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Abstract
This paper introduces a new perspective of the traditional view on the velocity of
each physical particle in the coupled Burgers’ equation in the backward
semi-Lagrangian method (BSLM). The proposed methods reduce the number of
Cauchy problems to be solved by observing a single virtual characteristic curve with a
velocity. This can drastically reduce the computational cost of determining the
departure point. Then, we solve the derived system reflected by the single virtual
characteristic curve. Moreover, an efficient strategy for the derived linear system of
equations is provided. Four examples are tested to demonstrate the adaptability and
efficiency of the proposed method. The test results show that the proposed method
has third- and fourth-order accuracy in time and space, respectively. In addition,
compared with the existing method of solving the problem along two particles with
different velocities, we confirm that the proposed method significantly reduces
computational cost while maintaining accuracy well.

Keywords: Backward semi-Lagrangian method; Characteristic curve; Coupled
Burgers’ equations; Nonlinear Cauchy problem

1 Introduction
Under the effect of gravity, the sedimentation of two types of particle concentrations in
fluid suspensions and colloids is described in the following viscous coupled Burgers’ equa-
tions [9]:

⎧
⎨

⎩

ut – ν1uxx + α1uux + β1(uv)x = 0,

vt – ν2vxx + α2vvx + β2(uv)x = 0,
x ∈ [a, b], t ∈ (t0, T], (1)

with the following initial and boundary conditions:

u(t0, x) := u0(x), v(t0, x) := v0(x), x ∈ [a, b],
⎧
⎨

⎩

u(t, a) = ua(t),

u(t, b) = ub(t),

⎧
⎨

⎩

v(t, a) = va(t),

v(t, b) = vb(t),
t ∈ (t0, T].

(2)
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Coefficients αk and βk (k = 1, 2) are real constants that describe the interaction of gravity
and thermal fluctuation (Péclet number) and the velocities of the moving particles, re-
spectively [6]. In addition, the positive real constants, ν1 and ν2, represent the viscosity
coefficients related to the Reynolds numbers of u and v, respectively. The rate at which a
particular reaction proceeds mainly depends on the reactant concentration. Suppose the
reactant concentration is increased. In that case, the number of molecules or ions will in-
crease, thereby increasing the number of collisions between them and the reaction rate.
Thus, the solutions to the model problem simultaneously represent particle velocity and
concentration. The governing equations are of advection–diffusion type, but the nonlin-
ear coupling terms of u and v are not a common feature of this type.

Over the last 10 years, various numerical methods have been developed to solve the vis-
cous coupled Burgers’ equations. For example, Kapoor and Joshi developed a differential
quadrature method with uniform algebraic trigonometric tension B-spline [12], Başhan
applied a mixed method with the finite difference and differential quadrature method
based on third-order modified cubic B-spline functions [5], Hussein and Kashkool used a
weak Galerkin finite element method [10], Zhang et al. introduced an improved backward
substitution method [21], Abdullah et al. developed a numerical procedure based on the
cubic B-spline and the Hermite formula [1], Mohanty and Sharma presented a high accu-
racy two-level implicit method based on cubic spline approximation [17], Bhatt and Khaliq
modified exponential time-differencing Runge–Kutta method based on Padé approxima-
tion [7], Kumar and Pandit proposed a composite scheme based on finite difference and
Haar wavelets [13], Jiwari and Alshomrani developed a new collocation method based on
modified cubic trigonometric B-spline function [11], Mohanty et al. proposed a two-level
implicit compact operator method [16]. Among the abovementioned methods, there is a
backward semi-Lagrangian (BSLM) to solve the model problem. It solves the system on
fixed Eulerian spatial grids at every time step by tracing in the reverse time direction the
trace of a particle observed from a Lagrangian viewpoint. This BSLM is called a coupled
backward semi-Lagrangian method (CBSLM), which is the first attempt at using the BSLM
to solve the model equations [2]. The CBSLM inherits the following well-known advan-
tages of the traditional BSLM. The BSLM guarantees unconditional stability by implicitly
dealing with the particle trajectories, allowing the use of a larger time step size than that in
Eulerian methods [3, 4, 18]. It does not require domain remeshing, unlike the Lagrangian
method. The CBSLM has second-order accuracy in time and fourth-order accuracy in
space, and it implicitly treats the particle trajectories without any iteration process.

In the previous BSLM task, CBSLM, the virtual characteristics of π (t) and φ(t) (or par-
ticle trajectories), respectively, satisfy the following nonlinear Cauchy problems:

dπ (t)
dt

= s1
(
t,π (t)

)
,

dφ(t)
dt

= s2
(
t,φ(t)

)
, (3)

and the model equations are reformulated by the general form of the Lagrangian formu-
lations:

d
dt

u
(
t,π (t)

)
= f1

(
t,π (t)

)
,

d
dt

v
(
t,φ(t)

)
= f2

(
t,φ(t)

)
, (4)
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where

f1
(
t,π (t)

)
= ν1uxx

(
t,π (t)

)
– α1u

(
t,π (t)

)
ux

(
t,π (t)

)

– β1(uv)x
(
t,π (t)

)
+ s1

(
t,π (t)

)
ux

(
t,π (t)

)
,

f2
(
t,φ(t)

)
= ν2vxx

(
t,φ(t)

)
– α2v

(
t,φ(t)

)
vx

(
t,φ(t)

)

– β2(uv)x
(
t,φ(t)

)
+ s2

(
t,φ(t)

)
vx

(
t,φ(t)

)
.

(5)

In the CBSLM [2], the particle’s velocities are fixed as s1(t,π (t)) = α1u(t,π (t)) +β1v(t,π (t))
and s2(t,φ(t)) = α2v(t,φ(t)) + β2u(t,φ(t)). The CBSLM process for simultaneously solving
(3) and (4) (or model equations) can be divided into three parts: (i) finding the depar-
ture points at the previous time steps by solving the Cauchy problems; (ii) interpolating
the function values at the departure points; and (iii) solving the systems to discretize (4).
Among these processes, in most BSLMs, as well as in CBSLM, interpolation processes
incur the highest computational cost. In CBSLM, interpolation is required even in the
process of determining the departure points. In particular, a more significant number of
departure points and interpolations are inevitably required to obtain high-order accu-
racy in time and space. Thus, we describe a high-order (third-order) accuracy version
of CBSLM, CBSLM3, and propose a faster algorithm while maintaining the accuracy of
CBSLM3. Hereafter, we denote the existing CBSLM as CBSLM2 to distinguish it from
CBSLM3.

Our main goal is to develop a novel methodology, without losing accuracy, than both
CBSLM2 and CBSLM3 that individually consider all characteristic curves of each parti-
cle. For this, we propose a new method for choosing the velocity functions. The proposed
method observes a single virtual characteristic curve with velocity s. First, we propose the
choice of three versions of s and then present their algorithms for solving the correspond-
ing Lagrangian form. Additionally, to construct high-order algorithms, the third-order
backward differentiation formula and fourth-order finite difference method are applied
to discretize the Lagrangian formulations. We apply the third-order multistep error cor-
rection method to solve the nonlinear Cauchy problem. Note that the typical Lagrange
interpolation is used for estimating the required function values at nongrid points in all
proposed methods. In particular, we improve two parts among the three parts of BSLM
by (i) handling the number of Cauchy problems, and (ii) providing an efficient strategy for
solving a linear system of equations. To improve these parts, we reduce the number of the
Cauchy problems to be solved by sharing the characteristic curve arriving at point x as
only one. We additionally design an explicit formula that converts to a pentadiagonal one
for the system of equations occurring at every time integration step. This formula is used
to reduce the computational cost of solving the linear system of equations.

