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Abstract
In this paper, we consider the Fourier spectral method and numerical investigation for
a class of modified Zakharov system with high-order space fractional quantum
correction. First, the numerical scheme of the system is developed with periodic
boundary condition based on the Crank–Nicolson/leap-frog methods in time and the
Fourier spectral method in space. Moreover, it is shown that the scheme preserves
simultaneously mass and energy conservation laws. Second, we analyze stability and
convergence of the numerical scheme. Last, the numerical experiments are given,
and the results show the correctness of theoretical results and the efficiency of the
conservative scheme.

Keywords: Modified Zakharov system; Fractional quantum correction; Fourier
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1 Introduction
The classical Zakharov system is one of the best models in describing the coupling of
high-frequency Langmuir waves and low-frequency ion-acoustic waves. Moreover, it has
been widely applied to shallow water wave, nonlinear optics, etc. During the past decades,
some attentions have been paid to study the properties of the classical Zakharov system,
for example, solitary wave solution [1], well-posedness [2], chaotic behavior [3], etc. In
particular, many numerical methods such as conservative difference scheme [4], energy-
preserving scheme [5], multi-symplectic scheme [6], time-splitting schemes [7, 8] have
been developed to solve the classical Zakharov system with homogeneous boundary con-
dition or periodic boundary condition.

Quantum effect plays a very important role in the field of micro-equipment and laser
plasma. In 2005, Garcia et al. [9] considered the Landau damping of Langmuir wave in the
study of the plasma and obtained the quantum Zakharov system

i
∂E
∂t

+
∂2E
∂2x

– H2 ∂4E
∂4x

– NE = 0, (1)
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∂2N
∂2t

–
∂2N
∂2x

+ H2 ∂4N
∂4x

–
∂2

∂2x
(|E|2) = 0, (2)

where H is the dimensionless quantum parameter. In equations (1)–(2), E, N are complex
and real-valued unknown functions, and E, N are the Langmuir envelope electric field and
the density fluctuation respectively. Afterwards, some attentions have been paid to study
theory and numerical methods of the quantum Zakharov system [10–13]. In [11], Misra
et al. studied the pattern dynamics and spatiotemporal chaos of the quantum modified
Zakharov system. In [14], Fang et al. obtained some exact traveling wave solutions of the
quantum Zakharov system by using the hyperbolic tangent function expansion, hyperbolic
secant function expansion, and Jacobi elliptic functions expansion. In [15], the existence
of weak global solutions to quantum Zakharov system was obtained by using the Arzela–
Ascoli theorem and the Faedo–Galerkin method.

Recently, fractional calculus [16–20] has been playing more and more important roles
in quantum mechanics. In particular, many numerical methods such as finite differ-
ence scheme, Fourier spectral scheme, finite element scheme, etc. have been devel-
oped for the space fractional Schrödinger equations [21–32], space fractional Klein–
Gordon–Schrödinger equations [33–36], and space fractional Klein–Gordon–Zakharov
equations [37] with zeros boundary condition or periodic boundary condition. In this pa-
per, we consider the modified Zakharov system with high-order space fractional quantum
correction [38]

i
∂E
∂t

+
∂2E
∂2x

– H2(–�)αE – NE = 0, x ∈ (–L/2, L/2), t ≥ 0, (3)

∂2N
∂2t

–
∂2N
∂2x

+ H2(–�)βN –
∂2

∂2x
(|E|2) = 0, x ∈ (–L/2, L/2), t ≥ 0, (4)

E(x, 0) = E0(x), N(x, 0) = N0(x), Nt(x, 0) = N1(x), x ∈ (–L/2, L/2), (5)

E(x + L/2, t) = E(x – L/2, t), N(x + L/2, t) = N(x – L/2, t), t ≥ 0, (6)

where 1 < α ≤ β ≤ 2. The global existence and uniqueness of the solution of system (3)–(4)
are shown in [38]. In [39], the finite difference scheme is used to solve the fractional mod-
ified Zakharov system (3)–(6) with periodic boundary condition, and strict theoretical
analysis such as existence, uniqueness, convergence, and stability of the scheme is also
shown. Moreover, the scheme can exactly preserve the mass and energy conservation
laws. When H = 0, system (3)–(4) reduces to the classical Zakharov system, which has
been studied extensively in [1–9]. When H �= 0, α = β = 2, system (3)–(4) reduces to the
quantum Zakharov system (1)–(2). It is easy to show that system (3)–(6) satisfies the mass
and energy conserved laws [38, 39]

d
dt

∫ L/2

–L/2

∣
∣E(x, t)

∣
∣dx = 0, (7)

d
dt

∫ L/2

–L/2

(
|∂xE|2 +

1
2
(|∂xu|2 + N2) + H2∣∣(–�)

α
2 E

∣∣2

+
H2

2
∣∣(–�)

β–1
2 N

∣∣2 + N |E|2
)

dx = 0, (8)

where ∂2
x u = ∂tN .
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Some numerical schemes have been designed to discrete fractional Laplace operator, in-
cluding finite difference scheme, finite element scheme etc. Under the periodic boundary
condition, the fractional Laplacian operator is defined as [17]

–(–�)αE(x, t) = –
+∞∑

k=–∞
|k|2αÊ(k, t)eik(x+L/2),

where Ê is the Fourier transform, and (–�)βN(x, t) can be defined in the same way. As a
class of high accuracy methods, Fourier spectral methods are often chosen to solve dif-
ferential equations with periodic boundary condition. To the best of the authors’ knowl-
edge, there exist few reports on Fourier spectral method for the fractional quantum Za-
kharov system (3)–(6). The first aim of this paper is to develop a Fourier spectral method to
solve the fractional modified Zakharov system (3)–(6) with periodic boundary condition.
To deal with the nonlinear term, we also introduce the Fourier interpolation operator. It
is very important to construct a numerical method for the nonlinear partial differential
equations. In addition, a large number of numerical experiments show that the conser-
vation numerical schemes are superior to the traditional numerical schemes. The second
aim of this paper is to develop a conservative numerical scheme to solve the fractional
modified Zakharov system (3)–(6) with periodic boundary condition.

The outline of the paper is as follows. In Sect. 2, we give some useful lemmas. In Sect. 3,
the fully discrete Fourier spectral method is proposed by the Fourier spectral scheme in
space, as well as Crank–Nicolson and leap-frog schemes in time, and the conservativeness
of the scheme is shown. In Sect. 4, the stability of the fully discrete Fourier spectral scheme
is analyzed. In Sect. 5, the convergence and error estimate for the fully discrete Fourier
spectral scheme are presented. In Sect. 6, some numerical experiments are given to show
the efficiency of the conservative scheme. Finally, a conclusion is given in Sect. 7.

2 A useful lemma
In this paper, we select periodic boundary condition, the solution E(x, t), N(x, t) can be
expressed as

E(x, t) =
∞∑

l=–∞
Êleil(x+L/2), Êl =

1
2π

∫

�

E(x, t)e–il(x+L/2) dx,

N(x, t) =
∞∑

l=–∞
N̂leil(x+L/2), N̂l =

1
2π

∫

�

N(x, t)e–il(x+L/2) dx,

where � = [– L
2 , L

2 ]. Let r > 0. Then Hr
p(�) represents the Sobolev space in which the peri-

odic function is formed, and Sobolev norm and seminorm are as follows:

‖E‖r =
( ∑

|k|<∞
(1 + k)2r|Êk|2

)1/2

, |E|r =
( ∑

0<|k|<∞
|k|2r|Êk|2

)1/2

.

Let VM = {E(x)|E(x) =
∑

|k|≤M/2 Êke–ik(x+L/2), M/2 ∈ Z+}. Then define the orthogonal pro-
jector

PM : L2(�) → VM, PME(x, t) =
∑

|k|≤M/2

Êke–ik(x+L/2)
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to approximate the function E(x, t). From the definition of the orthogonal projector oper-
ator, we get

(PME – E, v) = 0, v ∈ VM,

–(–�)α
(
PME(x, t)

)
= PM

(
–(–�)αE(x, t)

)
,

where the inner product (·, ·) can be expressed as

(f , g) =
∫

�

f (x)g(x) dx,

where g(x) is the conjugate complex function of g(x).

Lemma 1 [40] Let r > 0, E ∈ Hr
p(�). Then there exists a constant C independent of E and

M such that

‖PME – E‖l ≤ CMl–r|E|r , 0 ≤ l ≤ r.

3 A conservative fully discrete scheme for the fractional quantum Zakharov
system

First, we introduce some finite difference operators

En
t =

1
τ

(
En+1 – En), En

t =
1
τ

(
En – En–1), En

t̂ =
1

2τ

(
En+1 – En–1),

En̄ =
1
2
(
En+1 + En–1), En+ 1

2 =
1
2
(
En+1 + En).

