[
m(τk ∧ T), S(τk ∧ T), I(τk ∧ T), R(τk ∧ T), V (τk ∧ T)

]

≥ (k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)

∧ 1
4

(ln k)4


= h(k).



Shang and Li Advances in Continuous and Discrete Models          (2024) 2024:9 Page 6 of 25

Since limt→∞ h(k) = ∞, there is

V1
[
m(0), S(0), I(0), R(0), V (0)

]
+ k̃T

≥ E
{

I�k V1
[
m(τk ∧ T), S(τk ∧ T), I(τk ∧ T), R(τk ∧ T), V (τk ∧ T)

]}

≥ εh(k).

When k → ∞, we can get ∞ > V1(m(0), S(0), I(0), R(0), V (0)) + k̃T = ∞ which is a contra-
diction. Thus, we obtain τ∞=∞. The conclusion is confirmed. �

Remark 1 Through Eq. (7), we can easily obtain that

S(t) + I(t) + R(t) + V (t)

≤
⎧
⎨

⎩

A
μ

, S(0) + I(0) + R(0) + V (0) ≤ A
μ

S(0) + I(0) + R(0) + V (0), S(0) + I(0) + R(0) + V (0) > A
μ


= K .

Then the feasible region of model (5) can be represented as follows:

� =
{

(S, I, R, V , m) ∈ R
4
+ ×R : S + I + R + V ≤ K

}
.

3 Extinction
In this section, we aim to obtain the factors that lead to the demise of the disease. Before
discussing this issue, we define

RE
0 =

λA(μ + δ2)
[(μ + ρ)(μ + δ2) – δ2ρ](μ + α + γ + r)

–
Kξ

(μ + α + γ + r)
√

πθ
.

Theorem 2 Assume that RE
0 < 1. For any initial value (m(t), S(t), I(t), R(t), V (t)) ∈R×R

4
+,

the following inequality holds

lim
t→∞ sup

ln I(t)
t

< (μ + α + γ + r)
(
RE

0 – 1
)

< 0. (10)

Proof Define a C2-Lyapunov function as follows:

V2 = ln I +
λ

μ + ρ – δ2ρ

μ+δ2

(

S + I +
δ1

μ + δ1
R +

δ2

μ + δ2
V

)

.

Employing Itô’s formula, we have

LV2 = mS – (μ + α + γ + r) +
λA

μ + ρ – δ2ρ

μ+δ2

–
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

I

≤ K |m| +
λA

μ + ρ – δ2ρ

μ+δ2

– (μ + α + γ + r)

= K |m| + (μ + α + γ + r)
(

λA(μ + δ2)
[(μ + ρ)(μ + δ2) – δ2ρ](μ + α + γ + r)

– 1
)

.

(11)
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Integrating both sides of the above inequality from 0 to t and dividing t, we have

V2(t)
t

–
V2(0)

t
≤ (μ + α + γ + r)

(
λA(μ + δ2)

[(μ + ρ)(μ + δ2) – δ2ρ](μ + α + γ + r)
– 1

)

+
1
t

∫ t

0
K

∣
∣m(τ )

∣
∣dτ .

As t tends to infinity, the Ornstein–Uhlenbeck process weakly converges to the normal

distribution N(0, ξ2

2θ
), then its limit distribution density function is π (x) =

√
θ√

πξ
e– θx2

ξ . And
the ergodic theorem of [21, 36, 37] states that the following condition exists:

lim
t→∞

1
t

∫ t

0

∣
∣m(τ )

∣
∣dτ =

∫ ∞

–∞
|x|π (x) dx =

ξ√
πθ

. (12)

Therefore, substituting Eq. (12) into the above inequality and taking limits on both sides
gives

lim
t→∞ sup

ln I(t)
t

≤ lim
t→∞ sup

(
V2(t)

t
–

V2(0)
t

)

≤ (μ + α + γ + r)
(

λA(μ + δ2)
[(μ + ρ)(μ + δ2) – δ2ρ](μ + α + γ + r)

– 1
)

+ lim
t→∞

1
t

∫ t

0
K

∣
∣m(τ )

∣
∣dτ

= (μ + α + γ + r)
(

λA(μ + δ2)
[(μ + ρ)(μ + δ2) – δ2ρ](μ + α + γ + r)

– 1
)

+
Kξ√
πθ

< (μ + α + γ + r)
(
RE

0 – 1
)

< 0.