The remainder of this paper is organized as follows. In Sect. 2, we review and extend
CBSM2 for solving (1) and the Cauchy problem solver with third-order accuracy, which
individually determines all characteristic curves of each particle. In Sect. 3, we introduce
three proposed schemes for solving the model problem and provide a fast solver for de-
rived nonlinear systems. The numerical simulations are illustrated in Sect. 4 to demon-
strate the efficiency of the proposed algorithms. Finally, the conclusions are summarized
in the last section.
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2 Preliminary results
In this section, we introduce CBSLM3, which is an extended version of CBSLM2 with a
third-order temporal accuracy for solving the model equations. To do that, we first define
time sequences tn := t0 + nh, n = 0, 1, 2, . . . , N , where h := (T – t0)/N is the time step size.
Furthermore, the uniformly divided spatial grid sequence is defined as xj = a + j�x, �x =
(b – a)/J . The time variable evaluated function u(tn, x) is denoted by superscript un(x).

2.1 BSLM with BDF
Now, we provide the BSLM algorithm with third-order temporal accuracy to obtain the
solutions at time tn+1. The first step of BSLM is evaluating x = xj at t = tn+1 for the La-
grangian formulations (4) with (5). As mentioned in the Introduction, CBSLM chooses
the fixed virtual velocities:

s1
(
t,π (t)

)
= α1u

(
t,π (t)

)
+ β1v

(
t,π (t)

)
,

s2
(
t,φ(t)

)
= α2v

(
t,φ(t)

)
+ β2u

(
t,φ(t)

)
.

Then, along with the characteristic curves π (t) and φ(t) satisfying nonlinear Cauchy prob-
lems (3) with initial values πj(tn+1) = xj and φj(tn+1) = xj, the Lagrangian formulations (4)
are given by

d
dt

un+1(xj) = f n+1
1 (xj), f n+1

1 (xj) = ν1un+1
xx (xj) – β1vn+1

x (xj)un+1(xj),

d
dt

vn+1(xj) = f n+1
2 (xj), f n+1

2 (xj) = ν2vn+1
xx (xj) – β2un+1

x (xj)vn+1(xj).
(6)

To obtain the solutions u and v at (t, x) = (tn+1, xj), we employ the third-order backward
differentiation formula for the total derivatives du/dt and dv/dt in (6). Then, we obtain
the following system of nonlinear boundary value problems:

11
6h

un+1(xj) – f n+1
1 (xj) = rn+1

1 (xj) + O
(
�t3),

11
6h

vn+1(xj) – f n+1
2 (xj) = rn+1

2 (xj) + O
(
�t3),

(7)

where

⎧
⎨

⎩

rn+1
1 (xj) = 3un(πj(tn)) – 3

2 un–1(πj(tn–1)) + 1
3 un–2(πj(tn–2)),

rn+1
2 (xj) = 3vn(φj(tn)) – 3

2 vn–1(φj(tn–1)) + 1
3 vn–2(φj(tn–2)).

(8)

To discretize the nonlinear boundary value problems (7), we use the fourth-order finite
difference for first and second partial derivatives with weight matrices D1 and D2 and
vectors d2,u and d2,v given in the appendix. Then, we obtain the semidiscretized matrix
system

A1
(
v̂n+1

ex
)
ûn+1 = rn+1

1 + ν1d2,u + O
(
h3 + �x4),

A2
(
ûn+1)v̂n+1 = rn+1

2 + ν2d2,v + O
(
h3 + �x4),

(9)
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where

Aκ (w) :=
11
6h

I – νκD2 + βκ diag(D1w + d1,w), κ = 1, 2,

rn+1
κ =

[
rn+1
κ (x1), . . . , rn+1

κ (xJ–1)
]T, v̂n+1

ex := 3v̂n – 3v̂n–1 + v̂n–2.
(10)

Here, the notation diag(w) denotes a diagonal matrix, the diagonal entries of which are
those of vector w and vector d1,w is defined in the appendix. The hat notation on vector
ŵ means a vector without both ends of column vector w.

Note that the departure points πj(tn–l) and φj(tn–l), l = 0, 1, 2, do not usually coincide
with the spatial grid point; consequently, the function values at these points un–k(πj(tn–l))
and vn–k(φj(tn–l)) require an appropriate interpolation. Herein, we use the typical Lagrange
interpolation with sixth-order accuracy. The approximate vector, Rn+1

κ , of rn+1
κ is defined

as follows:

Rn+1
κ :=

[
Rn+1

κ (x1), . . . , Rn+1
κ (xJ–1)

]T, κ = 1, 2,

Rn+1
1 (xj) = 3L

[
Un](πn

j
)

–
3
2
L

[
Un–1](πn–1

j
)

+
1
3
L

[
Un–2](πn–2

j
)
, j = 1, . . . , J – 1,

Rn+1
2 (xj) = 3L

[
Vn](φn

j
)

–
3
2
L

[
Vn–1](φn–1

j
)

+
1
3
L

[
Vn–2](φn–2

j
)
, j = 1, . . . , J – 1,

(11)

where L is the interpolation operator using typical Lagrange polynomials of the sixth de-
gree and is defined in the appendix. After applying the Lagrange interpolation to approx-
imate rn+1

κ and dropping the truncation error, we achieved a fully-discretized system for
the approximation Un+1 and Vn+1 of un+1 and vn+1, respectively, namely

A1
(
V̂n+1

ex
)
Ûn+1 = Rn+1

1 + ν1d2,u,

A2
(
Ûn+1)V̂n+1 = Rn+1

2 + ν2d2,v

(12)

with V̂n+1
ex = 3V̂n – 3V̂n–1 + V̂n–2. The final process for implementing this system involves

the determination of the locations of departure points. This process is essential not only
for CBSLM3 but also for the proposed methods.

2.2 A Cauchy problem solver finding departure points
In this section, we introduce a strategy for solving the Cauchy problems to complete the
discretized system (12). Hereafter, we use the notation θj to represent a characteristic
curve πj or φj. Recall that the position θj(tn–l) := θ (tn+1, xj; tn–l) (l = 0, 1, 2) of the particle
arriving at xj (j = 1, . . . , J – 1) on time level t = tn+1 is referred to as the departure point. The
trajectory of the departure point θj(t) satisfies the Cauchy problem of

dθj(t)
dt

= s
(
t, θj(t)

)
, t < tn+1; θj(tn+1) = xj. (13)

Herein, the particle velocity s is combined with the solutions, u and v of the model prob-
lem, which is strong nonlinear. To resolve this nonlinearity, we employ the multistep er-
ror correction method introduced in [2]. The mechanism of the error correction method
starts with defining a linear local approximation

y(t) = xj + (t – tn+1)Sn(xj), t < tn+1, (14)



Bak and Jeon Advances in Continuous and Discrete Models         (2023) 2023:39 Page 6 of 22

where Sn(xj) is an approximation for s(tn, xj). The local approximation leads a perturbation
ψ(t) := θj(t) – y(t) to be corrected, which satisfies the following asymptotic initial value
problem:

dψ

dt
(t) = s

(
t, y(t)

)
+ sx

(
tn, y(tn)

)
ψ(t) – s(tn, xj) + O

(
h3), t < tn+1

≈ s
(
t, y(t)

)
+ Lx

[
Sn](y(tn)

)
ψ(t) – Sn(xj)

(15)

with the initial value ψ(tn+1) = 0. Here, Sn is a column vector defined as Sn := [Sn(x0),
Sn(x1), . . . , Sn(xJ )]T and Lx is introduced in the appendix as the derivative operator of L.