In the following sections, C represents a general constant, and it may have different values
in different places.

We apply the Crank–Nicolson/ leap-frog methods in time and the Fourier spectral
method in space and obtain the three-level scheme

i
(
En

Mt ,ϕ
)

+
(
∂2

x En+ 1
2

M ,ϕ
)

– H2((–�)α–1∂2
x En+ 1

2
M ,ϕ

)

=
(
PM

(
Nn+ 1

2
M En+ 1

2
M

)
,ϕ

)
, ∀ϕ ∈ VM, (9)

(
Nn

Mtt̄ ,ϕ
)

–
(
∂2

x Nn̄
M,ϕ

)
+ H2((–�)β–1∂2

x Nn̄
M,ϕ

)
=

(
∂2

x PM
(∣∣En

M
∣
∣2),ϕ

)
, ∀ϕ ∈ VM, (10)

(
E0

M,ϕ
)

= (PME0,ϕ), ∀ϕ ∈ VM, (11)
(
NM(x, 0),ϕ

)

=
(

N0
M + τPMN1 +

τ 2

2
PM

(
∂2

x N0
M – H2(–�)β–1N0

M + ∂2
x
(∣∣E0

M
∣∣2)),ϕ

)
,

∀ϕ ∈ VM, (12)
(
∂2

x un+ 1
2

M ,ϕ
)

=
(
Nn

Mt ,ϕ
)
, ∀ψ ∈ VM, (13)
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where

EM =
M∑

l=–M

Êleil(x+L/2), NM =
M∑

l=–M

N̂leil(x+L/2),

En
Mt =

1
τ

(
En+1

M – En
M

)
, Nn

Mtt̄ =
1
τ 2

(
Nn+1

M – 2Nn
M – Nn–1

M
)
,

En+ 1
2

M =
1
2
(
En+1

M + En
M

)
, Nn̄

M =
1
2
(
Nn+1

M + Nn–1
M

)
.

Theorem 1 The Fourier spectral scheme (9)–(13) is conservative in the sense

∥∥En
M

∥∥2 =
∥∥E0

M
∥∥2,

∥∥�n+1∥∥2 =
∥∥∂xEn+1

M
∥∥2 +

1
2
∥∥∂xun+ 1

2
∥∥2 +

1
4
(∥∥Nn

M
∥∥2 +

∥∥Nn+1
M

∥∥2)

+ H2∥∥(–�)
α–1

2 ∂xEn+1
M

∥∥2 +
1
4

H2(∥∥(–�)
β–1

2 Nn+1
M

∥∥2

+
∥∥(–�)

β–1
2 Nn

M
∥∥2) +

1
2
(
Nn+1

M + Nn
M,

∣∣En+1
M

∣∣2) = C.

Proof Let ϕ = En+1
M + En

M in (9). Then taking the imaginary part of equation (9) yields

∥
∥En+1

M
∥
∥2 =

∥
∥En

M
∥
∥2 = · · · =

∥
∥E0

M
∥
∥2.

Let ϕ = 2
τ

(En+1
M – En

M) in (9). Then taking the real part of equation (9) yields

1
τ

(∥∥∂xEn+1
M

∥
∥2 –

∥
∥∂xEn

M
∥
∥2) +

1
τ

H2(∥∥(–�)
α–1

2 ∂xEn+1
M

∥
∥2 –

∥
∥(–�)

α–1
2 ∂xEn

M
∥
∥2)

+
1

2τ

(
Nn+1

M + Nn
M,

∣∣En+1
M

∣∣2 –
∣∣En

M
∣∣2) = 0. (14)

Taking ϕ = 1
2 (un+ 1

2 + un– 1
2 ) in (10) yields

1
2

(
Nn+1

M – 2Nn
M + Nn–1

M
τ 2 , un+ 1

2 + un– 1
2

)
–

1
4
(
∂2

x Nn+1
M + ∂2

x Nn–1
M , un+ 1

2 + un– 1
2
)

+
1
4

H2((–�)β–1(∂2
x Nn+1

M + ∂2
x Nn–1

M
)
, un+ 1

2 + un– 1
2
)

=
1
2
(
∂2

x PM
(∣∣En

M
∣∣2), un+ 1

2 + un– 1
2
)
.

Noting that

1
2

(
Nn+1

M – 2Nn
M + Nn–1

M
τ 2 , un+ 1

2 + un– 1
2

)
= –

1
2τ

(∥∥∂xun+ 1
2
∥
∥2 –

∥
∥∂xun– 1

2
∥
∥2),

–
1
4
(
∂2

x Nn+1
M + ∂2

x Nn–1
M , un+ 1

2 + un– 1
2
)

= –
1

4τ

(∥∥Nn+1
M

∥∥2 +
∥∥Nn–1

M
∥∥2),

1
4

H2((–�)β–1(∂2
x Nn+1

M + ∂2
x Nn–1

M
)
, un+ 1

2 + un– 1
2
)

=
1

4τ
H2(∥∥(–�)

β–1
2

(
Nn+1

M
)∥∥2 –

∥
∥(–�)

β–1
2

(
Nn–1

M
)∥∥2),

1
2
(
∂2

x PM
(∣∣En

M
∣∣2), un+ 1

2 + un– 1
2
)

=
1

2τ

(∣∣En
M

∣∣2, Nn+1
M – Nn–1

M
)
,
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we obtain

1
2τ

(∥∥∂xun+ 1
2
∥∥2 –

∥∥∂xun– 1
2
∥∥2) +

1
4τ

H2(∥∥(–�)
β–1

2
(
Nn+1

M
)∥∥2 –

∥∥(–�)
β–1

2
(
Nn–1

M
)∥∥2)

+
1

4τ

(∥∥Nn+1
M

∥∥2 +
∥∥Nn–1

M
∥∥2) +

1
2τ

(∣∣En
M

∣∣2, Nn+1
M – Nn–1

M
)

= 0.

The above equation and (14) yield

∥∥∂xEn+1
M

∥∥2 +
1
2
∥∥∂xun+ 1

2
∥∥2 +

1
4
(∥∥Nn

M
∥∥2 +

∥∥Nn+1
M

∥∥2)

+ H2∥∥(–�)
α–1

2 ∂xEn+1
M

∥∥2 +
1
4

H2(∥∥(–�)
β–1

2 Nn+1
M

∥∥2 +
∥∥(–�)

β–1
2 Nn

M
∥∥2)

+
1
2
(
Nn+1

M + Nn
M,

∣∣En+1
M

∣∣2)

=
∥∥∂xEn

M
∥∥2 +

1
2
∥∥∂xun– 1

2
∥∥2 +

1
4
(∥∥Nn–1

M
∥∥2 +

∥∥Nn
M

∥∥2)

+ H2∥∥(–�)
α–1

2 ∂xEn
M

∥∥2 +
1
4

H2(∥∥(–�)
β–1

2 Nn
M

∥∥2 +
∥∥(–�)

β–1
2 Nn–1

M
∥∥2)

+
1
2
(
Nn

M + Nn–1
M ,

∣
∣En

M
∣
∣2).

Thus �n+1 = �n = · · · = �1 = C. This ends the proof. �

Because of the nonlinear term of the fractional modified Zakharov system (3)–(6), nu-
merical scheme (9)–(13) takes a lot of calculation time. To improve the efficiency of cal-
culation, we introduce the interpolation operator IM : L2(�) → V ′′

J by

IMu(x, t) =
M–1∑

j=0

ujgj(x),

where

V ′′
M =

{
u(x) =

∑

|l|≤M/2

ũleilμ(x–a), ũM/2 = ũ–M/2

}
,

ũl =
1

Mcl

M–1∑

j=0

u(xj)e–ik(xj–a),

gj(x) =
1
M

M
2 –1∑

l=– M
2

1
cl

eilμ(x–xj), cl = 1
(

|l| �= M
2

)
, c M

2
= c– M

2
= 2.