(13)

The proof is completed. �

4 Persistence
In this section, we analyze the condition that leads to the persistence of the disease.

Theorem 3 Assume that RE
0 > 1. For any initial value (m(t), S(t), I(t), R(t), V (t)) ∈R×R

4
+,

the following inequality holds

lim
t→∞ inf

1
t

∫ t

0
I(τ ) dτ

≥ (μ + α + γ + r)[(μ + ρ)(μ + δ2) – δ2ρ](μ + δ1)
λ(μ + δ2)[(μ + α + γ + r)(μ + δ1) – δ1γ ]

(
RE

0 – 1
)

a.s.
(14)
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Proof Through the first line of Eq. (11), we can get

L(–V2) = –mS + (μ + α + γ + r) –
λA

μ + ρ – δ2ρ

μ+δ2

+
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

I

≤ K |m| + (μ + α + γ + r) –
λA

μ + ρ – δ2ρ

μ+δ2

+
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ2γ

μ + δ2

)

I.

Integrating both sides of the above ineqality from 0 to t, there is

–
V2(t) – V2(0)

t
≤ 1

t

∫ t

0
K

∣
∣m(τ )

∣
∣dτ + (μ + α + γ + r) –

λA
μ + ρ – δ2ρ

μ+δ2

+
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)
1
t

∫ t

0
I(τ ) dτ .

Consequently, combining Eq. (12), we have

lim
t→∞ inf

1
t

∫ t

0
I(τ ) dτ ≥

λA
μ+ρ– δ2ρ

μ+δ2

– (μ + α + γ + r) – Kξ√
πθ

λ

μ+ρ– δ2ρ
μ+δ2

(μ + α + γ + r – δ1γ

μ+δ1
)

=
(μ + α + γ + r)[(μ + ρ)(μ + δ2) – δ2ρ](μ + δ1)

λ(μ + δ2)[(μ + α + γ + r)(μ + δ1) – δ1γ ]
(
RE

0 – 1
)
.

The inequality (14) holds. This completes the proof. �

5 Stationary distribution
We first present a lemma before illustrating the ergodic stationary distribution of model
(5).

Lemma 1 [38] For any initial value P0(0) = (m(0), S(0), I(0), R(0), V (0)) ∈ �, if there exists
a bounded closed domain Uε ∈ � with regular boundary, and obeys

lim
t→∞ inf

1
t

∫ t

0
P
(
τ , P0(0), Uε

)
dτ > 0 a.s., (15)

where P(τ , P0(0), Uε) denotes the transition probability of P0(t). In that case, the stochastic
system (5) contains at least one stationary distribution.

Theorem 4 Assume that RE
0 > 1. For any initial value (m(t), S(t), I(t), R(t), V (t)) ∈R×R

4
+,

the system (5) has a stationary distribution π (·).
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Proof Applying Itô’s formula, we have

L(–V2) ≤ K |m| + (μ + α + γ + r) –
λA

μ + ρ – δ2ρ

μ+δ2

+
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

I

=
Kξ√
πθ

+ (μ + α + γ + r) –
λA

μ + ρ – δ2ρ

μ+δ2

+ K
(

|m| –
ξ√
πθ

)

+
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

I

= –(μ + α + γ + r)
(
RE

0 – 1
)

+ K
(

|m| –
ξ√
πθ

)

+
λ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

I,

(16)

L(– ln S) = –
A
S

+ μ + λI + mI + ρ –
δ1R
S

–
δ2V

S
≤ –

A
S

+ μ + λI + K |m| + ρ, (17)

L(– ln R) = –
γ I
R

+ μ + δ1, (18)

L(– ln V ) = –
ρS
V

+ μ + δ2, (19)

L
(
– ln(K – S – I – R – V )

)
=

A – μS – μI – αI – rI – μR – μV
K – S – I – R – V

≤ μ(K – S – I – R – V )
K – S – I – R – V

–
(r + α)I

K – S – I – R – V

= μ –
(r + α)I

K – S – I – R – V
.

(20)

Define a C2-function as follows:

Ū(S, I, R, V , m) = –MV2 – ln S – ln R – ln V – ln

(
A
μ

– S – I – R – V
)

+
m2

2
,

where M is a large enough positive constant satisfying the following inequality:

–M(μ + α + γ + r)
(
RE

0 – 1
)

+ B ≤ –2,

and

B = 4μ + ρ + δ1 + δ2 +
K2

2θ
+

ξ 2

2
.

There exists a minimum value Ū(S0, I0, R0, V0, m0) in the interior of �. Thus, we define a
non-negative C2-function:

U(S, I, R, V , m) = Ū(S, I, R, V , m) – Ū(S0, I0, R0, V0, m0).
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Combining (16)–(20), there is

LU ≤ –M(μ + α + γ + r)
(
RE

0 – 1
)

+ MK
(

|m| –
ξ√
πθ

)

+
Mλ

μ + ρ – δ2ρ

μ+δ2

×
(

μ + α + γ + r –
δ1γ

μ + δ1

)

I –
A
S

+ μ + λI + K |m| + ρ –
γ I
R

+ μ + δ1

–
ρS
V

+ μ + δ2 + μ –
(r + α)I

K – S – I – R – V
– θm2 +

ξ 2

2

≤ –M(μ + α + γ + r)
(
RE

0 – 1
)