To estimate numerical solutions for the asymptotic initial value problem (16), the Radau
IIA-type Runge–Kutta method with third-order accuracy is expressed as presented below

c A

bT

=

1/3 23/36 –4/9 5/36
2/3 7/9 –2/9 1/9
1 3/4 0 1/4

3/4 0 1/4

(16)

The above is applied to the problem, inducing the following linear system:

(
I3 + 3hLx

[
Sn](y(tn)

)
A

)
ψ = –3hAg + O

(
h4)

≈ –3hAG,
(17)

where

ψ =
[
ψ(tn),ψ(tn–1),ψ(tn–2)

]T,

g =
[
s
(
tn, y(tn)

)
– s(tn, xj), s

(
tn–1, y(tn–1)

)
– s(tn, xj), s

(
tn–2, y(tn–2)

)
– s(tn, xj)

]T,

G =
[
L

[
Sn](y(tn)

)
– Sn(xj),L

[
Sn–1](y(tn–1)

)
– Sn(xj),L

[
Sn–2](y(tn–2)

)
– Sn(xj)

]T.

(18)

Finally, the definition of the perturbation ψ allows us to obtain the approximation θn–l
j of

θj(tn–l) by

θn–l
j ≈ y(tn–l) + ψ(tn–l), l = 0, 1, 2. (19)

Remark 1 To find the approximation of departure points πn
j and φn

j in (11), two linear sys-
tems of the form (17) are solved for π and φ, respectively, in CBSLM3. CBSLM3 requires
2 × J Jacobian calculations and 6 × J function evaluations at each time step to construct
these systems. The proposed schemes, introduced in the next section, require exactly half
of the interpolation process of CBSLM3 to construct the system by sharing a single vir-
tual characteristic curve. In addition, the computational cost to solve this system is also
reduced by half.

3 Sharing characteristic curve schemes for solving the model problem
In the introduction, we have described the general form of the Lagrangian formulations
(4) with (5), for coupled Burgers’ equations. The Lagrangian formulations depend on how
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the velocity functions s1 and s2 are set. This section presents a sharing characteristic
curve semi-Lagrangian (SC-SL) scheme by choosing the velocity functions. The proposed
method observes a single virtual characteristic curve θj(t) with velocity s. Here, velocity s
is chosen by considering the simplicity of the resulting Lagrangian formulations, (4) with
(5). That is, the velocity s is chosen to reduce the computational cost by selecting a sin-
gle virtual characteristic curve and to minimize the number of terms to be approximated
in (5). We propose the choice of three versions of s in the following subsection and then
present their algorithms for solving the Lagrangian formulations accordingly.

3.1 Velocity type 1: SC-SL1

The first choice of the velocity s(t, θj(t)) along the single characteristic curve θj(t) for each
grid xj is defined by

s
(
t, θj(t)

)
= α1u

(
t, θj(t)

)
+ α2v

(
t, θj(t)

)
. (20)

Based on this choice, the Lagrangian formulations can be defined as

d
dt

u
(
t, θj(t)

)
= f1

(
t, θj(t)

)
,

d
dt

v
(
t, θj(t)

)
= f2

(
t, θj(t)

)
(21)

with

f1
(
t, θj(t)

)
= ν1uxx

(
t, θj(t)

)
+ γ21v

(
t, θj(t)

)
ux

(
t, θj(t)

)
– β1vx

(
t, θj(t)

)
u
(
t, θj(t)

)
,

f2
(
t, θj(t)

)
= ν2vxx

(
t, θj(t)

)
+ γ12u

(
t, θj(t)

)
vx

(
t, θj(t)

)
– β2ux

(
t, θj(t)

)
v
(
t, θj(t)

)
,

where γ12 := α1 – β2 and γ21 := α2 – β1. After evaluating t = tn+1 in (21), the third-order
backward differentiation formula is applied to total derivatives in (21). From the fact that
θj(tn+1) = xj, we can obtain the following system of nonlinear boundary value problems:

11
6h

un+1(xj) – f n+1
1 (xj) = rn+1

1 (xj) + O
(
h3),

11
6h

vn+1(xj) – f n+1
2 (xj) = rn+1

2 (xj) + O
(
h3).

(22)

To discretize (22), the fourth-order finite difference weight matrices D1 and D2, defined in
the appendix, are used for first and second partial derivatives. Then, the semidiscretized
matrix system for (22) is obtained by

A1
(
v̂n+1)ûn+1 = rn+1

1 + ν1d2,u + γ21 diag
(
v̂n+1)d1,u + O

(
h3 + �x4),

A2
(
ûn+1)v̂n+1 = rn+1

2 + ν2d2,v + γ12 diag
(
ûn+1)d1,v + O

(
h3 + �x4),

(23)

where

Aκ (w) :=
11
6h

I – νκD2 – γ3–κ ,κ diag(w)D1 + βκ diag(D1w + d1,w),

rn+1
κ :=

[
rn+1
κ (x1), . . . , rn+1

κ (xJ–1)
]T, κ = 1, 2.



Bak and Jeon Advances in Continuous and Discrete Models         (2023) 2023:39 Page 8 of 22

To approximate rn+1
κ (xj), we use the Lagrange interpolation and drop the truncation errors

in (23). Then, the fully-discretized system is obtained by

A1
(
V̂n+1

ex
)
Ûn+1 = Rn+1

1 + ν1d2,u + γ21 diag
(
V̂n+1

ex
)
d1,u,

A2
(
Ûn+1)V̂n+1 = Rn+1

2 + ν2d2,v + γ12 diag
(
Ûn+1)d1,v

(24)

with

Rn+1
κ :=

[
Rn+1

κ (x1), . . . , Rn+1
κ (xJ–1)

]T, κ = 1, 2,

Rn+1
1 (xj) = 3L

[
Un](θn

j
)

–
3
2
L

[
Un–1](θn–1

j
)

+
1
3
L

[
Un–2](θn–2

j
)
,

Rn+1
2 (xj) = 3L

[
Vn](θn

j
)

–
3
2
L

[
Vn–1](θn–1

j
)

+
1
3
L

[
Vn–2](θn–2

j
)
.

3.2 Velocity type 2: SC-SL2

For each xj, the second choice of the velocity s(t, θj(t)) is

s
(
t, θj(t)

)
= (α1 + β2)u

(
t, θj(t)

)
. (25)

Then, the Lagrangian formulations are given by

d
dt

u
(
t, θj(t)

)
= f1

(
t, θj(t)

)
,

d
dt

v
(
t, θj(t)

)
= f2

(
t, θj(t)

)
(26)

with

f1(t, x) = ν1uxx(t, x) +
(
β2u(t, x) – β1v(t, x)

)
ux(t, x) – β1vx(t, x)u(t, x),

f2(t, x) = ν2vxx(t, x) +
(
α1u(t, x) – α2v(t, x)

)
vx(t, x) – β2ux(t, x)v(t, x).

