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China functional response is studied. The permanence and local stability of fixed points for

the model are derived. The center manifold theorem and bifurcation theory are used
to show that the model can undergo flip and Hopf bifurcations. Codimension-two
bifurcation associated with 1:2 resonance is analyzed by applying the bifurcation
theory. Numerical simulations are performed not only to verify the correctness of
theoretical analysis but to explore complex dynamical behaviors such as period-6, 7,
10, 12 orbits, a cascade of period-doubling, quasi-periodic orbits, and the chaotic sets.
The maximum Lyapunov exponents validate the chaotic dynamical behaviors of the
system. The feedback control method is considered to stabilize the chaotic orbits.
These complex dynamical behaviors imply that the coexistence of predator and prey
may produce very complex patterns.
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1 Introduction

Predator—prey interactions can be universally observed in our ecological systems of the
real world. The relationship between predator and prey occupies an important place in
determining the evolution of ecological models. Due to their universal existence and real
significance, predator—prey dynamics has long been studied and will continue to be one
of the dominant fields in mathematical biology [1-4]. When the prey population is so
large as the predator population, the Holling—Tanner model describes the dynamics of the
predator species which feeds on its favorite food item as long as it is in abundant supply
and grows logistically with an intrinsic growth rate and a carrying capacity proportional
to the size of the prey [5]. The Holling—Tanner predator—prey model with Beddington—
DeAngelis functional response was introduced in [6-9] as follows:

du _ uy _ _ouv
dat ~ ru(l - k) a+bu+cv’

d _ sly(1 - i), (1)

u(0) >0, v(0) > 0,
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where r, k, @, a, b, ¢, s, h are positive constants, and u(f) and v(£) represent the popu-
lation size of prey and predator at time ¢, respectively. The prey grows logistically with
carrying capacity k and intrinsic growth rate r in the absence of predator. The preda-
tor consumes the prey following the functional response of Beddington—DeAngelis type
auv/(a+ bu + cv) and cv measures the mutual interference between predators [6—-10]. &, a,
b, and c indicate the consumption rate, the saturation constant, the saturation constant
for an alternative prey, and the predator interference constant, respectively. The predator
grows logistically with intrinsic growth rate s, and the carrying capacity u/h of the preda-
tor is proportional to the population size of the prey. & denotes the number of prey that is
required to sustain one predator at equilibrium when v equals #/4. v/u measures the loss
in the predator population because of the scarcity of its favorite food. hv/u is known as
the Leslie-Gower term.

However, if the size of population was rarely small, or the population had no overlap-
ping generation, or people studied population changes within certain intervals of time
in an ecological system, the discrete-time model would exhibit better results than the
continuous-time model [11-18]. Many results have shown that discrete-time models can
produce far richer dynamical behaviors than those observed in continuous-time models
[19-23]. In fact, Zhao and Yan [8] considered the discrete-time form of system (1) de-
rived from the forward Euler difference scheme (see [13, 14, 16, 17, 23]). The discrete-
time model displayed complex dynamics such as flip bifurcation, Hopf bifurcation, an in-
variant cycle, quasi-periodic orbits, and chaos. However, it is worth noting that the Euler
discrete form of (1) is not realistic enough since there exist negative values of prey and
predator population size for some parameter values or initial values, which imply that
the discrete form has no biological meanings. Avoiding the negative solutions emerging
from the discrete system by using the forward Euler scheme, the homogenous techniques
(see [11, 22, 24—26]) are applied to obtain the discrete model corresponding to system (1).
Assume that the average growth rates in both populations vary at the regular interval of
time. By applying the method of piecewise constant arguments, we obtain the following
modified system:

L du) _ g )y )

u(t) dt k a+bu([t])+cv([t])’ (2)
1odvt) _ hv([£])

o a =50 =T )

where [£] denotes the integer part of ¢ and ¢ € [0, 00). According to [18], we can integrate
(2) on the interval [n,n + 1), n=0,1,2,..., which yields

u(t) = unexp((r(1 = ) — =)t — n), 3)

v(t) = v exp((s(1 — 22))(¢ — m)).

Taking ¢ — n + 1, we can obtain the following discrete-time model:

n Yn
Upil = Uy exp(r(l - MT) - a+bzn+cvn)’ (4)

Vil = Vn eXP(S(l - hML:))
The outline of this paper is as follows. Section 2 discusses the performance and local
stability of fixed points for model (4). Section 3 gives sufficient conditions for the existence
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of flip bifurcation and Hopf bifurcation. Section 4 discusses the 1:2 resonance bifurcation.
Section 5 presents numerical simulations to check our results of theoretical analysis and
exhibit some complex and new dynamical behaviors. Section 6 presents chaos control by
using the state feedback control method. Section 7 gives a brief conclusion.

2 Permanence and stability of fixed points
Definition 2.1 System (4) is permanent if there exist two positive constants m and M
such that

m < lim inf(u,,v,) < lim sup(u,,v,) <M

n—00 n—00

for each positive solution (u,,, v,) of system (4).
In the following, we use Lemmas 2.1 and 2.2 from [27] to discuss the permanence of (4).
Proposition 2.1 Every positive solution (u,,v,) of system (4) is uniformly bounded.