Applying the above interpolation operator to the nonlinear term of the fractional modified
Zakharov system (3)–(6), we can obtain the following numerical scheme:

i
(
En

Mt ,ϕ
)

+
(
∂2

x En+ 1
2

M ,ϕ
)

– H2((–�)α–1∂2
x En+ 1

2
M ,ϕ

)

=
(
IM

(
Nn+ 1

2
M En+ 1

2
M

)
,ϕ

)
, ∀ϕ ∈ VM, (15)
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(
Nn

Mtt̄ ,ϕ
)

–
(
∂2

x Nn̄
M,ϕ

)
+ H2((–�)β–1∂2

x Nn̄
M,ϕ

)

=
(
∂2

x IM
(∣∣En

M
∣∣2),ϕ

)
, ∀ϕ ∈ VM. (16)

4 Stability analysis for the fully discrete Fourier spectral scheme
Lemma 2 There exists a constant C depending only on the initial and boundary values
such that the solution of the Fourier spectral scheme (9)–(13) satisfies

3
4
∥
∥∂xEn+1

M
∥
∥2 +

1
2
∥
∥∂xun+ 1

2
∥
∥2 +

1
8
(∥∥Nn

M
∥
∥2 +

∥
∥Nn+1

M
∥
∥2)

+ H2∥∥(–�)
α–1

2 ∂xEn+1
M

∥∥2 +
1
4

H2(∥∥(–�)
β–1

2 Nn+1
M

∥∥2 +
∥∥(–�)

β–1
2 Nn

M
∥∥2) ≤ C.

Proof It follows from the Young inequality that

∥
∥∂xEn+1

M
∥
∥2 +

1
2
∥
∥∂xun+ 1

2
∥
∥2 +

1
4
(∥∥Nn

M
∥
∥2 +

∥
∥Nn+1

M
∥
∥2) + H2∥∥(–�)

α–1
2 ∂xEn+1

M
∥
∥2

+
1
4

H2(∥∥(–�)
β–1

2 Nn+1
M

∥
∥2 +

∥
∥(–�)

β–1
2 Nn

M
∥
∥2)

= C –
1
2
(
Nn+1

M + Nn
M,

∣
∣En+1

M
∣
∣2)

≤ 1
2
(∣∣Nn+1

M
∣∣ +

∣∣Nn
M

∣∣,
∣∣En+1

M
∣∣2) + C

≤ ε

4
(∥∥Nn+1

M
∥∥2 +

∥∥Nn
M

∥∥2) +
1

2ε

∥∥En+1
M

∥∥2
4 + C,

where ε > 0 is the Young inequality parameter.
Taking ε = 1

2 can yield

∥
∥∂xEn+1

M
∥
∥2 +

1
2
∥
∥∂xun+ 1

2
∥
∥2 +

1
4
(∥∥Nn

M
∥
∥2 +

∥
∥Nn+1

M
∥
∥2) + H2∥∥(–�)

α–1
2 ∂xEn+1

M
∥
∥2

+
1
4

H2(∥∥(–�)
β–1

2 Nn+1
M

∥
∥2 +

∥
∥(–�)

β–1
2 Nn

M
∥
∥2)

≤ 1
8
(∥∥Nn+1

M
∥
∥2 +

∥
∥Nn

M
∥
∥2) +

∥
∥En+1

M
∥
∥2

4 + C.

According to the Sobolev and Young inequalities, we obtain
∥
∥En+1

M
∥
∥2

4 =
(∣∣En+1

M
∣
∣2,

∣
∣En+1

M
∣
∣2) ≤ ∥

∥En+1
M

∥
∥2

∞
∥
∥En+1

M
∥
∥2

≤ C
∥
∥En+1

M
∥
∥
∥
∥∂xEn+1

M
∥
∥

≤ 1
4
∥∥∂xEn+1

M
∥∥2 + C

∥∥En+1
M

∥∥2

≤ 1
4
∥
∥∂xEn+1

M
∥
∥2 + C.

Thus

3
4
∥∥∂xEn+1

M
∥∥2 +

1
2
∥∥∂xun+ 1

2
∥∥2 +

1
8
(∥∥Nn

M
∥∥2 +

∥∥Nn+1
M

∥∥2)

+ H2∥∥(–�)
α–1

2 ∂xEn+1
M

∥
∥2 +

1
4

H2(∥∥(–�)
β–1

2 Nn+1
M

∥
∥2 +

∥
∥(–�)

β–1
2 Nn

M
∥
∥2) ≤ C.

This ends the proof. �
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Theorem 2 The Fourier spectral scheme (9)–(13) is bounded in the discrete l2 and l∞

norms, and

∥∥En
M

∥∥ ≤ C,
∥∥Nn

M
∥∥ ≤ C,

∥∥∂xun+ 1
2
∥∥ ≤ C,

∥∥En
M

∥∥∞ ≤ C,
∥∥Nn

M
∥∥∞ ≤ C.

Proof It follows from Lemma 2 and Theorem 1 that

∥∥En
M

∥∥ ≤ C,
∥∥Nn

M
∥∥ ≤ C,

∥∥∂xun+ 1
2
∥∥ ≤ C,

∥∥∂xEn
M

∥∥ ≤ C,
∥∥(–�)

β–1
2 Nn

M
∥∥ ≤ C.

According to the Sobolev inequality, it holds that

∥
∥En

M
∥
∥∞ ≤ C

∥
∥En

M
∥
∥

1
2
1

∥
∥En

M
∥
∥

1
2 ≤ C,

∥∥Nn
M

∥∥∞ ≤ C
∥∥Nn

M
∥∥

H
β–1

2
= C

(∥∥Nn
M

∥∥2 +
∥∥(–�)

β–1
2 Nn

M
∥∥2) 1

2 ≤ C.

This ends the proof. �

5 Convergence and error estimates
Let

en = En – En
M = En – PMEn + PMEn – En

M = ẽn + en
M, (17)

ηn = Nn – NM = Nn – PMNn + PMNn – Nn
M = η̃n + ηn

M, (18)

where ẽn = En – PMEn, η̃ = Nn – PMNn, en
M = PMEn – En

M , ηn
M = PMNn – Nn

M . Substituting
the solutions E(x, tn), N(x, tn) into equations (3)–(4) and subtracting (11) from (3) and (12)
from (4) respectively, we have

(
ien

Mt ,ϕ
)

+
(
∂2

x en+ 1
2

M ,ϕ
)

+ H2((–�)α–1∂2
x en+ 1

2
M ,ϕ

)

–
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M ,ϕ

)
=

(
Rn

1,ϕ
)
, (19)

(
ηn

Mtt̄ ,ϕ
)

–
(
∂2

x ηn̄
M,ϕ

)
– H2((–�)β–1∂2

x ηn̄
M,ϕ

)
–

(
∂2

x
(∣∣En∣∣2)

– ∂2
x
(∣∣En

M
∣∣2),ϕ

)
=

(
Rn

2,ϕ
)
, (20)

where

Rn
1 = i

(
En

t – ∂tEn+ 1
2 ,ϕ

)
+

(
(NE)n+ 1

2 – Nn+ 1
2 En+ 1

2 ,ϕ
)
,

Rn
2 =

(
Nn

tt̄ – ∂2
t Nn̄,ϕ

)
+

(
∂2

x
(∣∣En̄∣∣)2 – ∂2

x
(∣∣En∣∣2),ϕ

)
.

It follows from Theorem 2 that we can obtain the following lemma easily.

Lemma 3 Assume that E, N are a solution of the fractional quantum Zakharov system
(3)–(6), and the initial values E0 ∈ H1

P , N0, N1 ∈ L2
p. Then there exists the unique solution
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EM , NM of the Fourier spectral scheme (9)–(13). Moreover, we have the following estimate:

Im
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+ 1

2
M

)

≤ C
(∥∥ηn+1

M
∥∥2 +

∥∥ηn
M

∥∥2 +
∥∥en+1

M
∥∥2 +

∥∥en
M

∥∥2 +
∥∥η̃n+1∥∥2 +

∥∥η̃n∥∥2 +
∥∥ẽn+1∥∥2 +

∥∥ẽn∥∥2).

Proof It follows from (17)–(18) that

Im
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+ 1

2
M

)

= Im
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2 En+ 1
2

M + Nn+ 1
2 En+ 1

2
M – Nn+ 1

2
M En+ 1

2
M , en+ 1

2
M

)

= Im

(
1
2

Nn+ 1
2
(
ẽn+1 + en+1

M + ẽn + en
M

)
, en+ 1

2
M

)

+ Im

(
1
2

En+ 1
2

M
(
η̃n+1 + ηn+1

M + η̃n + ηn
M

)
, en+ 1

2
M

)

= Im
(
Nn+ 1

2 ẽn+ 1
2 , en+ 1

2
M

)
+ Im

(
Nn+ 1

2 en+ 1
2

M , en+ 1
2

M
)

+ Im
(
En+ 1

2
M η̃n+ 1

2 , en+ 1
2

M
)

+ Im
(
En+ 1

2
M η

n+ 1
2

M , en+ 1
2

M
)

= Im

(
1
2

Nn+ 1
2 ẽn+ 1

2 , en+ 1
2

M

)
+ Im

(
En+ 1

2
M η̃n+ 1

2 , en+ 1
2

M
)

+ Im
(
En+ 1

2
M η

n+ 1
2

M , en+ 1
2

M
)
.