Similar to the process of deriving (24) from (21), the following fully-discretized system
can be obtained from (26):

A1
(
V̂n+1

ex
)
Ûn+1 = Rn+1

1 + ν1d2,u + diag
(
β2Ûn+1

ex – β1V̂n+1
ex

)
d1,u,

A2
(
Ûn+1)V̂n+1 = Rn+1

2 + ν2d2,v + diag
(
α1Ûn+1 – α2V̂n+1

ex
)
d1,v,

(27)

where

A1(w) =
11
6h

I – ν1D2 – diag
(
β2Ûn+1

ex – β1w
)
D1 + β1 diag(D1w + d1,w),

A2(w) =
11
6h

I – ν2D2 – diag
(
α1w – α2V̂n+1

ex
)
D1 + β2 diag(D1w + d1,w).

(28)

3.3 Velocity type 3: SC-SL3

The last choice of the velocity s(t, θj(t)) is

s
(
t, θj(t)

)
= α1u

(
t, θj(t)

)
+ β1v

(
t, θj(t)

)
. (29)
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Then, the Lagrangian formulations are given by

d
dt

u
(
t, θj(t)

)
= f1

(
t, θj(t)

)
,

d
dt

v
(
t, θj(t)

)
= f2

(
t, θj(t)

)
, (30)

with

f1(t, x) = ν1uxx(t, x) – β1vx(t, x)u(t, x),

f2(t, x) = ν2vxx(t, x) –
(
–γ12u(t, x) + γ21v(t, x)

)
vx(t, x) – β2ux(t, x)v(t, x).

Similar to the process of deriving (24) from (21) in the previous subsection, we can ob-
tain the following fully-discretized system from (30):

A1
(
V̂n+1

ex
)
Ûn+1 = Rn+1

1 + ν1d2,u,

A2
(
Ûn+1)V̂n+1 = Rn+1

2 + ν2d2,v – diag
(
–γ12Ûn+1

ex + γ21V̂n+1)d1,v,
(31)

where

A1(w) =
11
6h

I – ν1D2 + β1 diag(D1w + d1,w),

A2(w) =
1

6h
I – ν2D2 + diag

(
–γ12w + γ21Vn+1)D1 + β2 diag(D1w + d1,w).

(32)

Remark 2 We set the virtual particle velocity s according to the amplitudes of the initial
values of u and v. For example, if the amplitude of u is larger, then we choose SC-SL3. In
the opposite case, we can define the velocity s(t, θj(t)) = α2v(t, θj(t)) + β2u(t, θj(t)). Then,
Ûn+1, V̂n+1, and the coefficients of the system (31) are naturally exchanged in the reversed
order.

3.4 Solver of the nearly pentadiagonal system
In this subsection, we discuss a strategy for solving the nonlinear system of equations (9),
(23), (31), and (27). The A1(·) and A2(·) matrices of these systems have different elements
but the same size and shape. Representing those systems, we define the following system:

Aw = r, (33)

where the coefficient matrix and loading vector are given as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 p2 p3 p4 p5

b2 c2 d2 e2 0 0
a3 b3 c3 d3 e3

a4 b4 c4 d4 e4
. . . . . . . . . . . . . . .

aJ–4 bJ–4 cJ–4 dJ–4 eJ–4

aJ–3 bJ–3 cJ–3 dJ–3 eJ–3

0 0 aJ–2 bJ–2 cJ–2 dJ–2

q5 q4 q3 q2 q1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

r = [r1, r2, . . . , rJ–1]T.

(34)

The matrix A is named a nearly pentadiagonal matrix for convenience.
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Now, we design an explicit formula for converting the nearly pentadiagonal system (33)
to a fully pentadiagonal system, allowing it to be solved using an advanced Thomas algo-
rithm [8]. First, we reduce the bandwidth of system (33) by 2. The formula is based on
applying a part of Gaussian elimination to p4, p5, q4, and q5. Then, we can easily reduce
the nearly pentadiagonal system (33) to a pentadiagonal system as follows:

Ãw = r̃, (35)

where

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p̃1 p̃2 p̃3

b2 c2 d2 e2 0
a3 b3 c3 d3 e3

. . . . . . . . . . . . . . .
aJ–3 bJ–3 cJ–3 dJ–3 eJ–3

0 aJ–2 bJ–2 cJ–2 dJ–2

q̃3 q̃2 q̃1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

r̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1 – p5
e3

r3 – p̂4
e2

r2

r2

r3
...

rJ–3

rJ–2

rJ–1 – q5
aJ–2

rJ–3 – q̂4
aJ–1

rJ–2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(36)

Here, the quantities p̂k , p̃k , q̂k , and q̃k , k = 1, 2, 3, 4, are defined as

{p̂1, p̂2, p̂3, p̂4} = {p1, p2, p3, p4} –
p5

e3
{a3, b3, c3, d3},

{p̃1, p̃2, p̃3} = {p̂1, p̂2, p̂3} –
p̂4

e2
{b2, c2, d2},

{q̂4, q̂3, q̂2, q̂1} = {q4, q3, q2, q1} –
q5

aJ–3
{bJ–3, cJ–3, dJ–3, eJ–3},

{q̃3, q̃2, q̃1} = {q̂3, q̂2, q̂1} –
q̂4

aJ–2
{bJ–2, cJ–2, dJ–2}.

(37)

4 Numerical results and discussions
To verify the accuracy and computational costs of the proposed schemes, we test four cou-
pled Burgers’ systems. In particular, we will show the adaptability of the proposed method
by dealing with cases where the two solutions u and v are the same and different. For this,
we record the maximum error E∞(w) given by

E∞(w) = max
j

∣
∣w(tN , xj) – W N

j
∣
∣,
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where w(tN , xj) and W N
j represent the analytical and numerical solutions at (t, x) = (tN , xj),

respectively. To assess the efficiency of the numerical scheme, we count the computational
time in seconds for solving the model problem over t ∈ [0, tN ], denoted by CPU.

4.1 Example 1
The first example to be solved is the coupled Burgers’ equations given by

ut – uxx – 2uux + 2.5(uv)x = 0, vt – vxx – 2vvx + 2.5(uv)x = 0, t > 0, x ∈ �. (38)

The above problem admits the following analytical traveling wave solutions [15]:

[
u(t, x), v(t, x)

]
=

[

κ0

(

1 – tanh

(
3κ0

2
(x – 3κ0t)

))

, κ0

(

1 – tanh

(
3κ0

2
(x – 3κ0t)

))]

,

where κ0 is a real constant that determines the initial slope and the advection velocity
of the solution. The initial and Dirichlet boundary conditions can be recovered from the
above analytical solutions.

First, to observe the adaptability of the proposed method to various initial conditions
and different sharpness of the traveling wave, we plot analytical and numerical solutions of
u during t ≤ 5.0 for different values of κ0 in Fig. 1. The numerical solutions are obtained by
SC-SL3. For three cases κ0 = 0.5, 1.0, and 2.0, the resolutions and spatial domains (h,�x,�)
are employed as (0.1, 0.1, [–20, 20]), (0.05, 0.05, [–10, 30]), and (0.005, 0.005, [0, 40]), re-
spectively. The figure shows that the wave has a faster moving speed and a sharper gradient
as κ0 is larger. It can be observed that the numerical solutions obtained by the proposed
SC-SL3 matches the analytical solutions well.