Proof Assume that (u,,v,) is a positive solution of system (4). From the first part of system
(4), we have

< 1 “n
ey < tpexp| r{ 1 —

forn=0,1,2,....If uy > 0, we thus have

. k
lim supu, < —exp(r-1):= M.
n—00 r

As aresult, for any € > 0, there exists an integer N such that u, < M; + € when n > N and
n € N. According to the second part of system (4), for n > N and n € N, we obtain

- 1 hv,
v vy exXpl s - .
n+l = Vn €XP Ml P

If vy > 0, there is

. M +€
lim supv, < exp(s—1).
n—>00 hs

The arbitrariness of € then implies that

. M,y
lim supv, < T exp(s—1):= M,.
s

Then it follows that lim,,_, o sup(u,, v,) < M for any (uo, vo) > 0, where M = max (M1, M).
This proof is complete. d

Proposition 2.2 Let n = r — ¢ > 0. Then, for any positive solution (u,,v,) of system (4),
there exists a positive constant satisfying

lim inf(u,,v,) > m,
n— o0

where m = min (M, L exp (s — }%))'
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Proof Let (u,,v,) be a positive solution of system (4). From the first part of (4), it follows
that

7 o
Upel > unexp(r<1 - ?) - —> =u,exp(n — pu,), n=0,12,...,
c

where n =r —a/cand p = r/k. If up > 0 and 1 > 0, we thus have

n—00

lim infu, > min{ 1 exp(n — pM), Q} = m.
P o

Consequently, for any € > 0, there exists an integer N such that u, > m; + € when n >N
and n € N. According to the second part of system (4), for n > N and n € N, we therefore
obtain

((-m))
Vn+IZVneXp s{1- .
mi + €

If vy > 0, there is

o . {s(m1+e) ( hsM ) s(m1+e)}
lim infv, > min Texp s— , .

n—00 m; + € h

The arbitrariness of € then implies that

L. . | smy hsM\ sm
lim infv, > miny —exp|{s— — |, — { := mp.
n—00 h m;y h

Then it follows that lim,,, o inf(2,,, v,,) > m for any (o, vo) > 0, where m = min (11, m5).
This proof is complete. d

According to Propositions 2.1 and 2.2, system (4) is permanent if r > <.
For all parameter values, system (4) has two fixed points, the boundary fixed point
A(k,0), and the unique positive fixed point B(u*,v*) defined by

*

0+ \/92 + dahr’k(bh + c) L u
- 2r(bh + ¢) ’

where 0 = crk + bhrk — ko — ahr.
In the next, we now perform the linear stability analysis of system (4) at each fixed point.

The Jacobian matrix of system (4) evaluated at any equilibrium point (i, v) is given by

J(u,v) = Yir Y12 ‘
Vo1 Y22
Then the characteristic equation of J(x, v) can be written as

A2 = (Y11 + y)h + Yi1va2 — yavi2 = 0. (5)

Page 4 of 23
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Proposition 2.3 The eigenvalues of the boundary fixed point A(k,0) are .y = 1 —r and 1, =
€. Then A(k,0) isa saddle if 0 < r < 2. A(k, 0) is a source if r > 2. And A(k, 0) is nonhyperbolic

ifr=2.

Let
FA = {(r,k’Ol;a;b,C,S,h) S Rgil"ZZ},

Then it can be easily seen that one of the eigenvalues of A(k,0) is —1 and the other €’ > 1
when all parameters locate in F4. The center manifold of system (4) at A(k, 0) is v = 0 when
parameters are in F4. Therefore, system (4) restricted to this center manifold becomes:
Ups1 = Uy exp(r(1 — u/k)). The system can enter into chaos through a period-doubling bi-
furcation as the bifurcation parameter r increases.

The characteristic equation of the Jacobian matrix J(u, v) evaluated at the unique posi-
tive fixed point B(u*, v*) can be written as

H
A2—(2—S+G)A+<(1+G)(1—s)—z)=0, (6)
where
ru* abu*v* asu*(a + bu*)
Gz g — = CTTP 7
k " (a + bu* + cv*)? (a + bu* + cv*)? < @

Suppose that A; and A, are two roots of (6).

Proposition 2.4 The fixed point B(u*,v*) is one of the following types in Table 1, where G
and H are given by (7).

3 Flip bifurcation and Hopf bifurcation
First we discuss the flip bifurcation of system (4) at the unique positive fixed point B(u*, v*).
Let us define

FB:{(r,k,a,a,b,c,s,h):h:hlz ,S#G+4}.

H
2+G)(2-3)
The two roots of (6) are A; = —1 and Ay = 3 + (G —5) # =1 when the parameters lie in Fp.
Then the unique fixed point B(u*, v*) of system (4) may undergo a flip bifurcation when
parameters vary in a small neighborhood of Fg. Taking parameters (r, k,«, a, b, c,s, h) € Fp
and considering a small perturbation #* (|4*| < 1) of &; as a new dependent variable,
system (4) can be described by the following map:

u uexp(r(l = ) = Zpurer)
| — h* . (8)
v vexp(s(1 - M))

u

Assume that U = u — u* and V = v — v*. Then the fixed point B(u*,v*) of map (8) is
transformed into the origin. We rewrite respectively U and V as u# and v, then map (8)
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Table 1 Properties of the fixed point B(u*, v*)