+ MK
(

|m| –
ξ√
πθ

)

+
Mλ

μ + ρ – δ2ρ

μ+δ2

×
(

μ + α + γ + r –
δ1γ

μ + δ1

)

I –
A
S

+ μ + λI + ρ –
γ I
R

+ μ + δ1 –
ρS
V

+ μ

+ δ2 + μ –
(r + α)I

K – S – I – R – V
+

ξ 2

2
–

θ

2
m2 +

K2

2θ

= –M(μ + α + γ + r)
(
RE

0 – 1
)

+ 4μ + ρ + δ1 + δ2 +
K2

2θ
+

ξ 2

2
–

A
S

+
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

I –
γ I
R

–
ρS
V

–
(r + α)I

K – S – I – R – V
–

θ

2
m2 + MK

(

|m| –
ξ√
πθ

)

= G(S, I, R, V , m) + MK
(

|m| –
ξ√
πθ

)

,

where

G(S, I, R, V , m) = –M(μ + α + γ + r)
(
RE

0 – 1
)

+ 4μ + ρ + δ1 + δ2 +
K2

2θ
+

ξ 2

2
–

A
S

+
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

I –
γ I
R

–
ρS
V

–
(r + α)I

K – S – I – R – V
–

θ

2
m2.

Then, we define a closed subset of Uε by

Uε =
{

(S, I, R, V , m) ∈ �|S ≥ ε, I ≥ ε, R ≥ ε2, V ≥ ε2, S + I + R + V ≤ K – ε2, |m| ≤ 1
ε

}

,

where ε is a sufficiently small constant to satisfy the following equation:

–2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

ε ≤ –1,

–2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
A
ε

≤ –1,

–2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
γ

ε
≤ –1,
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–2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
ρ

ε
≤ –1,

–2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
r + α

ε
≤ –1,

–2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
θ

2ε2 ≤ –1.

Next, the complementary set of Uε can be classified into the following six subsets:

Uc
ε,1 =

{
(S, I, R, V , m) ∈ �|I < ε

}
,

Uc
ε,2 =

{
(S, I, R, V , m) ∈ �|S < ε

}
,

Uc
ε,3 =

{
(S, I, R, V , m) ∈ �|I ≥ ε, R < ε2},

Uc
ε,4 =

{
(S, I, R, V , m) ∈ �|S ≥ ε, V < ε2},

Uc
ε,5 =

{
(S, I, R, V , m) ∈ �|I ≥ ε, S + I + R + V < K – ε2},

Uc
ε,6 =

{

(S, I, R, V , m) ∈ �

∣
∣
∣|m| >

1
ε

}

.

In the following, we will prove G(S, I, R, V , m) ≤ –1 in each of the following six cases.
Case 1. For any (S, I, R, V , m) ∈ Uc

ε,1, one obtains

G(S, I, R, V , m) ≤ –2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

ε ≤ –1.

Case 2. For any (S, I, R, V , m) ∈ Uc
ε,2, one obtains

G(S, I, R, V , m) ≤ –2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
A
ε

≤ –1.

Case 3. For any (S, I, R, V , m) ∈ Uc
ε,3, one obtains

G(S, I, R, V , m) ≤ –2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
γ

ε
≤ –1.

Case 4. For any (S, I, R, V , m) ∈ Uc
ε,4, one obtains

G(S, I, R, V , m) ≤ –2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
ρ

ε
≤ –1.

Case 5. For any (S, I, R, V , m) ∈ Uc
ε,5, one obtains

G(S, I, R, V , m) ≤ –2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
r + α

ε
≤ –1.

Case 6. For any (S, I, R, V , m) ∈ Uc
ε,6, one obtains

G(S, I, R, V , m) ≤ –2 +
[

Mλ

μ + ρ – δ2ρ

μ+δ2

(

μ + α + γ + r –
δ1γ

μ + δ1

)

+ λ

]

K –
θ

2ε2 ≤ –1.
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As a result, we are able to easily obtain

G(S, I, R, V , m) ≤ –1, for any (S, I, R, V , m) ∈ �\Uε

for sufficiently small ε. Moreover, there exists a positive constant Y that satisfies G(S, I,
R, V , m) ≤ Y . Here, denote K0(t) = (S(t), I(t), R(t), V (t), m(t)). Thus, we can get

0 ≤ E(V (K0(t))
t

=
E(V (K0(0)))

t
+

1
t

∫ t

0
E

(
LV

(
K0(τ )

))
dτ

≤ E(V (K0(0)))
t

+
1
t

∫ t

0
E

(
G

(
K0(τ )

))
dτ + MK

[

E

(
1
t

∫ t

0

∣
∣m(τ )

∣
∣dτ

)

–
ξ√
πθ

]

.