To examine the temporal and spatial convergence rates of the proposed methods, we first
measure the maximum errors E∞(u) and E∞(v). The errors are computed with κ0 = 0.5 at
t = 1.0 on � = [–20, 20]. The temporal convergence rates are obtained by varying time step
size h = 2–(k+3) (k = 1, 2, 3, 4) with a fixed spatial grid size �x = 1/60. The spatial conver-
gence rates are also obtained by varying �x = 1/2k (k = 1, 2, 3, 4) with a fixed h = 0.005.
The results are illustrated in Fig. 2 for u, where the black dotted lines denote the reference
slope for intuitive comparison confirms. Similar results can be obtained for v; our results
for v have been omitted. In the figures, all proposed methods have third-order temporal
and fourth-order spatial convergence rates. However, SC-SL1 has the lowest accuracy than
other methods, whereas the other methods have similar accuracy.

Figure 1 The behavior of the numerical solution for Example 1 obtained using SC-SL3 with
(h,�x,κ0,�) = (0.1, 0.1, 0.5, [–20, 20]), (0.05, 0.05, 1.0, [–10, 30]), and (0.005, 0.005, 2.0, [0, 40]) at different times
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Figure 2 The temporal (left) and spatial (right) convergence rates of u for Example 1 with κ0 = 0.5 at t = 1.0

Table 1 Error comparison of u at different time level with parameters h = 1/1000, J = 320 and
κ0 = 0.1, 0.5 for Example 1

κ0 t CBSLM3 SC-SL1 SL-SC2 SC-SL3 CBSLM2 [2] Kapoor [12] Lai [14]

0.1 1.0 1.43e–10 4.26e–10 1.43e–10 1.43e–10 2.73e–10 2.58e–6 5.78e–7
2.0 2.44e–10 2.08e–9 2.44e–10 2.44e–10 4.83e–10 2.88e–6 1.08e–6
3.0 3.18e–10 2.83e–9 3.18e–10 3.18e–10 6.49e–10 3.18e–6 1.49e–6
4.0 3.76e–10 3.44e–9 3.76e–10 3.76e–10 7.85e–10 4.49e–6 1.88e–6
5.0 4.20e–10 3.94e–9 4.20e–10 4.20e–10 8.96e–10 3.83e–6 2.20e–6

0.5 1.0 4.55e–7 2.05e–6 4.55e–7 4.55e–7 4.83e–6 6.27e–7 6.75e–4
2.0 5.53e–7 2.20e–6 5.53e–7 5.53e–7 5.24e–6 6.70e–7 8.17e–4
3.0 4.40e–7 2.18e–6 4.40e–7 4.40e–7 5.38e–6 6.77e–7 8.64e–4
4.0 4.28e–7 2.13e–6 4.28e–7 4.28e–7 5.42e–6 6.76e–7 8.82e–4
5.0 4.16e–7 2.07e–6 4.16e–7 4.16e–7 5.43e–6 6.73e–7 8.91e–4

To investigate the accuracy of the CBSLM3 and SC-SLs, we compare the errors of nu-
merical solutions obtained by the proposed methods and other methods [12, 14] includ-
ing CBSLM2 [2]. In Table 1, the errors are listed at different time levels for two κ0 = 0.1
and 0.5 on � = [–20, 20], where temporal step size and spatial resolution are employed as
(h, J) = (1/1000, 320). Here, (h, J) = (1/1000, 320) is set the same as those used in the works
of Kapoor et al. [12] and Lai et al. [14], and the results are used as those recorded in the
literature [12, 14]. In this table, the CBSLM3 and SC-SLs are about three and four digits
more accurate than those obtained by Kapoor [12] and Lai [14]. SC-SLs (s = 2, 3) are 2 and
10 times more accurate for κ0 = 0.1 and 0.5, respectively, compared to those in CBLMS2.
In addition, the accuracy of CBLSM3 is maintained, despite the use of a single character-
istic curve. However, SC-SL1 shows slightly insufficient accuracy, similar to the result of
Fig. 2.

4.2 Example 2
For the second example, we consider the model equations on (–π ,π )

ut – 2uux + (uv)x = uxx, vt – 2vvx + (uv)x = vxx (39)

with the analytical solutions [1, 2, 5, 15, 20, 21]

u(t, x) = v(t, x) = e–t sin(x), x ∈ [–π ,π ], t > 0. (40)
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Figure 3 Comparison of the numerical and analytic solutions obtained by SC-SL3

Table 2 Comparison of E∞(u, t) for Example 2 with (h, J) at different times t

Method (h, J) t = 0.5 t = 1.0 t = 2.0 t = 3.0 t = 5.0 t = 10.0

CBSLM3 (0.01, 100) 4.27e–7 2.60e–7 5.12e–8 5.70e–9 6.30e–9 1.41e–10
(CPU) (0.014) (0.027) (0.053) (0.075) (0.130) (0.253)

SC-SL1 (0.01, 100) 1.04e–5 2.67e–6 3.38e–7 1.10e–7 9.32e–9 4.53e–10
(CPU) (0.011) (0.022) (0.043) (0.063) (0.106) (0.205)

SC-SL2 (0.01, 100) 4.03e–7 2.45e–7 4.56e–8 8.11e–9 6.66e–9 1.44e–10
(CPU) (0.011) (0.021) (0.042) (0.061) (0.108) (0.205)

SC-SL3 (0.01, 100) 3.91e–7 2.38e–7 4.29e–8 9.36e–9 6.84e–9 1.45e–10
(CPU) (0.011) (0.021) (0.041) (0.061) (0.102) (0.204)

CBSLM2 [2] (0.01, 100) 1.01e–5 6.45e–6 4.68e–6 3.25e–6 8.89e–7 1.36e–8
(CPU) (0.010) (0.0189) (0.037) (0.052) (0.080) (0.158)

Mohanty [16] (0.01, 100) 2.51e–6 3.04e–6 2.24e–6 1.24e–6 – –

Zhang [21] (0.01, 100) 2.53e–6 3.07e–6 2.26e–6 1.25e–6 – –

Başhan [5] (0.01, 190) 1.90e–6 2.25e–6 1.68e–6 9.62e–7 2.40e–7 1.67e–8

The initial and Dirichlet boundary conditions are imposed by the above analytical solu-
tions. The solution in this example has the property of gradual diffusion over time.

In Fig. 3, we plot the behaviors of analytical and numerical solutions for u using SC-SL3

at different time levels from t = 0.0 to t = 3.0 with an interval of 0.5. According to this
figure, the solution to this problem begins with a sine function and decays over time, and
the SC-SL3 works well in this case. Moreover, the numerical solution U matches u well at
different time levels.