Noting that

Im
(
Nn+ 1

2 ẽn+ 1
2 , en+ 1

2
M

) ≤ ∣
∣(Nn+ 1

2 ẽn+ 1
2 , en+ 1

2
M

)∣∣

≤ 1
8
((∣∣Nn+1∣∣ +

∣
∣Nn∣∣)(

∣
∣ẽn+1∣∣ +

∣
∣ẽn∣∣),

∣
∣en+1

M
∣
∣ +

∣
∣en

M
∣
∣)

≤ 1
8
(∥∥Nn+1∥∥∞ +

∥∥Nn∥∥∞
)(∣∣ẽn+1∣∣ +

∣∣ẽn∣∣,
∣∣en+1

M
∣∣ +

∣∣en
M

∣∣)

≤ C
(∥∥ẽn+1∥∥2 +

∥
∥ẽn∥∥2 +

∥
∥en+1

M
∥
∥2 +

∥
∥en

M
∥
∥2),

Im
(
En+ 1

2
M η̃n+ 1

2 , en+ 1
2

M
) ≤ ∣∣(En+ 1

2
M η̃n+ 1

2 , en+ 1
2

M
)∣∣

≤ 1
8
((∣∣η̃n+1∣∣ +

∣∣η̃n∣∣)(∣∣En+1
M

∣∣ +
∣∣En

M
∣∣),

∣∣en+1
M

∣∣ +
∣∣en

M
∣∣)

≤ 1
8
(∥∥En+1

M
∥
∥∞ +

∥
∥En

M
∥
∥∞

)(∣∣η̃n+1∣∣ +
∣
∣η̃n∣∣,

∣
∣en+1

M
∣
∣ +

∣
∣en

M
∣
∣)

≤ C
(∥∥η̃n+1∥∥2 +

∥∥η̃n∥∥2 +
∥∥en+1

M
∥∥2 +

∥∥en
M

∥∥2),

Im
(
En+ 1

2
M η

n+ 1
2

M , en+ 1
2

M
) ≤ ∣

∣(En+ 1
2

M η
n+ 1

2
M , en+ 1

2
M

)∣∣

≤ 1
8
((∣∣ηn+1

M
∣
∣ +

∣
∣ηn

M
∣
∣)(

∣
∣En+1

M
∣
∣ +

∣
∣En

M
∣
∣),

∣
∣en+1

M
∣
∣ +

∣
∣en

M
∣
∣)

≤ 1
8
(∥∥En+1

M
∥∥∞ +

∥∥En
M

∥∥∞
)(∣∣ηn+1

M
∣∣ +

∣∣ηn
M

∣∣,
∣∣en+1

M
∣∣ +

∣∣en
M

∣∣)

≤ C
(∥∥ηn+1

M
∥
∥2 +

∥
∥ηn

M
∥
∥2 +

∥
∥en+1

M
∥
∥2 +

∥
∥en

M
∥
∥2),
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we obtain

Im
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+ 1

2
M

)

≤ C
(∥∥ηn+1

M
∥
∥2 +

∥
∥ηn

M
∥
∥2 +

∥
∥en+1

M
∥
∥2 +

∥
∥en

M
∥
∥2 +

∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 +

∥
∥ẽn+1∥∥2 +

∥
∥ẽn∥∥2).

This ends the proof. �

Accordingly, Lemma 3 can yield the following lemma.

Lemma 4 There exists a constant C depending only on the initial and boundary values
such that the solution of the discrete scheme satisfies

∥∥en+1
M

∥∥2 ≤ 1 + Cτ

1 – Cτ

∥∥en
M

∥∥2 +
Cτ

1 – Cτ

(∥∥ηn+1
M

∥∥2 +
∥∥ηn

M
∥∥2 +

∥∥ẽn+1∥∥2 +
∥∥ẽn∥∥2

+
∥∥η̃n+1∥∥2 +

∥∥η̃n∥∥2 + Im
(
Rn

1, en+ 1
2

M
))

.

Proof Let ϕ = en+ 1
2

M . Then taking the imaginary part of equation (19) yields

Im
(
ien

Mt , en+ 1
2

M
)

+ Im
(
∂2

x en+ 1
2

M , en+ 1
2

M
)

+ Im H2((–�)α–1∂2
x en+ 1

2
M , en+ 1

2
M

)

– Im
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+ 1

2
M

)
= Im

(
Rn

1, en+ 1
2

M
)
.

Noting that

Im
(
ien

Mt , en+ 1
2

M
)

= Re

(
en+1

M – en
M

τ
, en+ 1

2
M

)
=

1
τ

(∥∥en+1
M

∥
∥2 –

∥
∥en

M
∥
∥2),

Im
(
∂2

x en+ 1
2

M , en+ 1
2

M
)

= 0,

Im H2((–�)α–1∂2
x en+ 1

2
M , en+ 1

2
M

)
= 0

and using Lemma 3, we obtain

∥
∥en+1

M
∥
∥2 ≤ 1 + Cτ

1 – Cτ

∥
∥en

M
∥
∥2 +

Cτ

1 – Cτ

(∥∥ηn+1
M

∥
∥2 +

∥
∥ηn

M
∥
∥2 +

∥
∥ẽn+1∥∥2 +

∥
∥ẽn∥∥2

+
∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 + Im

(
Rn

1, en+ 1
2

M
))

.

This ends the proof. �

Now, we consider the energy modulus estimate of En+ 1
2

M . First, we give the following
lemma.

Lemma 5 Suppose that E0 ∈ H1
P , N0, N1 ∈ L2

p. Then we have the following estimate:

–
1
τ

Re
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+1

M – en
M

)

≤ τ
(
–An + An–1 – Bn + Bn–1 – Ãn + Ãn–1 – B̃n + B̃n–1)
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+ Cτ
(
θn + θn–1) + Cτ

(∥∥ẽn+1∥∥2 +
∥∥ẽn∥∥2 +

∥∥η̃n+1∥∥2 +
∥∥η̃n∥∥2 +

∥∥∂xẽn∥∥2

+
∥∥∂t ẽn+1∥∥2 +

∥∥∂t ẽn∥∥2 +
∥∥∂tη̃

n+1∥∥2 +
∥∥∂tη̃

n∥∥2),

where

θn =
1
2

[∥∥en+1
M

∥∥2 +
∥∥∂xen+1

M
∥∥2 +

∥∥∂xUn+ 1
2
∥∥2 +

1
2
(∥∥ηn+1

M
∥∥2 +

∥∥ηn
M

∥∥2)
]

+
H2

4
(∥∥(–�)

β–1
2 ηn+1

M
∥∥2 +

∥∥(–�)
β–1

2 ηn
M

∥∥2) +
H2

2
∥∥(–�)

α–1
2 ∂xen+1

M
∥∥2.

Proof It follows from (17)–(18) that

–
1
τ

Re
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+1

M – en
M

)

= –
1
τ

Re
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2 + Nn+ 1
2

M En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+1

M – en
M

)
(21)

= –
1
τ

Re
(
η̃n+ 1

2 En+ 1
2 , en+1

M – en
M

)
–

1
τ

Re
(
η

n+ 1
2

M En+ 1
2 , en+1

M – en
M

)

–
1
τ

Re
(
Nn+ 1

2
M ẽn+ 1

2 , en+1
M – en

M
)

–
1
τ

Re
(
Nn+ 1

2
M ,

∣∣en+1
M

∣∣2 –
∣∣en

M
∣∣2).

Let

I = –
1
τ

Re
(
η̃n+ 1

2 En+ 1
2 , en+1

M – en
M

)
,

II = –
1
τ

Re
(
η

n+ 1
2

M En+ 1
2 , en+1

M – en
M

)
,

III = –
1
τ

Re
(
Nn+ 1

2
M ẽn+ 1

2 , en+1
M – en

M
)
,

VI = –
1
τ

Re
(
Nn+ 1

2
M ,

∣∣en+1
M

∣∣2 –
∣∣en

M
∣∣2),

ωn = En+ 1
2 , ω̃n = ẽn+ 1

2 .