Taking the infimum bound for both sides of the above inequality and combining it with
Eq. (12), we have

0 ≤ lim
t→∞ inf

E(V (K0(0)))
t

+ lim
t→∞ inf

1
t

∫ t

0
E

(
G

(
K0(τ )

))
dτ

+ MK
[

lim
t→∞ infE

(
1
t

∫ t

0

∣
∣m(τ )

∣
∣dτ

)

–
ξ√
πθ

]

= lim
t→∞ inf

1
t

∫ t

0
E

(
G

(
K0(τ )

))
1{K0(τ )∈Uε} dτ

+ lim
t→∞ inf

1
t

∫ t

0
E

(
G

(
K0(τ )

))
1{K0(τ )∈�\Uε} dτ

≤ Y lim
t→∞ inf

1
t

∫ t

0
P
{

K0(τ ) ∈ Uε

}
dτ – lim

t→∞ inf
1
t

∫ t

0
P
{

K0(τ ) ∈ �\Uε

}
dτ

≤ –1 + (Y + 1) lim
t→∞ inf

1
t

∫ t

0
P
{

K0(τ ) ∈ Uε

}
dτ ,

where 1{K0(τ )∈Uε} and 1{K0(τ )∈�\Uε} are the indicator functions of the set {K0(τ ) ∈ Uε} and
{K0(τ ) ∈ �\Uε}. This indicates that

lim
t→∞ inf

1
t

∫ t

0
P
{

K0(τ ) ∈ Uε

}
dτ ≥ 1

Y + 1
,

then

lim
t→∞ inf

1
t

∫ t

0
P
{
τ , K0(0), Uε

}
dτ ≥ 1

Y + 1
> 0, ∀K0(0) ∈ � a.s. (21)

The Inequality (21) and the invariance of � indicate the existence of an invariance proba-
bility measure for model (5) on �. Moreover, the positive recurrence of model (5) is easily
derived from the existence of the invariant probability measure. Hence, the system (5) has
a stationary distribution π (·). �

6 Density function
In this section, we concentrate on the analysis of the probability density function. First, if
RE

0 > 1, there is a quasi-equilibrium E∗ = (S∗, I∗, R∗, V ∗, m∗) = (S∗, I∗, R∗, V ∗, 0) that satisfies
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the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A – μS∗ – λS∗I∗ – m∗S∗I∗ – ρS∗ + δ1R∗ + δ2V ∗ = 0,

λS∗I∗ + m∗S∗I∗ – (μ + α + γ + r)I∗ = 0,

γ I∗ – (μ + δ1)R∗ = 0,

ρS∗ – (μ + δ2)V ∗ = 0,

–θm∗ = 0.

(22)

Notice that when the random factors in the model are not taken into account, the quasi-
equilibrium E∗ is same as the equilibrium in the deterministic model. Taking L1 = S – S∗,
L2 = I – I∗, L3 = R – R∗, L4 = V – V ∗, L5 = m – m∗, we are able to obtain the corresponding
linearized system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dL1 = (–a11L1 – a12L2 + a13L3 + a14L4 – a15L5) dt,

dL2 = (a21L1 + a15L5) dt,

dL3 = (a32L2 – a33L3) dt,

dL4 = (a41L1 – a44L4) dt,

dL5 = –θL5 dt + ξ dB(t),

(23)

where

a11 = μ + ρ + λI∗ > 0, a12 = λS∗ > 0, a13 = δ1 > 0, a14 = δ2 > 0,

a15 = S∗I∗ > 0, a21 = λI∗ > 0, a32 = γ > 0, a33 = μ + δ1 > 0,

a41 = ρ > 0, a44 = μ + δ2 > 0.

Theorem 5 If RE
0 > 1, the solution of system (23) is given by the specific normal probability

density function �(L1, L2, L3, L4, L5), which has the following form.

�(L1, L2, L3, L4, L5) = (2π )– 5
2 |�|– 1

2 e– 1
2 (L1,L2,L3,L4,L5)�–1(L1,L2,L3,L4,L5)T

,

where

� = q2
1ξ

2(M1J3J2J1)–1�1
[
(M1J3J2J1)–1]T ,

�1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 0 c13 0 c15

0 –c13 0 –c15 0
c13 0 c15 0 c35

0 –c15 0 –c35 0
c15 0 c35 0 c55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

J1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, J2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 –1 + a32

–a11+a12+a21
1 0

0 0 0 – a41
–a11+a12+a21–a32

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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J3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 – a4

a2
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

q1 q2 q3 q4 q5
0 a2a6(–a11 + a12 + a21) a6(a2(a1 + a3 + a7) + a4a9) q6 q7
0 0 a2a6 a6a7 + a6(a3 + a4a9

a2
) a2

7 + a6a9

0 0 0 a6 a7
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Proof Taking dL = AL dt + G dB(t), the matrix form of system (23) can be expressed as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–a11 –a12 a13 a14 –a15

a21 0 0 0 a15

0 a32 –a33 0 0
a41 0 0 –a44 0
0 0 0 0 –θ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G = diag(0, 0, 0, 0, ξ ).