To investigate the numerical accuracy of the proposed SC-SLs, we compare the errors
obtained by SC-SLs and other methods introduced in [2, 5, 16, 21]. The methods in [16, 21]
were compared only for the time levels at which the results were valid. The numerical
results are obtained with spatial resolutions J = 100 when h = 0.01 and J = 130 when
h = 0.001, except J = 190 for Başhan [5] with h = 0.01. Tables 2–3 report the results at
different time levels t ≤ 10.0. In particular, CPUs for CBSLM3, SC-SLs, and CBSLM2 [2]
are also reported in Tables 2–3. The tables indicate that SC-SL2 and SC-SL3 achieved at
least one- to two-digit higher accuracy than the other methods [2, 5, 16, 21] in the en-
tire time intervals. Moreover, SC-SL2 and SC-SL3 can maintain the accuracy of CBSLM3
at a lower computational cost. In contrast, the proposed SC-SL1 shows poor accuracy
compared to CBSLM3, with the results being similar to those of Example 1. As shown
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Table 3 Comparison of E∞(u, t) for Example 2 with (h, J) at different times t

Method (h, J) t = 0.5 t = 1.0 t = 2.0 t = 3.0 t = 5.0 t = 10.0

CBSLM3 (0.001, 130) 1.81e–8 2.20e–8 1.63e–8 9.01e–9 2.04e–9 2.80e–11
(CPU) (0.153) (0.296) (0.602) (0.862) (1.423) (2.850)

SC-SL1 (0.001, 130) 3.64e–8 3.11e–8 1.66e–8 8.91e–9 2.03e–9 2.95e–11
(CPU) (0.126) (0.247) (0.486) (0.737) (1.216) (2.407)

SC-SL2 (0.001, 130) 1.82e–8 2.20e–8 1.63e–8 9.02e–9 2.04e–9 2.80e–11
(CPU) (0.121) (0.241) (0.487) (0.730) (1.206) (2.402)

SC-SL3 (0.001, 130) 1.82e–8 2.20e–8 1.63e–8 9.02e–9 2.04e–9 2.80e–11
(CPU) (0.120) (0.237) (0.461) (0.695) (1.167) (2.323)

CBSLM2 [2] (0.001, 130) 1.18e–7 5.38e–8 3.21e–8 2.37e–8 6.86e–9 1.08e–10
(CPU) (0.120) (0.225) (0.427) (0.673) (1.082) (2.073)

Başhan [5] (0.001, 130) 2.61e–6 1.57e–6 1.01e–6 5.47e–7 1.37e–7 1.02e–8

Tables 2–3, as time t increases, the error differences between SC-SL1 and other SC-SLs
(s = 2, 3) decrease because this is a special situation in which the solution scale converges
to 0. According to the results of Examples 1 and 2, the results of SC-SL1 will be excluded
from the comparison.

We notice that the main observation point of the results obtained using the proposed
method is the accuracy of the numerical results. Therefore, an important concern is
whether the accuracy of the existing method, which does not share even if the virtual char-
acteristic curve is shared, can be well maintained. Hence, we will examine the adaptability
and numerical performance of the proposed method even for solutions with different be-
haviors in the following two examples.

4.3 Example 3
As the third example, the coupled Burgers’ equation on the spatial domain � is as follows:

ut + α1uux + β1(uv)x = νuxx, vt + α2vvx + β2(uv)x = νvxx, (41)

where coefficients, αk and βk are arbitrary real constants. In this experiment, we take the
analytical solution as follows [19]:

⎧
⎨

⎩

u(t, x) = κ1(1 + tanh( κ0
2ν

(x + κ0t))),

v(t, x) = 2β2–α1
2β1–α2

u(t, x),
if 2β1 �= α2, (42)

where κ1 = κ0(2β1–α2)
(α1α2–4β1β2) and κ0 is a nonzero constant. The initial and Dirichlet boundary

conditions are imposed by the above analytical solutions.
To verify the effect of parameters and the adaptability of the proposed methods, we

plot the behaviors of the numerical solutions in Figs. 4–5. The parameters considered
herein are wavelet speed, viscosity, the difference in magnitude between the two solutions,
and nonlinearity (coupling). The numerical experiments are tested according to viscosity
ν = 1.0, 0.1, and 0.001. We use the parameters (α1,α2,β1,β2) = (2.0, 2.0, 0.2, 0.8) and em-
ploy the spatial domains � = [–10, 15], [–10, 10], and [–10, 10], considering the behaviors
of the solutions. Fig. 4 depicts the numerical solution obtained by SC-SL3 and compares
it with the exact solution. The figure illustrates that the smaller the viscosity, the sharper
the gradient of the solution. The proposed SC-SL3 is observed to derive a fairly accurate
solution even when ν becomes small. In addition, we observe numerical solutions for two
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Figure 4 Behavior of the numerical solutions obtained by SC-SL3 with (h,�x,ν) = (0.1, 0.1, 1.0), (0.05, 0.05, 0.1),
and (0.002, 0.002, 0.001) and κ0 = –0.5 at different times

Figure 5 Behavior of the numerical solutions obtained by SC-SL3 with (a) (h,�x,ν ,κ0) = (0.1, 0.1, 1.0, 1.0) and
(b) (0.005, 1/50, 0.05, –2.0) at different times

different ν and κ0. As shown in Fig. 5, when κ0 is positive, the wave propagation direc-
tion is to the left, and when κ0 is negative, the wave propagation direction is to the right.
Therefore, the sign of κ0 determines the advection direction of the solution. Finally, the
ratio of β2 and β1 represents the difference between the magnitudes of u and v.

For different parameter sets, we report the comparison of maximum errors E∞(u) and
E∞(v) of numerical schemes CBSLM3, SC-SL3, SC-SL2, and CBSLM2 in Tables 4–6. Ta-
ble 4 lists the errors and CPUs to compare the accuracy and efficiency of the four meth-
ods according to wavelet speed (magnitude of κ0) and direction (a sign of κ0) at different
times. We test for cases where β1 is different from β2 as β1 = 0.2 and β2 = 0.8. As indicated
in Fig. 5, this case makes the amplitudes of the behaviors of u and v, and their function
values different from each other. In particular, for κ0 = 1.0, we set the virtual particle veloc-
ity for SC-SL3 as s(t, θj(t)) = α2v(t, θj(t)) + β2u(t, θj(t)) because the amplitude of v is larger.
Then, we solve the reverse order of the original SC-SL3 (refer to Remark 2). In Table 4, for
κ0 = –1.0 and 1.0, CBSLM3 is approximately 2-digits more accurate than CBSLM2. For
κ0 = –2.0, CBSLM3 is almost 1-digit more accurate than CBSLM2. The comparison of
the accuracies shows that SC-SL2 is more accurate than CBSLM2; however, for |κ0| = 1.0
and 2.0, SC-SL2 is approximately 1- and 0.4-digit less accurate than CBSLM3, respec-
tively. In contrast, SC-SL3 has almost the same error magnitude as CBSLM3. Considering
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Table 4 Error comparison at different time levels with parameters (h,�x) = (0.01, 1/40) and
(α1,α2,β1,β2,ν) = (2.0, 2.0, 0.2, 0.8, 1.0) for u and v on � = [–20, 20]