(2023) 2023:41

Conditions Eigenvalues Properties
G<s<G+4 -1 <A<l stable node
2
max{—%, (2+Gﬁ((275)} <1 SJGXQ)
G>s Aip>1 unstable node
Gs _ 1 (G+9)2
THSR=TTH
G+4<s Ao <1 unstable node
2+G)2-5) _ 1 (G+9)?
Ho ShE=""4
G<s A <-1,-T<Ay <1 unstable saddle
Gs 1 _ (2+0Q-s)
THERSTH
1 (G+s)
B=""aH
2
% > - (Gm) conjugate complex roots stable focus
(1+G)L1—s) < WF < G—ZGS |)\l,2| <
2
% > max{—%, G’ST’@} conjugate complex roots unstable focus
|12 > 1
F= (i) A =-1,4 #-1 nonhyperbolic
s£G+4
F= (2+G,)j2’5) AMo=-1 nonhyperbolic
s=G+4
% = G’SH’GS conjugate complex roots nonhyperbolic
G<s<G+4 Mo =1
becomes
u a1 0 a3 u fi(u, v, 1)
l—1 0 1 0 |+ 0 9)
v a3 ax  ds v 5 (u, v, ")
where
2 2 3
ﬁ(u, v,h*) =dl” + aisuv + agV” + O((|u| + |V|) ),
2 3
S, v, 1) = azaus® + azsuv + azeV” + eyuh™ + evh* + esh + O((|ul + [v| + |1*|)°),
s su*
an=1+G, a3 =—, as1 = —, asy=——5, azg=1-s,
S hl hl
G*+2G ab?u*v* HQ1+G) abu(a+bu —cv¥)
aig = - ais =
2u* (a + bu* + cv*)3’ su* (a + bu* + cv*)3
H? cH 2 —2s 25 — 5 10)
aie = - ass = ass = ’
2s2u*  s(a + bu* + cv¥)’ 20 u* u*
hs(s—2) s—s? §*=2s s
aze = ———> e = ) € = ) €3 = :
Let us define the following matrix:
ai3 a13ds; ais3
T= 0 2(1 = 2A9) 0
—an-1 (l-aias Xt —an

Page 6 of 23
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Then det(A) = 2a;3(1 - A3) #0. So, T is an invertible matrix. Moreover, T~}
Applying the transformation (u, h*,v)T = T(, )7, map (9) can be rewritten as

1 .
= T adj(T).
i 1 0 0\ (& a1, 7, 1)
l—lo0o 1 ofl|r]+ 0 , (11)
y 0 0 x)\¥ &, 7, 1)
where
oo~y awlan —Ao) —awsas 5 ais(an —Aa) —aizass
a(wv,h*) = u® +
aiz(1 + A2) az(1+ A2)
— ) —
ae(an 2) — A13d36 2 €1 wh — € Vi — €3 hg
dlg(l + )\2) (1 + )\2) (1 + )\2) 1+ )\2
U ~ 1\3
+O((lal + 7] + | *])°),
~ o~ au(l+an)+aias , ais(l+an)+azass
gz(u, v h ): U+
az(1+ Az) az(1+ A2)

ae(l +app) + ajza e e e
N 16( 11) 13436 o N 1 uh* + 2 U+ 3 hg
ﬂ13(1+)\,2) 1+)\.2 1+)\.2 1+)\2

+O((1a] + 7] + [5*))°),

with u = (llgl:'l + ﬂlgﬂgzl’z* + ﬂlgf/, h* = 2(1 - )\2)]/;* andv = —(1 + 6111)17! + (1 - dll)dgz};* + ()Lz -
an)v.

The center manifold theorem is applied to determine the dynamics of (i, 7) = (0,0) at

Jr* = 0. Then there exists a center manifold of map (11), which can be represented as

wWe(0,0) = {(&,9)[7 = B(i h*), B(0,0) = 0,DB(0,0) = 0}.

Assume that

B(it, h*) = arii® + arith* + 613]’;*2 +O((lal + |h~*|)3)

(12)
Then the center manifold implies that

B(~it + gi (i, B (i, 1*), 1i*), 1i*) = ho B (i1, 1) — g (i, B (i, %), *) = 0

(13)
Substituting (11) and (12) into (13) and comparing the coefficients of (13), it follows that
1 2
ay = ———-{ais[a1a(1 + an) + arzazss] — ars(1 + any)[ars(1 + an) + arzass |
ﬂlB(l_)\z)
+(1+an)’[a6(1 +an) + ayasze )},
L {@hanfa o) + assan] [a15(1+ ) + s
ay = ——————\alas|as(1 + ai1) + aizasq | — anaas|as(1 +ay) + apa
2 PRGESWEAGE 32| 414 11 13434 11413d32| 415 11 13435

- 6132(1 - ﬂfl)[ﬂlé(l +an)+ 4136136] +e1ais(1 - hy) — eaarz(1 +an)(1 - )»2)},

Page 7 of 23
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as =

1 2 2
—————5 1413832 | 414(1 + a11) + a13a34
6113(1—)»%){ sl ]

+arzag,(l - ﬂn)[ﬂls(l +an) + ﬂlsﬂss]
+a3,(1—ap)? [ﬂls(l +an)+ ﬂlsﬂse] +2e1a35a3(1 - ko)

+2exa13a32(1 — an)(1 - Aa) + desars(1 - 22)*}.

Therefore, system (11) restricted to the center manifold W¢(0,0) is given by

Fiitrs —ii+ kil + koith* + ksloe” + kel + ksiuh” + kit + kol + O((Jit] + [17*])*),

where

ky =

ks

ks =

ke =

1

2
————{ais|@1a(@11 — A2) + a13asa| — a13(1 + a11)|ais(an — Ao) + aizass
az(1+ )»2){ il ] [ ]

+(1+an)’[aslan — 22) + arsase )},

2

2

—————{aisas|awlan — Ay) + ai3dza| — andizass|ais(an — A2) + di3ass

6113(1+)»2){ s ] [ ]

2 2

—az(1-afy)[as(an — A2) + arsase| — erais(1— A2) + e2ar3(1 + arn)(1 - 12)},
1 2 2

— {41385 |a14(a11 — A2) + aizaz,

ai3(1 +)»2){ 1 32[ ]

+ ar3az,(1 - an)[ais(an — Aa) + arsass |

+a3,(1 - an)?[ai6(an —Ao) + arsase | - 2e1aj;a3(1 - 1o)

- 2esa13a3(1 — an)(1 - Aa) — desars(1 - 12)*},

1

m { [2611(1%36{32 + 2424%3] [ﬂ14(ﬂll —Ap) + ﬂ136l34]