For the first term of equation (21), it holds that

I = –
1

2τ
Re

((
η̃n+1 + η̃n)ωn, en+1

M – en
M

)

= –
1

2τ
Re

{(
η̃n+1ωn, en+1

M
)

+
(
η̃nωn, en+1

M
)

–
(
η̃nωn–1, en

M
)

–
(
η̃n–1ωn–1, en

M
)

+
(
η̃n–1ωn–1, en

M
)

–
(
η̃n(ωn – ωn–1), en

M
)

–
(
η̃n+1ωn, en

M
)}

(22)

= –Ãn + Ãn–1 +
1

2τ
Re

((
η̃n+1 + η̃n)(ωn – ωn–1), en

M
)

+
1

2τ
Re

(
ωn–1(ηn+1 – ηn–1), en

M
)

≤ –Ãn + Ãn–1 +
1
4
(∥∥En+1

t
∥∥∞ +

∥∥En
t
∥∥∞

)(∣∣η̃n+1∣∣ +
∣∣η̃n∣∣,

∣∣en
M

∣∣)

+
1

2τ

∣∣(ωn–1(ηn+1 – ηn–1), en
M

)∣∣

≤ –Ãn + Ãn–1 + C
(
θn–1 + θn–1 +

∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 +

∥
∥η̃n+1

t
∥
∥2 +

∥
∥η̃n

t
∥
∥2),

here Ãn = 1
2τ

Re((η̃n+1 + η̃n)ωn, en+1
M ).
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For the second term of equation (21), it holds that

II = –
1

2τ
Re

((
ηn+1

M + ηn–1
M

)
ωn, en+1

M – en
M

)

= –
1

2τ
Re

{(
ηn+1

M ωn, en+1
M

)
+

(
ηn

Mωn, en+1
M

)
–

(
ηn

Mωn–1, en
M

)
–

(
ηn–1

M ωn–1, en
M

)
]

+
(
ηn–1

M ωn–1, en
M

)
–

(
ηn

M
(
ωn – ωn–1), en

M
)

–
(
ηn+1

M ωn, en
M

)}

= –An + An–1 +
1

2τ
Re{((ηn+1

M + ηn
M

)(
ωn – ωn–1), en

M
)

+
1

2τ
Re{(ωn–1(ωn+1

M – ωn–1
M

)
, en

M
)

(23)

≤ –An + An–1 1
2τ

(∥∥En+1
t

∥
∥∞ +

∥
∥En

t
∥
∥∞

)(∣∣ηn+1
M

∣
∣ +

∣
∣ηn

M
∣
∣,

∣
∣en

M
∣
∣)

+
1
2
∥
∥ωn–1∥∥∞

(∣∣∂xUn+1∣∣ +
∣
∣∂xUn∣∣,

∣
∣∂xen

M
∣
∣)

≤ –An + An–1 + C
(
θn + θn–1),

here An = 1
2τ

Re((ηn+1
M + ηn

M)ωn, en+1
M ).

For the third term of equation (21), it holds that

III = –
1

2τ
Re

{(
Nn+1

M ω̃n, en+1
M

)
+

(
Nn

Mω̃n, en+1
M

)
–

(
Nn

Mω̃n–1, en
M

)
–

(
Nn–1

M ω̃n–1, en
M

)

+
(
Nn–1

M ω̃n–1, en
M

)
–

(
Nn

M
(
ω̃n – ω̃n–1), en

M
)

–
(
Nn+1

M ω̃n, en
M

)}

= –B̃n + B̃n–1 +
1

2τ
Re

((
Nn+1

M + Nn
M

)(
ω̃n – ω̃n–1), en

M
)

+
1

2τ
Re

((
Nn+1

M – Nn
M

)
ω̃n–1, en

M
)

(24)

≤ –B̃n + B̃n–1 + C
(∥∥ẽn+1

t
∥∥2 +

∥∥ẽn
t
∥∥2 +

∥∥Nn+1
M

∥∥2 +
∥∥Nn+1

M
∥∥2 +

∥∥en
M

∥∥2)

+ C
(∥∥ẽn+1∥∥2 +

∥
∥ẽn∥∥2 +

∥
∥∂xẽn+1∥∥2 +

∥
∥∂xẽn∥∥2∥∥∂xen

M
∥
∥2)

≤ –B̃n + B̃n–1 + C
(
θn + θn–1∥∥ẽn+1

t
∥
∥2 +

∥
∥ẽn

t
∥
∥2 +

∥
∥ẽn+1∥∥2

+
∥
∥ẽn∥∥2 +

∥
∥∂xẽn+1∥∥2 +

∥
∥∂xẽn∥∥2),

here B̃n = 1
2τ

Re((Nn+1
M + Nn

M)ω̃n, en+1
M ).

For the fourth term of equation (21), it holds that

VI = –
1

2τ
Re

{(
Nn+1

M + Nn
M,

∣∣en+1
M

∣∣2) –
(
Nn

M + Nn–1
M ,

∣∣en
M

∣∣2) –
(
Nn+1

M – Nn–1
M ,

∣∣en
M

∣∣2)} (25)

≤ Bn – Bn–1 + Cθn–1,

here Bn = 1
τ

Re(Nn+ 1
2

M , |en+1
M |2).

Finally, noting equations (22)–(25), we get

–
1
τ

Re
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M , en+1

M – en
M

)

≤ τ
(
–An + An–1 – Bn + Bn–1 – Ãn + Ãn–1 – B̃n + B̃n–1)
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+ Cτ
(
θn + θn–1) + Cτ

(∥∥ẽn+1∥∥2 +
∥∥ẽn∥∥2 +

∥∥η̃n+1∥∥2 +
∥∥η̃n∥∥2 +

∥∥∂xẽn∥∥2

+
∥∥∂t ẽn+1∥∥2 +

∥∥∂t ẽn∥∥2 +
∥∥∂tη̃

n+1∥∥2 +
∥∥∂tη̃

n∥∥2).

This ends the proof. �

It follows from Lemma 5 that we can obtain the following lemma.

Lemma 6 There exists a constant C depending only on the initial and boundary values
such that the solution of the discrete scheme satisfies

1
2
∥∥∂xen+1

M
∥∥2 –

1
2
∥∥∂xen

M
∥∥2 +

H2

2
∥∥(–�)

α–1
2 ∂xen+1

M
∥∥2 –

H2

2
∥∥(–�)

α–1
2 ∂xen

M
∥∥2

+ τ
(
An – An–1 + Bn – Bn–1 + Ãn – Ãn–1 + B̃n – B̃n–1)

≤ Cτ
(
θn + θn–1) + Cτ

(∥∥ẽn+1∥∥2 +
∥
∥ẽn∥∥2 +

∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 +

∥
∥∂xẽn∥∥2

+
∥
∥∂t ẽn+1∥∥2 +

∥
∥∂t ẽn∥∥2 +

∥
∥∂tη̃

n+1∥∥2 +
∥
∥∂tη̃

n∥∥2 + Re
(
Rn

1, en+1
M – en

M
))

.

Proof Let ϕ = – 1
τ

(en+1
M – en

M) in (19). Then taking the real part of equation (19) yields

–
1
τ

Re i
(

en+1
M – en

M
τ

, en+1
M – en

M

)
–

1
τ

Re
(
en+ 1

2
Mxx, en+1

M – en
M

)

–
1
τ

Re H2((–�)α–1en+ 1
2

Mxx, en+1
M – en

M
)

= –
1
τ

Re
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M ,ϕ

)
–

1
τ

Re
(
Rn

1,ϕ
)
.

Noting that

–
1
τ

Re i
(

en+1
M – en

M
τ

, en+1
M – en

M

)
= –

1
τ

(∥∥en+1
M – en

M
∥
∥2) = 0,

–
1
τ

Re
(
en+ 1

2
Mxx, en+1

M – en
M

)
=

1
τ

Re
(
en+ 1

2
Mx , en+1

Mx – en
Mx

)
=

1
2τ

(∥∥en+1
Mx

∥∥2 –
∥∥en

Mx
∥∥2),

–
1
τ

Re H2((–�)α–1en+ 1
2

Mxx, en+1
M – en

M
)

=
1
τ

Re H2((–�)α–1en+ 1
2

Mx , en+1
Mx – en

Mx
)

=
1
τ

Re H2((–�)
α–1

2 en+ 1
2

Mx , (–�)
α–1

2 en+1
Mx – (–�)

α–1
2 en

Mx
)

=
1

2τ
H2(∥∥(–�)

α–1
2 en+1

Mx
∥
∥2 –

∥
∥(–�)

α–1
2 en

Mx
∥
∥2),

we can obtain

1
2τ

(∥∥en+1
Mx

∥∥2 –
∥∥en

Mx
∥∥2) +

1
2τ

H2(∥∥(–�)
α–1

2 en+1
Mx

∥∥2 –
∥∥(–�)

α–1
2 en

Mx
∥∥2)

= –
1
τ

Re
(
Nn+ 1

2 En+ 1
2 – Nn+ 1

2
M En+ 1

2
M ,ϕ

)
–

1
τ

Re
(
Rn

1,ϕ
)
.
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It follows from Lemma 5 that

1
2
∥∥∂xen+1

M
∥∥2 –

1
2
∥∥∂xen

M
∥∥2 +

H2

2
∥∥(–�)

α–1
2 ∂xen+1

M
∥∥2 –

H2

2
∥∥(–�)

α–1
2 ∂xen

M
∥∥2

+ τ
(
An – An–1 + Bn – Bn–1 + Ãn – Ãn–1 + B̃n – B̃n–1)

≤ Cτ
(
θn + θn–1) + Cτ

(∥∥ẽn+1∥∥2 +
∥
∥ẽn∥∥2 +

∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 +

∥
∥∂xẽn∥∥2

+
∥
∥∂t ẽn+1∥∥2 +

∥
∥∂t ẽn∥∥2 +

∥
∥∂tη̃

n+1∥∥2 +
∥
∥∂tη̃

n∥∥2 + Re
(
Rn

1, en+1
M – en

M
))

.