Then the characteristic polynomial of A can be represented as

ϕA(λ) = (λ + θ )
(
λ4 + b1λ

3 + b2λ
2 + b3λ + b4

)
,

where

b1 = a11 + a33 + a44 > 0,

b2 = a12a21 + a11a33 – a14a41 + a11a44 + a33a44 > 0,

b3 = –a13a21a32 + a12a21a33 – a14a33a41 + a12a21a44 + a11a33a44 > 0,

b4 = –a13a21a32a44 + a12a21a33a44 > 0.

By the Routh–Hurwitz criterion and b1b2 – b3 > 0, b1b2b3 – b2
3 – b2

1b4 > 0, the real parts
of the eigenvalues of matrix A are all negative. By [39], the probability density function
�(m, L1, L2, L3, L4) of the system (23) can thus be written as the following Fokker–Planck
equation:

–
ξ 2

2
∂2

∂L2
5
� +

∂

∂m
[
(–θL5)�

]
+

∂

∂L1

[
(–a11L1 – a12L2 + a13L3 + a14L4 – a15L5)�

]

+
∂

∂L2

[
(a21L1 + a15L5)�

]
+

∂

∂L3

[
(a32L2 – a33L3)�

]
+

∂

∂L4

[
(a41L1 – a44L4)�

]
= 0,

which can be denoted as the formula of Gaussian distribution

�(L) = c exp

{

–
1
2

LQLT
}

,

where Q satisfies QG2Q + AT Q + QA = 0. Suppose that Q is is invertible and let Q–1 = �,
one obtains

G2 + A� + �AT = 0. (24)
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Two transformation matrices J1 and J2, which we import here, can be written as

J1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, J2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 –1 + a32

–a11+a12+a21
1 0

0 0 0 – a41
–a11+a12+a21–a32

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we can conclude that

A1 = J1AJT
1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–a15 –a11 + a12 –a12 – a13 a13 a14

0 –a11 + a12 + a21 –a12 – a13 a13 a14

0 –a11 + a12 + a21 – a32 –a12 – a13 + a32 + a33 a13 – a33 a14

0 a41 0 0 –a44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A2 = J2A1JT
2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–a15 –a11 + a12 a1 a13 + a14a41

–a11+a12+a21–a32
a14

0 –a11 + a12 + a21 a1 a13 + a14a41
–a11+a12+a21–a32

a14

0 0 a2 a3 – a14a32
a11–a12–a21

0 0 a4 a5
a14a41

a11–a12–a21+a32
– a44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

a1 =
a12(–a11 + a12 + a21) + a13a32 – a14a41

a11 – a12 – a21
,

a2 =
a32(–a13a32 + (a11 – a12 – a21)(a11 – a21 – a33) + a14a41)

(–a11 + a12 + a21)2 ,

a3 = –a33 +
a32(a13(–a11 + a12 + a21 – a32) + a14a41)
(a11 – a12 – a21)(a11 – a12 – a21 + a32)

,

a4 = a41

(

–
a13 – a33

–a11 + a12 + a21
+

–a12 – a13 + a32 + a33

a11 – a12 – a21 + a32
+

a14a41
a11–a12–a21+a32

– a44

–a11 + a12 + a21

)

,

a5 =
a41(–a14a41 + (a11 – a12 – a21 + a32)(a13 – a33 + a44))

(a11 – a12 – a21 + a32)2 .

Define

J3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 – a4

a2
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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then we can get

A3 = J3A2JT
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–a15 –a11 + a12 a1 a8 a14

0 –a11 + a12 + a21 a1 a8 a14

0 0 a2 a3 + a4a9
a2

a9

0 0 0 a6 a7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

a6 = a5 +
a4( a4a14a32

a11–a12–a21
+ a2(–a3 + a14a41

a11–a12–a21+a32
– a44))

a2
2

= 0,

a7 = a14

(
a4a32

a2(a11 – a12 – a21)
+

a41

a11 – a12 – a21 + a32

)

– a44 = 0,

a8 = a13 + a14

(
a4

a2
+

a41

–a11 + a12 + a21 – a32

)

,

a9 = –
a14a32

a11 – a12 – a21
.