+ [@marzaz(hy + 1 - 2a11) + azais(ra — 1 - 2an1)][a1s(a11 — A2) + arzass]
+ [2a1a3:(1 — a11)(ha — an1) — 2a5(1 + a11)(Aa — an) | [ars(an — Aa) + arzase |

—2aye1a35(1 = Ay) — 2aresar3(hy —an)(1 - )»2)},

1

————2al,aras[aia(an — 12) + arzaz
az(1+ )»2){ 13 [ ]

+ [asars(ha — 2a11 + 1) + azarsas(ra + 1 - 2an1)|[aws(a11 — 12) + arzass]

+ [2a2a3,(1 - a11) (A — an) - 2a3(1 + an)(ha — an) | [are(@n — Aa) + arzase |

—2ase1a35(1 — hy) — 2azesa13(hy — any)(1 — )»2)},
ai

———2d%,[ara(ar; — A
6113(1 N )LZ){ 13[ 14( 11 2)
+ ar3aza] + arz(ha — 2a11 — 1)[a1s(an — A2) + arsass |

- 2(1 + a11) (A2 — an)[ae(ar1 — A2) + arzase |}
as

———{2a%,as[aia(a — A2) + arzaz
axs(1 +)»2){ ] ]

+arzaz(hy — 2a1 + 1)[ais(an — Aa) + arzass |
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+2az(1 - a11)(Ay — an)[ars(arn — Aa) + arsass|

—2e1a3;(1 - Aa) — 2era13(1 — Ag)(Ag — ﬂn)}~

Assume that

( 9°F 1 dF a2P)
M1 =

Lo OF ke + K2
onoh | 2ok 0% et

(0,0)

' 193F [102F\?
= » = - —= —+ - —
©00) ? 2=\ "\ 292

Theorem 3.1 If u; # 0 and py # 0, then system (4) can undergo a flip bifurcation at

B(u*,v*) when the parameter h varies in a small neighborhood of Fg. Moreover, if 1y > 0
(resp., (Lo < 0), then the period-2 orbits that bifurcate from B(u*,v*) are stable (resp., un-
stable).

In the following, we focus on the Hopf bifurcation of system (4) at B(u*, v*). Assume that

HBZ[(r,k,Ol,ﬂ,b,C,S,h)ZhZhQZ ,G<s<G+4}.
S

G-s-G

Then (6) has two complex conjugate roots on the unit circle, which implies that system (4)
at B(u*, v*) may undergo a Hopf bifurcation when all parameters vary in a small neighbor-
hood of Hp. Taking parameters (r,k,«, a, b, ¢,s,h) € Hg and considering a small perturba-
tion A, (|7 < 1) of i as a new dependent variable, system (4) can be described by the

following map:

wexp(r(l — %) — —@v
u N p k . (a;bu+cv)2 . (14)
v vexp(s(l - £22t))
Assume that U = u — u* and V = v — v*. Then the fixed point B(u*,v*) of map (14) is

transformed into the origin. For convenience, U and V are still rewritten as # and v, re-

spectively. Then we have
wy,_, [em e (u) My(u,v) , (15)
v €1 Cxn) \V Ma(u,v)

where

4
Mi(u,v) = C13U> + Cralv + C15V* + c1gU’ + Crou®v + c1guv? + c1ov° + O((|u| + |V|) ),

4
Mo (1, V) = Coztt? + ConlhV + CosV? + Coglh® + Copth®V + CogliV® +99 V> + +O((|u| + |v|) ),

s
c1=1+G, C2=—, 1=, cn=1-s5
s h
G’ +2G ab?urv* GH+1) abla+bu* —cv¥)
Ci3 = - , Cig = ,
B 2u* (a + bu* + cvx)? 1 su* (@ + bu* + cv*)3
$2—2s 2s — §2 hs® - 2hs
3= —) Cos = , Cyy= ——y
3= 24 o 25 o
H? cH
C15

T 282u*  s(a+ but + v

Page 9 of 23
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G® +3G? ab?>Gv* ab*(a + cv)v*
Ci6 = - - ,
16 6t (a@+bu* +cv¥)3  (a+bu* + cv+)?
G’H +2GH  ob*(u* + Hv*/s) ab(G + 1)(a + bu* — cv*) 3ab’u*vic
Ci7 = - ,
7 2512 (a + bu* + cv*)3 (a + bu* + cv*)3 (@ + bu* + cv*)*
GH? + H? c¢GH + cH abH(a + bu* — cv¥)
Cig = — +
18 25212 s(a + bu* + cv*)u* s(a + bu* + cv*)3
abcu*(2a + 2bu™ — cv*)
(a + bu* + cv*)*
H? cH? c*H 6s — 6% + s°
Ci9 = - + ’ Co6 = )
Y es3ud sut(a+but +cv) | s(a+ but + cv)? 26 6hu?
552 — 25— 3 2hs — 4hs® + hs® 3h2s* — h*s®
Cyp=————, €= ———5—, C9=——5—
2u* 2u* 611+

with /1 = hy + h,.

Then the characteristic equation associated with the linearization of map (15) at (0, 0)

is given by
A2 = p(h)x +q(hy) =0, (16)
where

p(hy) = ci1 + ¢, q(hy) = cricn — crac01.

When £, = 0, there exists a pair of complex conjugate eigenvalues A, A of (16) with || = 1.
Then it has

L5 PO) £i/1q(0) - p(0)

2

Furthermore, it implies that

d|A| H
Al = /4(0), == <0.
Al = v/4(0) di |y o 2 <

It also requires A", A" # 1, n = 1,2,3,4 when &, = 0. Equivalently, p(0) # 2,0, 1,2. Notice
that (r, k, o, a, b, ¢, s,h) € Hg implies -2 < p(0) < 2. It therefore needs to be p(0) # 0, 1, which
leads to

G-s#-1,-2. 17)
Accordingly, a pair of complex conjugate eigenvalues A, A of (16) does not lay in intersec-

tion of the unit circle with the coordinate axes.