This ends the proof. �

Lemma 7 There exists a constant C depending only on the initial and boundary values
such that the solution of the discrete scheme satisfies

1
2
∥∥∂xUn+ 1

2
M

∥∥2 –
1
2
∥∥∂xUn– 1

2
M

∥∥2 +
1
4
(∥∥ηn+1

M
∥∥2 +

∥∥ηn
M

∥∥2)

–
1
4
(∥∥ηn

M
∥
∥2 +

∥
∥ηn–1

M
∥
∥2) +

H2

4
(∥∥(–�)

β–1
2 ηn+1

M
∥
∥2 +

∥
∥(–�)

β–1
2 ηn

M
∥
∥2)

–
H2

4
(∥∥(–�)

β–1
2 ηn

M
∥
∥2 +

∥
∥(–�)

β–1
2 ηn–1

M
∥
∥2)

≤ Cτ
(
θn + θn–1) + Cτ

(∥∥∂xẽn∥∥2 +
∥∥ẽn∥∥2 –

1
2
(
Rn

2, Un + Un–1)
)

.

Proof Let ϕ = – 1
2 (Un + Un–1) in (20). Then we obtain

(
–

1
2

ηn+1
M – 2ηn

M + ηn–1
M

τ 2 +
1
4
(
∂2

x ηn+1
M + ∂2

x ηn–1
M

)

+
H2

4
(–�)β–1(∂2

x ηn+1
M + ∂2

x ηn–1
M

)
, Un + Un–1

)

= –
1
2
(
∂2

x
(∣∣En∣∣2) – ∂2

x
(∣∣En

M
∣∣2), Un + Un–1) –

1
2
(
Rn

2, Un + Un–1).

It follows from integration by parts that

–
1
2
(
∂2

x
(∣∣En∣∣2) – ∂2

x
(∣∣En

M
∣∣2), Un + Un–1)

=
1
2

(∂x
[(

En – En
M

)(
Ēn + Ēn

M
]
, ∂xUn + ∂xUn–1)

=
1
2
(
∂x

(
ẽn + en

M
)(

Ēn + Ēn
M

)
, ∂xUn + ∂xUn–1)

+
1
2
((

ẽn + en
M

)
∂x

(
Ēn + Ēn

M
)
, ∂xUn + ∂xUn–1)

=
1
2
(
∂xẽn(Ēn + Ēn

M
)
, ∂xUn + ∂xUn–1) +

1
2

(∂xen
M

(
Ēn + Ēn

M, ∂xUn + ∂xUn–1)

+
1
2
(
ẽn∂x

(
Ēn + Ēn

M
)
, ∂xUn + ∂xUn–1)1

2
(
en

M∂x
(
Ēn + Ēn

M
)
, ∂xUn + ∂xUn–1)

≤ C
(
θn + θn–1 +

∥
∥∂xẽn∥∥2) + C

(
θn + θn–1) + C

(
θn + θn–1)

+ C
(∥∥ẽn∥∥2 +

∥∥∂xẽn∥∥2) + C
(
θn + θn–1).
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Thus

1
2
∥∥∂xUn+1

M
∥∥2 –

1
2
∥∥∂xUn

M
∥∥2 +

1
4
(∥∥ηn+1

M
∥∥2 +

∥∥ηn
M

∥∥2) –
1
4
(∥∥ηn

M
∥∥2 +

∥∥ηn–1
M

∥∥2)

H2

4
(∥∥(–�)

β–1
2 ηn+1

M
∥
∥2 +

∥
∥(–�)

β–1
2 ηn

M
∥
∥2)

–
H2

4
(∥∥(–�)

β–1
2 ηn

M
∥
∥2 +

∥
∥(–�)

β–1
2 ηn–1

M
∥
∥2)

≤ Cτ
(
θn + θn–1) + Cτ

(∥
∥∂xẽn∥∥2 +

∥
∥ẽn∥∥2 –

1
2
(
Rn

2, Un + Un–1)
)

.

This ends the proof. �

Theorem 3 Suppose that E, N satisfy N , ∂tN , ∂tE ∈ L2[0, T ; Hσ
p (I)], ∂xE ∈ Hσ–1

p (I), σ > 1,

∂ttE, ∂tttE, ∂ttN , ∂ttttN , ∂xxttE, ∂xxttN , (–�)α–1∂xxttE, (–�)β–1∂xxttN ∈ L2(I).

There exists a constant C depending only on the initial and boundary values such that

θn ≤ C
(
M–2σ + τ 4).

Proof Let

ρn–1 =
1
2
∥
∥∂xen

M
∥
∥2 +

1
2
∥
∥∂xUn– 1

2
∥
∥2 +

1
4
(∥∥ηn

M
∥
∥2 +

∥
∥ηn–1

M
∥
∥2)

+
H2

4
(∥∥(–�)

β–1
2 ηn+1

M
∥
∥2 +

∥
∥(–�)

β–1
2 ηn

M
∥
∥2) +

H2

2
∥
∥(–�)

α–1
2 ∂xen+1

M
∥
∥2.

It follows from Lemmas 5 and 6 that

ρn + τ
(
An + Bn + Ãn + B̃n

)

≤ ρn–1 + τ
(
An–1 + Bn–1 + Ãn–1 + B̃n–1) + Cτ

(∥∥∂xẽn+1∥∥2 +
∥
∥ẽn+1∥∥2 +

∥
∥ẽn+1∥∥2

+
∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 +

∥
∥∂t ẽn+1∥∥2 +

∥
∥∂t ẽn∥∥2 +

∥
∥∂tη̃

n+1∥∥2 +
∥
∥∂tη̃

n∥∥2)

+ Cτ
(
θn + θn–1) + Cτ

(
Re

(
Rn

1, en+1
M – en

M
)

–
1
2
(
Rn

2, Un + Un–1)
)

.

Let

θ̂n = γ
∥
∥en+1

M
∥
∥2 + ρn + τAn + τBn + ˜τAn + ˜τBn.

Then it follows from Lemma 4 that

θ̂n ≤ γ
1 + Cτ

1 – Cτ

∥
∥en

M
∥
∥2 + γ

Cτ

1 – Cτ

(∥∥ηn+1
M

∥
∥2 +

∥
∥ηn

M
∥
∥2) + ρn–1

+ τAn–1 + τBn–1 + τ Ãn–1 + τ B̃n–1 + Cτ
(
θn + θn–1)

+ Cτ
(∥∥∂xẽn+1∥∥2 +

∥∥ẽn+1∥∥2 +
∥∥ẽn∥∥2
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+
∥∥η̃n+1∥∥2 +

∥∥η̃n∥∥2 +
∥∥∂t ẽn+1∥∥2 +

∥∥∂t ẽn∥∥2 +
∥∥∂tη̃

n+1∥∥2 +
∥∥∂tη̃

n∥∥2)

+ Cτ

(
Im

(
Rn

1, en+ 1
2

M
)

+ Re
(
R1, en+1

M – en
M

)
–

1
2
(
Rn

2, Un + Un–1)
)

.

When γ > 1, we can obtain

θ̂n ≥ C
∥
∥en+1

M
∥
∥2 +

3
4
ρn + τAn + τBn + ˜τAn + ˜τBn.