Next, consider the transform matrix

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

q1 q2 q3 q4 q5
0 a2a6(–a11 + a12 + a21) a6(a2(a1 + a3 + a7) + a4a9) q6 q7
0 0 a2a6 a6a7 + a6(a3 + a4a9

a2
) a2

7 + a6a9

0 0 0 a6 a7
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

where

q1 = –a2a6a15(–a11 + a12 + a21),

q2 = a6
(
a4a9 + a2(a1 + a3 + a7 – a11 + a12)

)
(–a11 + a12 + a21),

q3 = a6

(

a1
(
a2(a1 + a3 + a7) + a4a9

)

+ a2

(

a2
7 + a2a8 + a6a9 +

(a2a3 + a4a9)(a2(a3 + a7) + a4a9)
a2

2

)

+ a1a2(–a11 + a12 + a21)
)

,

q4 = a6

(

a3
7 + 2a6a7a9 + a8

(
a2(a1 + a3 + a7) + a4a9

)

+
(

a3 +
a4a9

a2

)(

a2
7 + a2a8 + a6a9 +

(a2a3 + a4a9)(a2(a3 + a7) + a4a9)
a2

2

)

+ a6

(

a3a9 +
a4a2

9
a2

+ a2a14

)

+ a2a8(–a11 + a12 + a21)
)

,

q5 =
1
a2

2

(
2a2a4a6(a3 + a7)a2

9 + a2
4a6a3

9 + a2
2
(
a4

7 + 2a3a6a7a9 + 3a6a2
7a9

+ a6a9
(
a2

3 + a6a9 + a4a14
))

+ a3
2a6

(
a8a9 + a14(a1 + a3 + 2a7 – a11 + a12 + a21)

))
,
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q6 = a6

(

a2
7 + a2a8 + a6a9 +

(a2a3 + a4a9)(a2(a3 + a7) + a4a9)
a2

2

)

,

q7 = a3
7 + 2a6a7a9 + a6

(

a3a9 +
a4a2

9
a2

+ a2a14

)

.

Then

B1 = M1A3M–1
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–d1 –d2 –d3 –d4 –d5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where d1 = θ + b1, d2 = θb1 + b2, d3 = θb2 + b3, d4 = θb3 + b4, d5 = θb4. Then we can trans-
form Eq. (24) into the following form for the corresponding equation:

M1J3J2J1G2(M1J3J2J1)T + B1
[
M1J3J2J1�(M1J3J2J1)T]

+
[
M1J3J2J1�(M1J3J2J1)T]

BT
1 = 0.

Set �1 = 1
q2

1ξ2 M1J3J2J1�(M1J3J2J1)T , then we can get

G2
0 + B1�1 + �1BT

1 = 0,

where G0 = diag(1, 0, 0, 0, 0) and

�1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 0 c13 0 c15

0 –c13 0 –c15 0
c13 0 c15 0 c35

0 –c15 0 –c35 0
c15 0 c35 0 c55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

c11 =
d2(d3d4 – d2d5) – d4(d1d4 – d5)

2(d1d2 – d3)(d3d4 – d2d5) – 2(d1d4 – d5)2 ,

c13 = –
d3d4 – d2d5

2(d1d2 – d3)(d3d4 – d2d5) – 2(d1d4 – d5)2 ,

c15 =
d1d4 – d5

2(d1d2 – d3)(d3d4 – d2d5) – 2(d1d4 – d5)2 ,

c35 = –
d1d2 – d3

2(d1d2 – d3)(d3d4 – d2d5) – 2(d1d4 – d5)2 ,

c55 =
d3(d1d2 – d3) – d1(d1d4 – d5)

2d5(d1d2 – d3)(d3d4 – d2d5) – 2d5(d1d4 – d5)2 .

Note that �1 is a positive definite matrix, hence, � = q2
1ξ

2(M1J3J2J1)–1�1[(M1J3J2J1)–1]T

is also positive definite. Consequently, the density function around the quasi-equilibrium
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point E∗ can be written as

�(L1, L2, L3, L4, L5) = (2π )– 5
2 |�|– 1

2 e– 1
2 (L1,L2,L3,L4,L5)�–1(L1,L2,L3,L4,L5)T

.

The proof is completed. �

Remark 2 Derived from Theorem 5, the solution (S(t), I(t), R(t), V (t), m(t)) to model (5)
around ((S∗, I∗, R∗, V ∗, m∗)T ) fulfils the normal density function N((S∗, I∗, R∗, V ∗, m∗)T ,�).
Then, if RE

0 > 1, the solution (S(t), I(t), R(t), V (t)) has a unique normal density function

�(S, I, R, V ) = (2π )–2∣∣�(4)∣∣– 1
2 e– 1

2 (L1,L2,L3,L4)�(4)–1
(L1,L2,L3,L4)T

. (25)

Therefore, S(t), I(t), R(t) and V (t) will converge to the marginal density functions �S , �I ,
�R, �V , respectively, where

�S =
1√

2πϕ1
e

– (S–S∗)2

2ϕ2
1 , �I =

1√
2πϕ2

e
– (I–I∗)2

2ϕ2
2 ,

�R =
1√

2πϕ3
e

– (R–R∗)2

2ϕ2
3 , �V =

1√
2πϕ4

e
– (V –V∗)2

2ϕ2
4 ,

ϕ2
i is the ith element on the main diagonal of �, respectively. Similarly, S(t), I(t), R(t), and

V (t) also converge to the marginal distribution functions N(S∗,ϕ2
1 ), N(I∗,ϕ2

2 ), N(R∗,ϕ2
3 )

and N(V ∗,ϕ2
4 ).