Assume that p = Re(X), w = Im(A). Consider the following transformation:

()% 2)C)
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Then the normal form of (15) can be presented as

(- 202
7 o p |l \v G(it,v)
where
F(i1,7) = a(clguz + ClalV + 15V + Crel’ + Crou’v + ciguv? + 0191/3) + O((|i¢| + |17|)4),
G(z), 7) = (o = c11)ers3 — Clzczs)uz + (o = c11)c1a — €12€24) wv

wC1a wC12

(o = c11)c15 — c12€25) 2 (o — c11)c16 — C12€26) 3
+ Ve + u
wCi2

wC12

(o — c11)c17 — c12¢27) 2 (o — c11)c18 — c12€28) 2
+ uv+ uv

wCio wC12
((p — c11)e19 — €12629) ~ ~\ 4
+ V3+O((|u|+|v|) ),
w12
and u = cpit, v = (p — c11) U — WV
Let us denote
- 9% E(@,7) - 0%F(i,7)
Fiy = —5— »o Fan= ——— )
U |@p=00) dudV |5)=00)
- 0%F(,v) - 33F (i1, V)
WS ) Fian = B ,
Vo @9)=00) U 1(@,)=00,0)
- 33F(i1,7) s 83F (i1, 7)
WS e ) i = e )
02110V (@7)=(0,0) 02v01 (@7)=(0,0)
- 33F (i1, V) - 32G (i1, )
WS o , Gui = 5 ,
Vo @9)=00) U |(@5)=000)
. 092G, V) - 9%F(i1,7)
Giv = —= v G= )
UL | (75-(0,0) %V @n=00)
- 33G(i1,7) - 33G(i1,7)
G = ——37— ) G = —5 e )
°u | (%5)=00) *UdV  |i5)-0,0)
33G(i1, V) . 33G(i1, )
Wit = e ) Vv = e .
R (#,7)=(0,0) a3y (,7)=(0,0)

Then map (20) can undergo a Hopf bifurcation if the following discriminatory quantity

is not zero:
1-21)A2 1 .
= [—Re<%‘§u‘§20> - §|§:11|2 — |&oa|* + Re(}\‘i:Zl):I ) (19)
_ hy=0
where

1, - ~ - - - -
&0 = 3 [(Fai — Fyi + 2Ggp) + (G — G — 2Fi) ],
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1, - ~ ~ -
fu =7 [(Fai + Fy) + (G + Giw) ],

1. - ~ ~ ~ - -
§o=¢ [(Faa — Foi — 2Giw) + (G — G + 2F) ],

1. - - ~ ~ ~ ~ - -
=1, [(Faii + Fi + G + Goin) + (G + Gz — Faaw — Fio) |-

Theorem 3.2 If condition (17) holds and | # 0, then map (4) undergoes a Hopf bifurcation
at B(u*,v*) when the parameter h varies in a small neighborhood of Hg. Moreover, if | < 0
(resp., I > 0), then an attracting (resp., repelling) invariant closed curve bifurcates from
B(u*,v*) for h > hy (resp., h < hy).

4 Bifurcation with 1:2 resonance
In the following, we focus on the 1:2 strong resonance bifurcation of system (4) at B(u*, v*).

Assume that

H

R12 = {(r,k,a,d,b,c,s,h):h = hl = mrs

=8 = G+ 4} .

The two roots of (6) are A1 » = —1 when all the parameters are located in Ry,. Then B(u*, v*)
may be a 1:2 strong resonance bifurcation point if # and s respectively vary in a small
neighborhood of /# = /1; and s = s;. We consider 4 and s as bifurcation parameters and
assume that (r, &k, «, 4, b, ¢, s, h) varies in a small neighborhood of R;,. For convenience, we

denote

ﬁ = (h,S), ﬂO = (hljsl)-

Let x, = u, — u* and y, = v, — v*. Then we transform B(u*, v*) of system (4) into the origin

and get the following form:

xp+ut a(y,+v*)
x )~

X1 = (X + 17) exp(r(l - a+b(xn+u*)+c()’n+v*)) —uh (20)

Yur1 = (Y + V¥) exp(s(1 — h(y”—*"*))) — P

Xp+u*
By expanding the right-hand side of (20) into the Taylor series at the origin, we get

X1 = 01(B)x, + 02(13)3171 +Nl(xnvyn) + O((|x, | + |_yn|)4):

(21)
Yn+1 = Ul(ﬁ)xn + U2(ﬂ)yn +N2(xmyn) ++0((|x,| + |yn|)4);

where

61(B) = cu1, 6(B) = c12, o1(B) = ca1, 02(B) = ¢,

Nl(xmyn): Z elj(ﬁ)xiq ;,: NZ(xn:yn): Z O‘ij(lg)quy{q’

2<i+j<3 2<i+j<3

with

B20(B) = 13, 011(B) = c14, O02(B) = c15,
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030(B) = c16 621(B) = c17, 012(B) = c1s 0o3(B) = c19,
o20(B) = c23, o11(B) = c24s 002(B) = ¢as,

o30(B) = ca6, 021(B) = 27, o12(B) = cas, 003(B) = c29.