Noting that

τ
∣
∣An∣∣ + τ

∣
∣Bn∣∣ +

∣
∣ ˜τAn

∣
∣ +

∣
∣ ˜τBn

∣
∣

≤ 3
4
ρn + C

(∥∥en+1
M

∥
∥2 +

∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2 +

∥
∥ẽn+1

x
∥
∥2 +

∥
∥ẽn+1∥∥2),

τ

(
Im

(
Rn

1, en+ 1
2

M
)

+ Re
(
R1, en+1

M – en
M

)
–

1
2
(
Rn

2, Un + Un–1)
)

≤ Cτ
(
θn + θn–1) + Cτ 4

∫ tn+1

tn–1

(∥∥∂tttE(s)
∥∥2 +

∥∥∂ttE(s)
∥∥2 +

∥∥∂ttN(s)
∥∥2 +

∥∥∂ttttN(s)
∥∥2

+
∥∥∂xxttE(s)

∥∥2 +
∥∥∂xxttN(s)

∥∥2 +
∥∥(–�)α–1∂xxttE(s)

∥∥2 +
∥∥(–�)β–1∂xxttN(s)

∥∥2)ds,

we get

θ̂n ≤ θ̂n–1 + γ Cτ
(
θn + θn–1) + Cτ

(∥∥∂xẽn+1∥∥2 +
∥∥ẽn+1∥∥2 +

∥∥ẽn∥∥2 +
∥∥η̃n+1∥∥2

+
∥∥η̃n∥∥2 +

∥∥∂t ẽn+1∥∥2 +
∥∥∂t ẽn∥∥2 +

∥∥∂tη̃
n+1∥∥2 +

∥∥∂tη̃
n∥∥2)

+ Cτ 4
∫ tn+1

tn–1

(∥∥∂tttE(s)
∥∥2 +

∥∥∂ttE(s)
∥∥2 +

∥∥∂ttN(s)
∥∥2 +

∥∥∂ttttN(s)
∥∥2 (26)

+
∥
∥∂xxttE(s)

∥
∥2 +

∥
∥∂xxttN(s)

∥
∥2 +

∥
∥(–�)α–1∂xxttE(s)

∥
∥2 +

∥
∥(–�)β–1∂xxttN(s)

∥
∥2)ds.

Based on the definition of θn, we have

θn =
1
2
∥
∥en+1

M
∥
∥2 + ρn ≤ θ̂n +

1
4
θn + C

∥
∥en+1

M
∥
∥2, (27)

3
4
θn ≤ θ̂n + C

∥
∥en+1

M
∥
∥2 ≤ Cγ θ̂n. (28)

It follows from (26)–(28) that

θ̂n ≤ 1 + Cγ τ

1 – Cγ τ
θ̂n–1 +

Cτ

1 – Cγ τ

(∥∥∂xẽn+1∥∥2 +
∥
∥ẽn+1∥∥2 +

∥
∥ẽn∥∥2

+
∥∥η̃n+1∥∥2 +

∥∥η̃n∥∥2 +
∥∥∂t ẽn+1∥∥2 +

∥∥∂t ẽn∥∥2 +
∥∥∂tη̃

n+1∥∥2

+
∥∥∂tη̃

n∥∥2) +
Cτ 4

1 – Cγ τ

∫ tn+1

tn–1

(∥∥∂tttE(s)
∥∥2 +

∥∥∂ttE(s)
∥∥2 +

∥∥∂ttN(s)
∥∥2 +

∥∥∂ttttN(s)
∥∥2

+
∥
∥∂xxttE(s)

∥
∥2 +

∥
∥∂xxttN(s)

∥
∥2 +

∥
∥(–�)α–1∂xxttE(s)

∥
∥2 +

∥
∥(–�)β–1∂xxttN(s)

∥
∥2)ds.
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Let

s =
1 + Cγ τ

1 – Cγ τ
,

qn =
(∥∥∂xẽn+1∥∥2 +

∥
∥ẽn+1∥∥2 +

∥
∥ẽn∥∥2 +

∥
∥η̃n+1∥∥2 +

∥
∥η̃n∥∥2

+
∥
∥∂t ẽn+1∥∥2 +

∥
∥∂t ẽn∥∥2 +

∥
∥∂tη̃

n+1∥∥2 +
∥
∥∂tη̃

n∥∥2).

Then, by the similarity analysis in [41], we have

θ̂n ≤ snθ̂0 + Cτ

n∑

i=1

sn–iqi

+ Cτ 4
n∑

i=1

sn–i
∫ tn+1

tn–1

(∥∥∂tttE(s)
∥
∥2 +

∥
∥∂ttE(s)

∥
∥2 +

∥
∥∂ttN(s)

∥
∥2 +

∥
∥∂ttttN(s)

∥
∥2

+
∥
∥∂xxttE(s)

∥
∥2 +

∥
∥∂xxttN(s)

∥
∥2 +

∥
∥(–�)α–1∂xxttE(s)

∥
∥2 +

∥
∥(–�)α–1∂xxttN(s)

∥
∥2)ds

≤ Cθ̂0 + CM–2σ + Cτ 4.

Noting that e0
M = η0

M = η1
M = 0, we get θn ≤ Cθ̂n ≤ C(M–2σ + τ 4). This ends the proof. �

6 Numerical experiments
In this section, we use the Fourier spectral method in space and the Crank–Nicolson/
leap-frog in time to solve the fractional modified Zakharov system (3)–(6) with periodic
boundary condition. We report the numerical accuracy, CPU time, invariants-preserving
properties, and solitary wave graph for the fractional modified Zakharov system (3)–(6).

6.1 Experiment A (H = 0)
When H = 0, system (3)–(6) becomes the classical Zakharov system and has the exact
solitary wave solutions [42]

E(x, t) = i
√

2B2
(
1 – v2

)
sech

(
B(x – x0 – vt)

)
ei((x–x0)/2–(v2/4–B2)t ,

N(x, t) = –2B2 sech2(B(x – x0 – vt)
)
.

Take the initial values with B = 1, x0 = 0, v = 0.5,

E0(x) = i
√

1.5 sech(Bx)eix/4, N0(x) = –2 sech2(x).

Table 1 Errors and orders in time for the classical Zakharov system

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

4096 16 7.4783e–07 2.3871e–06
4096 32 1.9320e–07 1.9526 6.1155e–07 1.9647
4096 64 4.9076e–08 1.9770 1.5562e–07 1.9744
4096 128 1.2366e–08 1.9886 4.2652e–08 1.8674

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

4096 16 8.8471e–07 1.9594e–06
4096 32 2.3678e–07 1.9017 5.1050e–07 1.9404
4096 64 6.1223e–08 1.9514 1.3026e–07 1.9705
4096 128 1.5561e–08 1.9761 3.2899e–08 1.9853
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Table 2 Errors and orders in space for the classical Zakharov system

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

16 4096 7.5463e–02 3.1923e–01
32 4096 2.0507e–02 1.8796 6.6572e–02 2.2616
64 4096 6.9476e–04 4.8835 2.3191e–03 4.8433
128 4096 1.4839e–07 12.193 5.7162e–07 11.986

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

16 4096 3.7073e–03 1.1998e–02
32 4096 1.4899e–03 1.3152 3.4423e–03 1.8014
64 4096 1.1068e–04 3.7507 2.2889e–04 3.9106
128 4096 1.8260e–07 9.2435 3.9745e–07 9.1697

Figure 1 Errors and orders for the classical Zakharov system

We first calculate the convergence orders in time by using the conservative Fourier spec-
tral scheme (9)–(13) with H = 0. Table 1 displays the numerical orders of time accuracy by
scheme (9)–(13) when t = 1 and M = 4096. It clearly indicates that the proposed scheme
(9)–(13) is of order 2 in time. Secondly, we test the space errors and the convergence orders
by using the conservative Fourier spectral scheme (9)–(13) when τ = 1/4096, t = 1. Table 2
displays the numerical orders of space accuracy by scheme (9)–(13). It can be seen that the
Fourier spectral scheme (9)–(13) achieves spectral convergence up to machine precision.
In addition, we display also the convergence orders and errors of time and space accuracy
by the numerical scheme in [39]. Figure 1 displays the numerical orders of time and space
accuracy by the numerical scheme in [39] when t = 1. It clearly indicates that the pro-
posed scheme is of order 2 in time and space. Then, we choose the parameters t ∈ [0, 20],
τ = 0.001, M = 512. The waveform diagrams of numerical solution are given by Fig. 2.
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Figure 2 The module of numerical E and numerical N for classical Zakharov system

Figure 3 The errors of discrete mass and energy for the classical Zakharov system(Left:discrete mass; Right:
discrete energy)

Table 3 Errors and orders in time for the quantum Zakharov system

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

4096 16 7.4781e–07 2.3870e–06
4096 32 1.9321e–07 1.9525 6.1135e–07 1.9652
4096 64 4.9212e–08 1.9731 1.5481e–07 1.9815
4096 128 1.2492e–08 1.9780 3.9451e–08 1.9723

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

4096 16 8.8454e–07 1.9595e–06
4096 32 2.3661e–07 1.9024 5.1067e–07 1.9401
4096 64 6.1063e–08 1.9542 1.3052e–07 1.9681
4096 128 1.5403e–08 1.9870 3.3441e–08 1.9646

Finally, we will test the conservative property of the conservative Fourier spectral
method (9)–(13). We choose the parameters t ∈ [0, 50], τ = 0.001, M = 512. Figure 3 dis-
plays the errors in the total mass Mn and energy En. It clearly indicates that the conser-
vative Fourier spectral scheme (9)–(13) preserves the mass and energy conservation laws
very well simultaneously.