7 Numerical simulation
In this section, various situations are simulated by giving special values of parameters.
First, we discretize model (5) through the Milstein method. The discretized form is as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mk+1 = mk – θmk
t + ξηk
√


t + ξ2

2 (η2
k – 1)
t,

Sk+1 = Sk + [A – μSk – (λ + mk)SkIk – ρSk + δ1Rk + δ2Vk]
t,

Ik+1 = Ik + [(λ + mk)SkIk – (μ + α + γ + r)Ik]
t,

Rk+1 = Rk + [γ Ik – (μ + δ1)Rk]
t,

Vk+1 = Vk + [ρSk – (μ + δ2)Vk]
t,

where 
t is time variation, ηk is a random variable conforming to the standard normal
distribution.

Next, we verify our scientific results in the following four aspects.
(i) When RE

0 < 1, whether the disease will become extinct with probability 1.
(ii) When RE

0 > 1, whether the disease will become persistent with probability 1.
(iii) Average evolution and variance of infected individuals.
(iv) The existence of the stationary distribution.

Example 1 Choose A = 0.014, μ = 0.014, λ = 0.25, ρ = 0.03, δ1 = 0.37, δ2 = 0.0014, α = 0.03,
γ = 0.05, r = 0.001, θ = 0.1, ξ = 0.05, and the initial value (m(0), S(0), I(0), R(0), V (0)) =
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Figure 1 Sample track diagram of S(t), I(t), R(t) and V(t) when the parameters are used from Example 1. At this
time, RE0 ≈ 0.979 < 1, and the disease will extinct

(–0.002, 0.03, 0.95, 0.01, 0.01). In this case, RE
0 ≈ 0.979 < 1 meets Theorem 2. Figure 1 sim-

ulates the number of four types of population, and it can be seen that I(t) and R(t) extinct
after a period of time, while S(t) and V (t) stabilize with probability 1.

Example 2 Choose A = 0.16, μ = 0.016, λ = 0.5, ρ = 0.014, δ1 = 0.07, δ2 = 0.0016, α =
0.084, γ = 0.1, r = 0.1, θ = 0.1, ξ = 0.05, and the initial value (m(0), S(0), I(0), R(0), V (0)) =
(–0.002, 0.03, 0.95, 0.01, 0.01). In this case, RE

0 ≈ 23.3 > 1 meets Theorem 3. Figure 2 sim-
ulates the number of four types of population, and it indicates that I(t) and R(t) do not
extinct, but become endemic diseases.

Example 3 Choose (a) A = 0.16, μ = 0.016, λ = 0.5, ρ = 0.014, δ1 = 0.07, δ2 = 0.0016,
α = 0.084, γ = 0.1, r = 0.1, θ = 0.1, ξ = 0.05, (b) A = 0.014, μ = 0.014, λ = 0.25, ρ = 0.03,
δ1 = 0.37, δ2 = 0.0014, α = 0.03, γ = 0.05, r = 0.001, θ = 0.1, ξ = 0.05, and the initial value
(m(0), S(0), I(0), R(0), V (0)) = (–0.002, 0.03, 0.95, 0.01, 0.01). Figure 3 simulates the expec-
tation and standard deviation of the number of infected individuals, which demonstrates
that in case (a), the disease spreads and becomes endemic, but in case (b), it quickly dis-
appears.

Example 4 Choose A = 0.16, μ = 0.016, λ = 0.5, ρ = 0.014, δ1 = 0.07, δ2 = 0.0016, α = 0.084,
γ = 0.1, r = 0.1, θ = 0.1, ξ = 0.05, and the initial value (m(0), S(0), I(0), R(0), V (0)) =
(–0.002, 0.03, 0.95, 0.01, 0.01). In this case, RE

0 ≈ 23.3 > 1 and the positive equilibrium E∗
2 =

(S∗, I∗, R∗, V ∗) = (0.6, 0.653, 0.759, 0.477). In addition, we get that the solution (S(t), I(t),
R(t), V (t), m(t)) follows the normal density function �(S, I, R, V , m) ∼ N4((0.6, 0.653,
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Figure 2 Sample track diagram of S(t), I(t), R(t) and V(t) when the parameters are used from Example 2. At this
time, RE0 ≈ 23.3 < 1, and the disease will go persistent

Figure 3 Expectation and standard deviation when the parameters are used from Example 3. For case (a), the
disease do not extinct and become endemic, while for case (b), the disease quickly extinct