Let us define

A(B) = 01(B)  6:2(B)
(71(,3) 02(,3) ‘

Note that we have
(51-2)%m
s -3 -
A(By) = ( N 51 )
7 1- S1

Moreover, there are two linearly independent eigenvectors go; of A(8y) and adjoint eigen-
vectors pg; of AT(By) such that

A(Bo)qo = —9o, A(Bo)q1 = —q1 + qo,
AT (Bo)p1 = —p1, AT(Bo)po = —po + p1

(qo,po) = {q1,p1) = 1, {(q1,p0) = (q0,p1) =0,

where

h1(s1-2) h 0 Z_l
= 51 , =[], = , = ro,
9o 1 91 0 bo 1 P1 2 s,

and (-, -) stands for the standard scalar product.
Therefore, any vector (x,, y,,)T can be decomposed as

(xm_yn)T =~7Acnq0 +5’nq1; (22)

where the new coordinates (%,,,) are as follows:

JACn = ((xmyn)Trp0>r

N (23)
Yn = <(xn:yn)T:p1)'

In the new coordinates (X,,J,), system (21) can be written as
52n+1 = (_1 + 910(/3))&;1 + (1 + QOI(ﬁ))jln +N1(55n»5’n) + O((|&n| + |5’n|)4)» (24)

Fur1 = 010(B)&n + (=1 + 001 ()7 + No(Ris I) + +O((1Zn] + [9a])%),

where

shi(sy —2)

610(8) = (po, [A(B) = A(Bo) |q0) =2 — s + e

Bo1(B) = (po, [A(B) — A(Bo) 1) = -1 + Z_
$1
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o10(B) = (p1, [A(B) = A(Bo) ]40)

hi(s1—2) . [5_1

T 0+ (2 —51)02:|,

= [2—1191 +(2 —51)01:|

S1
hy

o01(B) = (p1, [A(B) = A(Bo)|q1) =1 + [2—1191 +(2 —51)01] o

1

PN o i ni hi(s1-2). hi. .
N1 (&, ) = Z 05(B)x, ), = N2(117xn + _lymxn>;

2<itj<3 51 51
o i) = Y 65(BRL3,
2<i+j<3
s h(s1-2). hy. . hi(s1-2),. hy. .
= h—1N1<Mx,, + —lyn,x,,) + (2—s1)N2<—1( ! )xn + —1y,,,xn).
1 S1 $1 $1 $1

Clearly,

010(Bo) = B01(Bo) = 010(Bo) = c01(Bo) = 0.

By introducing the nonsingular linear coordinate transformation as follows:

&n 56,, 1+ 901(/3) 0 Jﬁén
=P = , 25
(5/;4) (ﬂ) (5/;1) ( —910(ﬂ) 1) (5’;1) ( )
(24) can be rewritten as

icn+1 = _in +5’n +N1(5Cn15’n) + O((|55n| + |5/n|)4)! (26)
5/n+1 = tl(lg)&n + (_1 + 1'2(,3))5/}1 +N2(5Cn:5/n) + O((I&n| + |5’n|)4))

where

71(B) = 001(B) + Bo1(B)o10(B) — 610(B)o01(B),
72(B) = 010(B) + 001(B),

- - . 1 ~
N ~m~n = ei' ~;~n:7N 1+0 ~n;—9 ~n ~n»
1 Gons ) 25;53 JBE.F, = T 5n® (14 601(8)) &, ~610(B)En + 7

NoGowii) = Y G5(B)ELT,
2<i+j<3
= 010(B)N1((1 + 601(B))Zn» ~010(B)%n + Fn)
+ (1 +001(B)) N ((1 + 001(B)) Fons =010 (B)&n + Fn).
To reduce (26) to a 1:2 resonance bifurcation normal form, we introduce the following

transformation:

B =t Yoisos Vi (B)ELT o)
5’;1 =MNnt 225141'53 ¢l}(ﬁ)§;f,77/m

where 1;; and ¢; will be determined later.

Page 14 of 23
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By using (27) and its inverse transformation, system (26) becomes of the following form:

Eni1 =5+ 0 + 2255+1'53 %;(,3)5,3% + O((1&,] + |77n|)4),

o (28)
N1 = T1(B)&n + (=1 + Ta(B))ny + ZZSH;‘SB Pz;(ﬁ)é,’,ﬂiq + O((1€,] + |77n|)4)’

where

¥20(B) = 020 + 20 = 2920 — T Yoo + T,

Y11 (B) = 011 + 11 — 211 (1 + T2) V0 + (72 — T1) Y11 + 2920,
v02(B) = 0oz + poz = (1 + (1 + ©2)°) Yoz + (1 + w2)¥rm1 = ¥rao,
p20(B) = G20 — Ty o2 + Tid11 + (11 + T2) a0,

p11(B) = 611 — 211 (1 + T)oa + (2 — 71 + 2T2)11 + 2ha + T1 V11,

P02(B) = G20 — Ta(1 + T2) o2 — (1 + T2)P11 — P20 + T1¥02.
To eliminate all quadratic terms in the map (28), we take
Y20 = Y11 = Y02 = P20 = P11 = Po2 = 0,

then the coefficients y; and ¢; for i +j = 2 can be computed (see the details in [28]).
Similarly, the coefficients ¥; and ¢;; for i + j = 3 can be determined by assuming

Y30 = V12 = Y21 = Y03 = P12 = P21 = po3 = 0.

Therefore, map (20) can be transformed into the 1:2 strong resonance bifurcation nor-

mal form as follows:

Ene1 = =En + 1 + O((I€4| + |77n|)4):

(29)
Nus1 = T1(B)én + (=1 + 1a(B))n + C1(B)ES + D1(B)E2N + O((I€a + [na)™),

with C;(8) and D;(B) satisfying

C1(Bo) = 530(Bo) + B20(Bo)F20(Bo) + %&220(50) + %520(50)511@0),

D1(Bo) = G21(Bo) + 3030(Bo) + %ézo(ﬁoﬁu(ﬂo) + 2520(,30)511(,30)
- 5.
+620(B0)502(Bo) + 3030(Bo) + 5920(,30)520(,30)

5. 1
+ 5911(,30)520(,30) +050(Bo) + 55121(/30)

According to the results given in [28], the parameter conditions for the 1:2 strong reso-

nance bifurcation are presented as follows.