6.2 Experiment B (H > 0)
When H > 0, system (3)–(6) becomes the quantum Zakharov system or fractional quan-
tum Zakharov system. We take the same initial values with Example A. When H > 0, the
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Table 4 Errors and orders in space for the quantum Zakharov system

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

16 4096 7.5463e–02 3.1923e–01
32 4096 2.0508e–02 1.8796 6.6572e–02 2.2616
64 4096 6.9476e–04 4.8835 1.6399e–04 4.8433
128 4096 1.4839e–07 12.193 4.0414e–8 11.986

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

16 4096 3.7073e–03 1.1998e–02
32 4096 1.4899e–03 1.3152 3.4423e–03 1.8014
64 4096 1.1068e–04 3.7507 2.2889e–04 3.9106
128 4096 1.8260e–07 9.2435 3.9745e–07 9.1697

Table 5 Errors and orders in time for the fractional quantum Zakharov system with α = 1.6, β = 1.7

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

4096 32 1.9321e–07 1.9354e–06
4096 64 4.9212e–08 1.9731 1.5481e–07 1.9815
4096 128 1.2492e–08 1.9780 3.9451e–08 1.9723
4096 256 3.2661e–09 1.9354 1.1444e–08 1.7855

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

4096 32 2.3661e–07 5.1067e–07
4096 64 6.1063e–08 1.9542 1.3052e–07 1.9681
4096 128 1.5403e–08 1.9870 3.3441e–08 1.9646
4096 256 3.7589e–09 2.0349 9.8035e–09 1.7703

Table 6 Errors and orders in space for the fractional quantum Zakharov system with α = 1.6, β = 1.7

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

16 4096 7.5463e–02 3.1923e–01
32 4096 2.0507e–02 1.8796 6.6572e–02 2.2616
64 4096 6.9476e–04 4.8835 2.3191e–03 4.8433
128 4096 1.4839e–07 12.193 5.7156e–07 11.986

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

16 4096 3.7073e–03 1.1998e–02
32 4096 1.4899e–03 1.3152 3.4423e–03 1.8014
64 4096 1.1068e–04 3.7507 2.2889e–04 3.9106
128 4096 1.8260e–07 9.2435 3.9745e–07 9.1697

Table 7 Errors and orders in time for the fractional quantum Zakharov system with α = 1.7, β = 1.8

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

4096 32 8.9082e–01 3.7028e+00
4096 64 1.4329e–01 2.6361 6.4546e–01 2.5202
4096 128 3.7257e–02 1.9434 1.6770e–01 1.9445
4096 256 9.4414e–03 1.9804 4.2466e–02 1.9815

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

4096 32 1.7973e+00 6.5644e+00
4096 64 3.4486e–01 2.3817 1.2186e+00 2.4294
4096 128 7.6059e–02 2.1808 2.7550e–01 2.1451
4096 256 1.8461e–02 2.0427 6.7274e–02 2.0339

numerical exact solutions E, N are obtained by M = 4096, τ = 1/4096. First, calculate the
convergence orders in time and space by using the conservative Fourier spectral scheme
(9)–(13) for the quantum Zakharov system with H = 0.0001. The results are listed in Ta-
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Table 8 Errors and orders in space for the fractional quantum Zakharov system with α = 1.7, β = 1.8

E(x, t) M N ‖E – EM‖∞ Order ‖E – EM‖2 Order

16 4096 1.2348e+00 1.0760e+01
32 4096 1.9619e+00 –0.6677 9.8699e+00 0.1245
64 4096 6.5951e–03 8.2166 2.6440e–02 8.5441
128 4096 1.4866e–07 15.437 6.3216e–07 15.352

N(x, t) M N ‖N – NM‖∞ Order ‖N – NM‖2 Order

16 4096 2.0552e+00 1.3383e+01
32 4096 1.7036e+00 2.7070 6.3425e+00 1.0772
64 4096 1.1000e–02 7.2749 9.6132e–02 6.0439
128 4096 1.7211e–06 12.642 1.1154e–05 13.073

Figure 4 Errors and orders for the fractional quantum Zakharov system

Table 9 CPU time for difference numerical schemes with M = 128, τ = 0.01

Numerical
scheme (15)–(16)

Numerical
scheme (9)–(13)

Finite difference
scheme

α = 1.4 T = 10 60.13 406.23 828.34
T = 50 278.18 1859.34 3887.57
T = 80 679.23 3845.78 5956.8

α = 1.6 T = 10 62.42 425.56 889.24
T = 50 312.15 2134.12 4122.32
T = 80 769.34 4238.35 6348.9

bles 3–4. Secondly, we verify the time and space convergence orders by scheme (9)–(13)
for the fractional quantum Zakharov system with H = 0.0001 and different α, β . The re-
sults are listed in Tables 5–8. From Tables 3–8, it is found that scheme (9)–(13) is also of
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Figure 5 The errors of discrete mass and energy of the quantum Zakharov system (Left:discrete mass; Right:
discrete energy)

Figure 6 The errors of discrete mass and energy of the fractional quantum Zakharov system with α = 1.6,
β = 1.7 (Left:discrete mass; Right: discrete energy)

Figure 7 The errors of discrete mass and energy of the fractional quantum Zakharov system with α = 1.7,
β = 1.8 (Left:discrete mass; Right: discrete energy)

order 2 in time, and the Fourier method approach also achieves spectral convergence up
to machine precision. In addition, we also show the convergence orders and errors by the
numerical scheme in [39]. Figure 4 shows the numerical orders of time and space accu-
racy by the numerical scheme in [39] when t = 1. It clearly indicates that the proposed
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Figure 8 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 9 The module of numerical E and numerical N for the fractional quantum Zakharov system
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Figure 10 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 11 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 12 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 13 The module of numerical E and numerical N for the fractional quantum Zakharov system

scheme is also of order 2 in time and space. Moreover, we show also CPU times with
α = 1.4, 1.6 by numerical scheme (9)–(13), numerical scheme (15)–(16), and the finite dif-
ference scheme in [39]. The results are listed in Table 9. From Table 9, it is found that
numerical scheme (15)–(16) takes the least time and has the highest computational effi-
ciency, followed by numerical scheme (9)–(13), and the finite difference scheme takes the
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Figure 14 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 15 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 16 The module of numerical E and numerical N for the fractional quantum Zakharov system

Figure 17 The module of numerical E and numerical N for the fractional quantum Zakharov system

longest time. Moreover, we also find that the calculation time is related to α. In a similar
method, we can obtain corresponding conclusions for different fractional order β .

Then, we will test the conservative property of the conservative Fourier spectral method
(9)–(13) for the fractional quantum Zakharov system. We choose the parameters t ∈
[0, 50], τ = 0.001, M = 512 different α, β . Figures 5–7 display the errors in the total mass
Mn and energy En. It clearly indicates that the Fourier spectral scheme (9)–(13) preserves
also the mass and energy conservation laws very well simultaneously for the quantum Za-
kharov system or the fractional quantum Zakharov system.
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Figure 18 The module of numerical E and numerical N for the fractional quantum Zakharov system

Finally, the effects of the parameter H and fractional orders α, β on the solitary solu-
tion behaviors are investigated. We simulate the solitary wave solution with t ∈ [0, 100],
τ = 0.001, M = 512. Figures 8–9 show the wave forms of numerical solutions |E|, N for
different H , α, β . From Figs. 8–9, it is found that the numerical results indicate that the
maximum of solution N increases faster with H , and the solution N will eventually blow
up. Figures 10–18 show the wave forms of numerical solutions |E|, N for different H , α, β
with the same time. From Figs. 10–18, it is found that some small oscillations appear on
the two sides of solitary wave |E| and N respectively. From Figs. 10–18, we find also that
the values H will affect the propagation velocity of the solitary wave. When H becomes
small, the propagation of the soliton will be quick.

7 Conclusion
In the paper, the Fourier spectral method for a class of modified Zakharov systems with
high-order space fractional quantum correction is proposed. It is shown that this method
preserves the discrete mass and energy conservation laws. The stability and convergence
of the scheme are proved. Numerical tests are presented to demonstrate the theoretical
results and the method availability, and to investigate the conservation property for dif-
ferent values of orders α and β . Moreover, the effects of the parameter H and fractional
orders α, β on the solitary solution behaviors are also investigated numerically.
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