t κ0 = –1.0

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 5.18e–9 1.41e–9 0.778 5.17e–9 2.01e–9 0.429 4.17e–8 1.12e–8 0.430 1.05e–6 2.94e–7 0.461
2.0 7.79e–9 2.01e–9 1.599 7.74e–9 3.31e–9 0.869 5.88e–8 1.77e–8 0.891 1.43e–6 4.27e–7 0.821
3.0 9.51e–9 2.37e–9 2.378 9.41e–9 4.32e–9 1.319 6.95e–8 2.27e–8 1.350 1.61e–6 5.17e–7 1.167
5.0 1.17e–8 2.84e–9 3.898 1.14e–8 5.86e–9 2.153 8.37e–8 3.07e–8 2.212 1.77e–6 6.61e–7 1.934
7.0 1.31e–8 3.18e–9 5.513 1.27e–8 7.09e–9 3.093 9.49e–8 3.78e–8 3.105 1.88e–6 7.98e–7 2.717
9.0 1.43e–8 3.49e–9 7.022 1.37e–8 8.18e–9 3.922 1.05e–7 4.45e–8 3.933 1.99e–6 9.36e–7 3.453

t κ0 = –2.0

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 1.36e–6 3.33e–7 0.768 1.34e–6 6.43e–7 0.430 9.78e–6 3.45e–6 0.446 5.36e–5 1.86e–5 0.401
2.0 1.74e–6 4.23e–7 1.590 1.67e–6 9.70e–7 0.873 1.28e–5 5.29e–6 0.885 6.02e–5 2.72e–5 0.815
3.0 2.02e–6 5.04e–7 2.335 1.89e–6 1.23e–6 1.295 1.56e–5 6.99e–6 1.325 6.67e–5 3.61e–5 1.160
5.0 2.64e–6 6.85e–7 4.011 2.34e–6 1.69e–6 2.190 2.25e–5 1.04e–5 2.236 8.18e–5 5.44e–5 1.955
7.0 3.41e–6 9.15e–7 5.469 2.91e–6 2.10e–6 3.052 3.16e–5 1.38e–5 3.069 9.83e–5 7.21e–5 2.695
9.0 4.23e–6 1.19e–6 7.081 3.55e–6 2.50e–6 3.915 4.09e–5 1.72e–5 3.918 1.17e–4 8.90e–5 3.485

t κ0 = 1.0

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 5.18e–9 1.41e–9 0.797 5.17e–9 2.01e–9 0.442 4.17e–8 1.12e–8 0.443 1.05e–6 2.94e–7 0.442
2.0 7.79e–9 2.01e–9 1.577 7.74e–9 3.31e–9 0.864 5.88e–8 1.77e–8 0.869 1.43e–6 4.27e–7 0.790
3.0 9.51e–9 2.37e–9 2.328 9.41e–9 4.32e–9 1.324 6.95e–8 2.27e–8 1.327 1.61e–6 5.17e–7 1.236
5.0 1.17e–8 2.84e–9 3.891 1.14e–8 5.86e–9 2.203 8.37e–8 3.07e–8 2.207 1.77e–6 6.61e–7 1.977
7.0 1.31e–8 3.18e–9 5.433 1.27e–8 7.09e–9 3.056 9.49e–8 3.78e–8 3.086 1.88e–6 7.98e–7 2.713
9.0 1.43e–8 3.49e–9 7.127 1.37e–8 8.18e–9 3.947 1.05e–7 4.45e–8 3.961 1.99e–6 9.36e–7 3.464

Table 5 Error comparison at different time levels with parameters (h,�x) = (0.001, 0.01) and
(α1,α2,β1,β2,κ0) = (2.0, 2.0, 0.2, 0.8, –1.0) for u and v on � = [–20, 20]

t ν = 0.1

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 1.34e–7 3.75e–8 40.109 1.34e–7 5.70e–8 21.290 2.29e–7 1.09e–7 21.392 2.83e–6 1.20e–6 19.923
2.0 1.41e–7 4.00e–8 79.928 1.40e–7 6.20e–8 42.555 3.16e–7 1.45e–7 43.115 4.04e–6 1.95e–6 39.938
3.0 1.49e–7 4.23e–8 120.273 1.46e–7 6.54e–8 63.541 4.03e–7 1.80e–7 64.403 5.33e–6 2.68e–6 59.636
5.0 1.64e–7 4.69e–8 199.060 1.57e–7 7.10e–8 100.729 5.82e–7 2.46e–7 107.506 8.05e–6 4.12e–6 99.475
7.0 1.78e–7 5.14e–8 278.519 1.69e–7 7.60e–8 147.976 7.61e–7 3.11e–7 148.760 1.09e–5 5.52e–6 138.652
9.0 1.93e–7 5.59e–8 358.730 1.80e–7 8.07e–8 191.171 9.41e–7 3.75e–7 192.853 1.37e–5 6.91e–6 179.023

t ν = 0.01

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 2.32e–3 4.61e–4 39.790 2.29e–3 6.95e–4 21.367 4.72e–3 1.35e–3 26.467 1.64e–2 3.44e–3 20.147
2.0 2.83e–3 5.10e–4 79.383 2.82e–3 8.50e–4 42.610 7.78e–3 2.33e–3 53.094 2.93e–2 6.24e–3 39.745
3.0 3.34e–3 5.60e–4 123.809 3.34e–3 1.00e–3 64.103 1.17e–2 3.38e–3 79.825 4.21e–2 9.04e–3 60.158
5.0 4.36e–3 6.60e–4 200.306 4.40e–3 1.31e–3 102.442 1.97e–2 5.50e–3 132.757 6.76e–2 1.47e–2 99.885
7.0 5.37e–3 7.59e–4 274.728 5.44e–3 1.61e–3 145.512 2.76e–2 7.61e–3 185.927 9.25e–2 2.03e–2 140.867
9.0 6.39e–3 8.57e–4 362.107 6.49e–3 1.92e–3 191.648 3.56e–2 9.71e–3 192.787 1.17e–1 2.58e–2 178.660

the computational time, for all κ0, SC-SL3 is approximately 1.8-times as fast as CBSLM3
when calculating numerical solutions with the same accuracy.

To compare the results according to viscosity ν , we measure the maximum errors at
different time levels in Table 5. We use two viscosities, ν = 0.1 and 0.01, and set up
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Table 6 Error comparison at different time levels with parameters (h,�x) = (0.01, 1/40) and
(α1,α2,κ0,ν) = (2.0, 2.0, –1.0, 0.1) for u and v on � = [–20, 20]

t β1 = 10, β2 = 2

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 3.01e–5 2.44e–6 0.762 3.32e–5 3.88e–6 0.431 4.02e–5 2.74e–6 0.443 1.32e–4 3.34e–5 0.436
2.0 4.94e–5 4.58e–6 1.541 5.97e–5 6.98e–6 0.873 6.69e–5 5.48e–6 0.902 3.25e–4 5.94e–5 0.845
3.0 6.91e–5 6.79e–6 2.368 8.71e–5 1.01e–5 1.292 9.37e–5 8.40e–6 1.334 5.47e–4 8.49e–5 1.212
5.0 1.10e–4 1.12e–5 3.912 1.42e–4 1.62e–5 2.166 1.48e–4 1.43e–5 2.256 1.00e–3 1.36e–4 1.975
7.0 1.50e–4 1.58e–5 5.452 1.98e–4 2.24e–5 3.034 2.01e–4 2.03e–5 3.125 1.46e–3 1.87e–4 2.748
9.0 1.91e–4 2.03e–5 7.021 2.53e–4 2.86e–5 3.745 2.56e–4 2.63e–5 4.085 1.92e–3 2.38e–4 3.504

t β1 = 2, β2 = 10

CBSLM3 SC-SL3 SC-SL2 CBSLM2 [2]