Theorem 4.1 IfCi(Bo) # 0and D1(Bo) +3C1(Bo) # 0, then system (4) undergoes a 1:2 strong
resonance bifurcation at B(u*,v*) when parameters vary in a small neighborhood of Ry,.
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Moreover, if C1(Bo) < 0 (resp., C1(Bo) > 0), then B(u*,v*) is a saddle (resp., elliptic), and
D1 (Bo) + 3C1(Bo) determines the bifurcation scenario under perturbations. Furthermore,
system (4) has the bifurcation behaviors as follows:
(i) There is a pitchfork bifurcation curve PF = {(t1, 1) : 11 = 0}, and there exist
nontrivial equilibria for t; < 0;

(ii) There is a nondegenerate Hopf bifurcation curve
2
HP={(1;,12): 11 = -1 + O((|t1] + |l)"), 11 < O};

(i) There is a heteroclinic bifurcation curve
5 2
HL=1{(t,12):71 = —gl’z + O((|rl| + |12|) ),1’1 <0¢.

5 Numerical simulations
Bifurcation diagrams, maximum Lyapunov exponents, and phase portraits of system (4)
are presented to demonstrate the above analytic results and to explore the complex dy-
namical behaviors. Therefore, we consider the bifurcation parameters for the following
three cases:
(i) Changing / in the interval (12,22) and specifying r = 3, k = 50, « = 0.86, a = 0.8,
b=0.1,¢=0.05s=04;
(ii) Changing 4 in the interval (3,11) and specifying r = 3, k = 50, & = 0.86, a = 0.8,
b=0.1,¢=0.05s=12;
(iii) Changing % in the interval [1.22,1.24] and s in the interval [0.5,0.7], and specifying
r=10,k =50, =0.86,a=0.8,b=0.1, c = 0.05.

For case (i). When & = h; = 14.44845, the unique positive fixed point is B(u*,v*) =
(41.905164,2.900322) and the eigenvalues of (5) are A; = —1 and A, = 0.482006. In addi-
tion, s # G + 4 = 1.882005 and p; = 0.04465407588 # 0, 1y = 0.057614 > 0. Then we know
from Theorem 3.1 that a stable period-2 orbit emerges from the unique positive fixed
point B(u*,v*). The bifurcation diagrams for (%, u) and (%, v) are displayed in Fig. 1(a) and
(b), respectively. The maximum Lyapunov exponents corresponding to Fig. 1(a) and (b)
are shown in Fig. 1(c). From Fig. 1(a) and (b), the unique positive point B(u*, v*) is stable
for 12 < & < 7 and loses its stability at the flip bifurcation parameter value % = /1;. Mean-
while, we can observe complex dynamical behaviors such as a cascade of period-doubling,
period-10 orbits, quasi-periodic orbits, periodic windows, and chaos (see Figs. 1 and 2).
Figure 2 shows some phase portraits associated with Fig. 1(a) and (b). If / = 21, a chaotic
set is observed and its maximum Lyapunov exponent verifies the existence of the chaotic
set. According to Fig. 1, when the number of prey required to support a predator is less
than 18.7988, the dynamical behavior of system (4) is stable and chaos does not occur.
Moreover, the dynamical behavior of system (4) stabilizes when the number of prey re-
quired to support a predator becomes small.

For case (ii). When 4 = &, = 8.9081, the unique positive fixed point is B(u*,v*) =
(37.33459221,4.191083644) and the eigenvalues of system (5) are A, = —0.4209507970 +
i0.9070834805 and XA, = A;. Furthermore, we can get |A12| = 1. Additionally, G =
-1.641901594 #s—1,s — 2 and [ = —0.03712915975 < 0. Then we know from Theorem 3.2

that the Hopf bifurcation occurs and an attracting invariant cycle emerges from the unique
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Figure 1 (a) Flip bifurcation diagram of system (4) in the (h, u) plane with the initial value (ug, vo) = (8,2). (b)
Flip bifurcation diagram of system (4) in the (h,v) plane. (c) Maximum Lyapunov exponents corresponding to

(a) and (b)
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Figure 2 Phase portraits corresponding to Fig. 2(a) and (b). (a)Quasi-periodic orbits for h = 18.5. (b) Period-10
orbits for h=19.7. (c) Quasi-periodic orbits h = 20. (d) A chaotic attractor for h =21
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Figure 3 (a) Hopf bifurcation diagram of system (4) in the (h, u) plane with the initial value (ug, vo) = (8,2). (b)
Hopf bifurcation diagram of system (4) in the (h,v) plane. (c) Maximum Lyapunov exponents corresponding to
(a) and (b)

fixed point B(u*, v*). The bifurcation diagrams for (%, #) and (%4, v) are displayed in Fig. 3(a)
and (b), respectively. The maximum Lyapunov exponents corresponding to Fig. 3(a) and
(b) are shown in Fig. 3(c). Figure 4 displays the phase portraits of system (4) corresponding
to Fig. 3(a) and (b). It can be observed from Fig. 4 that there are period-6, period-12, an
invariant closed curve, and an attracting chaotic set. Meanwhile, when a chaotic attractor
happens for /1 = 4, the maximum Lyapunov exponent from Fig. 3(c) confirms its existence.
According to Fig. 3, when the number of prey required to support a predator becomes
large, the dynamical behavior of system (4) will tend to be stable.