0.759, 0.477, 0)T ,�), where

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0202 –0.0048 –0.0036 0.0023 –0.014
–0.0048 0.0039 0.0008 0.0005 0.004
–0.0036 0.0008 0.0009 0.00004 0.0021
0.0023 0.0005 0.00004 0.0018 –0.0017
–0.014 0.004 0.0021 –0.0017 0.0127

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

�S = 2.81e–24.8(S–0.6)2
, �I = 6.384e–128.049(I–0.653)2

,

�R = 13.2977e–555.524(R–0.759)2
, �V = 9.522e–284.865(V –0.477)2

.
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Figure 4 The histograms and marginal density curve of S(t), I(t), R(t) and V(t) when the parameters are used
from Example 4. This figure indicates that model (5) has a stationary distribution around the equilibrium point

Figure 4 simulates the density histogram and marginal density curve of model (5), which
can verify the existence of the stationary distribution. It can be seen that the curve is ba-
sically consistent with the histogram.

Example 5 Choose A = 0.16, μ = 0.016, λ = 0.5, ρ = 0.014, δ1 = 0.07, δ2 = 0.0016, α =
0.084, γ = 0.1, r = 0.1, θ = 0.1, ξ = 0.05, and the initial value (m(0), S(0), I(0), R(0), V (0)) =
(–0.002, 0.03, 0.95, 0.01, 0.01). Figure 5 simulates the comparison chart of the stochastic
model and the deterministic model. It can be seen that when the random disturbance is
not too large, the trend of the stochastic model is the same as that of the deterministic
model.

Example 6 Choose A = 0.16, μ = 0.016, λ = 0.5, ρ = 0.014, δ1 = 0.07, δ2 = 0.0016,
α = 0.084, γ = 0.1, r = 0.1, θ = 0.1, and the initial value (m(0), S(0), I(0), R(0), V (0)) =
(–0.002, 0.03, 0.95, 0.01, 0.01). Then, the impact of fluctuation intensity on the disease is
identified by selecting three different ξ . Here we select three scenarios: ξ = 0.005, ξ = 0.01,
and ξ = 0.03. From Fig. 6, it can be seen that as ξ increases, the disease becomes increas-
ingly unstable.

Example 7 Choose A = 0.16, μ = 0.016, λ = 0.5, ρ = 0.014, δ1 = 0.07, δ2 = 0.0016,
α = 0.084, γ = 0.1, r = 0.1, ξ = 0.02, and the initial value (m(0), S(0), I(0), R(0), V (0)) =
(–0.002, 0.03, 0.95, 0.01, 0.01). Then, the impact of the reverse speed on the disease is iden-
tified by selecting three different θ . Here we select three scenarios: θ = 0.00001, θ = 0.01,
and θ = 0.95. From Fig. 7, it can be seen that as θ decreases, the disease becomes increas-
ingly unstable.



Shang and Li Advances in Continuous and Discrete Models          (2024) 2024:9 Page 22 of 25

Figure 5 Comparison chart between the deterministic model and the stochastic model with the
Ornstein–Uhlenbeck process. This figure indicates that the stochastic model fluctuates up and down around
the deterministic model, and the trend is the same as the deterministic model

Figure 6 Sample trajectories with different ξ

8 Conclusion
This article studies a stochastic SIRV model with vaccination to illustrate the random
transmission of diseases in ecosystems. By comparing with classical white Gaussian noise,
the reason why the Ornstein–Uhlenbeck process is more in line with reality is explained.
Firstly, we prove the existence and uniqueness of global positive solutions for model (5)
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Figure 7 Sample trajectories with different θ

with constructing appropriate functions. Secondly, the conditions leading to the extinc-
tion and persistence of diseases are studied, and it is found that when RE

0 < 1, the disease
will become extinct with probability 1, while when RE

0 > 1, the disease will continue to ex-
ist as an endemic disease. These results are beneficial for people to eliminate the disease
or control its spread. Once again, it is studied that model (5) has a stationary distribution
when RE

0 > 1, and an explicit expression for the corresponding probability density function
of the model is obtained. Finally, by providing specific parameter values, model (5) is sim-
ulated using Python to obtain sample trajectories and density histograms under different
conditions. These results have certain reference value for reality.

Although the research conducted in this paper on the dynamic properties of the stochas-
tic SIRV model, there are still numerous issues worthy of further exploration:

1. Given that the stochastic system is perturbed by the Ornstein–Uhlenbeck process, its
diffusion matrix exhibits singular characteristics and does not satisfy the uniform
ellipticity condition. This indicates that the model admits at least one stationary
distribution, but to ensure its uniqueness, we still need to explore more appropriate
methods and theories.

2. In the model presented in this paper, we only considered the impact of
environmental fluctuations on the infection rate. However, in reality, every parameter
in the biological model is potentially subject to environmental interference.
Therefore, our next research focus will be on studying the influence of environmental
fluctuations on more parameters in the biological model, in order to more
comprehensively reveal the complexity and dynamic characteristics of the model.
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