For case (iii). When % = h; = 1.237988529 and s = s; = 0.6123350405, the unique pos-
itive fixed point is B(u*, v*) = (29.28847604, 23.65811586) and the eigenvalues of system
(5) at B(u*,v*) are A1 = A, = —1. Furthermore, we can obtain C;(8,) = 0.2700889125 and
D1 (Bo) + 3C1(Bo) = 1.412346912. According to Theorem 4.1, system (4) can undergo a 1:2
resonance at the unique positive fixed point B(u*,v*) when the parameters / and s vary
in the neighborhood of (%1,s;). The 2-dimensional bifurcation diagram for (s, %) is pre-
sented in Fig. 5(a) when /% = /1; and s varies in a neighborhood of s;. Figure 5(b) shows
the 3-dimensional bifurcation diagram for (%, s, u) when (4, s) varies in a neighborhood of
(h1,51). The phase portraits of system (4) near B(u*,v*) for different parameters / and s
are shown in Fig. 6(a)—(d). When % and s vary in the neighborhood of (41,s1), system (4)
presents complex dynamical behaviors such as period-7 orbits, invariant curves, and an

attractor.
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Figure 4 Phase portraits corresponding to Fig. 3 (a) and (b). (a) Period-6 orbits for h = 10. (b) Period-12 orbits
for h=9. () An attracting invariant cycle for h = 8. (d) A chaotic attractor for h =4

Figure 5 Bifurcation diagram of system (4) near the fixed point B(29.2885,23.6581). (a) On the (s, u)-plane,
where h=123and 0.5 <5 <0.7.(b) Inthe (h,s,u) space, where 1.22 <h <124and 05 <s5s<0.7

6 Chaos control
In this section, the state feedback control method will be used to stabilize the chaotic set

of system (4). Then we consider the following controlled map:

avy

Ups1 = Up eXp(r(l - MT”) - m) + W(thny V),

(30)
Vi1 = vaexp(s(l — 22)),

where w(u,, u,) = —p1(u, — u*) — ua(v, — v*) is the feedback controlling force and w1, uo

represent the feedback gains.
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Figure 6 Phase portraits of system (4) for various values of h and s. (a) h =123, s = 0.664. (b) h = 1.23, s = 0.68.
(©h=122,5=061.(d) h=1.226,5=062

The Jacobian matrix of map (30) at B(u*,v*) is

Ci1 — M1 Ci2— U2
](u*, V*) l‘l’ lu‘
21 €22

The characteristic equation of J(u*, v*) is

A% = (c11 + €2 — 1)k + exn (e — 111) — a1 (caz — pa). (31)
If A; and A, are the eigenvalues of (31), then we obtain

A+ Ao =c11 + € — 1, AMAg = Cop(cnn — 1) — ca1(c12 — Ha). (32)
By solving the equations A; = +1, the lines of marginal stability can be gotten. Moreover,
these restricted conditions assure |11 5| < 1.

According to (32), A;A; = 1 implies that
Ly : pricon — maco1 = 11622 — €12621 — 1. (33)

According to (32), A; = 1 deduces that

Ly : (1= co2) + pocor = €11 + €2 — 1 — c11692 + C12€01. (34)
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Figure 7 The bounded region for the eigenvalues of controlled system (30) in the (11, 1) plane. Clearly, the
point (-2,0) is in the stability region of (30)
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Figure 8 (a) The time responses for the prey of controlled system (30). (b) The time responses for the
predator of controlled system (30)

Furthermore, assume that A; = —1 deduces that

L3 : (1 + ¢22) — pocor = €11 + €22 — 1 + c11€22 — C12€01. (35)

Therefore, the stable eigenvalues of map (30) at B(u*,v*) will lie within the triangular
region bounded by L;, L,, and L3 (see Fig. 7).

From Fig. 1 and Fig. 2(d) it can be seen that system (4) exhibits chaotic behavior when
h=21,r=3,k=50,a=0.86,a=0.8,b=0.1,c=0.05, s = 0.4. The stable eigenvalues lie
within a triangular region, as depicted in Fig. 7. Select the feedback gains for p; = -2 and
o = 0. This point (1, 2) = (=2,0) lies well inside the triangular region, as depicted in
Fig. 7. From Fig. 8 it is shown that the chaotic trajectory stabilizes at the unique positive
fixed point B(u*, v*) = (44.3323,2.1111).

7 Conclusion
In this paper, we have considered the complex dynamical behaviors of a discrete Holling—
Tanner model with Beddington—DeAngelis functional response. The permanence and lo-
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cal stability of fixed points for system (4) are derived. By using the center manifold theorem
and bifurcation theory, the flip and Hopf bifurcations can occur around the unique positive
fixed point if we choose suitable parameters. Furthermore, we explore the 1:2 resonance
bifurcation of system (4). Numerical simulations have shown that system (4) exhibits very
rich complex dynamical behaviors. The state feedback control method is used to stabilize
the chaotic set of system (4). According to Fig. 1 and Fig. 3, when the intrinsic growth
rate of a predator is small (s = 0.4), the number of prey required to support a predator
becoming small will stabilize the dynamical behavior of system (4). Conversely, when the
intrinsic growth rate of a predator is large (s = 1.2), the number of prey required to support
a predator becoming large will stabilize the dynamical behavior of system (4). Compared
with the continuous-time system (1) in [9], system (4) exhibits more complex dynami-
cal behaviors such as period-6, 7, 10, 12 orbits, an attracting invariant cycle, a cascade
of period-doubling, quasi-periodic orbits, and the chaotic sets. These complex dynami-
cal behaviors imply that the coexistence of predator and prey may produce very complex
stable patterns.
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