E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU E∞(u) E∞(v) CPU

1.0 4.90e–6 2.40e–5 0.772 3.88e–6 3.32e–5 0.447 2.74e–6 4.02e–5 0.451 1.44e–5 3.15e–4 0.432
2.0 6.81e–6 4.38e–5 1.568 6.98e–6 5.97e–5 0.865 5.48e–6 6.69e–5 1.006 2.11e–5 5.52e–4 0.815
3.0 8.69e–6 6.37e–5 2.346 1.01e–5 8.71e–5 1.306 8.40e–6 9.37e–5 1.329 4.26e–5 7.83e–4 1.218
5.0 1.28e–5 1.04e–4 3.917 1.62e–5 1.42e–4 2.167 1.43e–5 1.48e–4 2.260 9.04e–5 1.24e–3 1.961
7.0 1.71e–5 1.45e–4 5.441 2.24e–5 1.98e–4 3.057 2.03e–5 2.01e–4 3.231 1.41e–4 1.70e–3 2.708
9.0 2.15e–5 1.86e–4 7.001 2.86e–5 2.53e–4 3.884 2.63e–5 2.56e–4 4.173 1.91e–4 2.16e–3 3.472

the parameters and resolutions as (α1,α2,β1,β2,κ0) = (2.0, 2.0, 0.2, 0.8, –1.0) and (h,�x) =
(0.001, 0.01), respectively. For relatively mild viscosity ν = 0.1, CBSLM3 and SC-SL3 are
approximately 2-digits more accurate than CBSLM2. When ν = 0.01, CBSLM3 and SC-
SL3 are at least 1-digit more accurate than CBSLM2. Moreover, we remark that the errors
of SC-SL2 are less accurate than those of CBSLM3 and SC-SL3, as shown in the previous
table. Despite SC-SL3 being almost twice as fast as CBSLM3, no significant error differ-
ence is observed between them in both cases. Considering the above results, we conclude
that SC-SL3 is the most efficient in terms of accuracy and computational cost.

Finally, we consider the case where solutions have different magnitudes and ampli-
tudes. The pair of parameters β1 and β2 is employed as (β1,β2) = (10, 2) and (2, 10) with
(α1,α2,κ0,ν) = (2.0, 2.0, –1.0, 0.1). Herein, in the case where (β1,β2) = (2, 10), we define the
virtual particle velocity s(t, θj(t)) as stated in Remark 2 and solve the derived reversed order
system, as the amplitude of the initial value of v is greater than that of u. The numerical re-
sults of Table 6 show that SC-SL3 maintains the accuracy as that of CBSLM3 despite using
half its computational effort compared to CBSLM3. Thus, SC-SL3 is more cost-effective
than CBSLM3, considering two trajectories for the two distinct classes of particles.

4.4 Example 4
To investigate the proposed SC-SL3, we consider a model with shock initial conditions in
our last example:

ut + 2uux + 0.2(uv)x = νuxx, vt – 2vvx – 0.8(uv)x = νvxx, t > 0, x ∈ [0, 1]. (43)

This model has an initial condition as

u(0, x) =

⎧
⎨

⎩

9x, if 0 ≤ x ≤ 1
10 ,

1 – x, if 1
10 ≤ x ≤ 1,

v(0, x) =

⎧
⎨

⎩

x, if 0 ≤ x ≤ 9
10 ,

9(1 – x), if 9
10 ≤ x ≤ 1,

(44)
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Figure 6 Behavior of the numerical solutions for (α1,α2,β1,β2,ν) = (2, –2, 0.2, –0.8, 0.01) obtained by CBSLM3
and SC-SL3, and their CPUs with (h,�x) = (1/150, 1/200)

Figure 7 Behavior of the numerical solutions for (α1,α2,β1,β2,ν) = (2, –2, 0.2, –0.8, 0.0005) obtained using
CBSLM3 and SC-SL3, and their CPUs with (h,�x) = (1/500, 1/800)

and the homogeneous boundary condition. Now, we examine the adaptability of the SC-
SL3 when solutions u and v move in opposite directions. In this case, the solutions u and
v have strong nonlinearity with each other. In Figs. 6–8, we plot the behaviors of the
numerical solutions using CBSLM3 and SC-SL3 at different time levels from t = 0.0 to
t = 1.0 with an interval of 0.2. Here, we note that the numerical solutions of u and v move
in opposite directions, i.e., to the right and left, respectively. In addition, the CPUs for
each method are described in the legends of the figures. In Fig. 4, we use the parameters
(α1,α2,β1,β2,ν) = (2, –2, 0.2, –0.8, 0.01) and resolution (h,�x) = (1/150, 200). According
to Fig. 6, the numerical solution of SC-SL3 has the same performance as the numerical
solution of CBLSM3 with less computational cost compared.

Fig. 7 is the result of the simulation conducted to verify the performance for the quite
small viscosity ν = 0.0005. The parameters and resolutions are set by (α1,α2,β1,β2) =
(2, –2, 0.2, –0.8) and (h,�x) = (1/500, 1/800), respectively. As can be observed in Fig. 7,
the numerical solutions of SC-SL3 have a good agreement with those of CBSLM3, even if
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Figure 8 Behavior of the numerical solutions for (α1,α2,β1,β2,ν) = (2, –2, 2, –8, 0.01) obtained by CBSLM3
and SC-SL3, and their CPUs with (h,�x) = (1/600, 1/600)

the solutions have a sharp gradient. Thus, the efficiency of SC-SL3 can also be observed
in this simulation.

Finally, to simulate the case of a significant difference in the scales of u and v, we use
the following parameters and resolutions (α1,α2,β1,β2,ν) = (2, –2, 2, 8, 0.01) and (h,�x) =
(1/600, 1/600), respectively. In Fig. 8, the result of SC-SL3 exhibits stable solution behav-
ior that follows that of CBSLM3 well. Furthermore, SC-SL3 requires fewer CPUs than
CBSLM3 to obtain similar results in terms of accuracy as in the previous test.

5 Conclusion
This paper introduced three fast BSLMs for solving the viscous coupled Burgers’ equa-
tions. The proposed methods simultaneously handle two Cauchy problems by observing
a single virtual characteristic curve with a velocity. This can dramatically reduce the in-
terpolation process and the computational cost of determining the departure point. We
used four examples to assess the adaptability and efficiency of the proposed methods. In
particular, we proved that SC-SL3 displays a lower cost consumption than CBSLM3 while
maintaining a similar accuracy to CBSLM3 for various types of solutions. This finding is
expected to provide a reference about solving various other coupled equations with a new
perspective that deviates from the traditional view of the velocity for each physical particle
in the Burgers’ equation coupled with the BSLM.

Appendix A: Finite difference methods
Many types of numerical methods exist for approximating spatial derivatives. Here, we list
the fourth-order finite difference methods used in this study for the approximation. The
finite difference method for a first-order spatial derivative of w(x) at interior points is

wx(xi) =
1

12�x
(
w(xi–2) – 8w(xi–1) + 8w(xi+1) – w(xi+2)

)
+ O

(
�x4), i = 2, . . . , J – 2.
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As the above formula is not applicable for wx(x1) and wx(xJ–1), we introduce exceptional
formulas:

wx(x1) =
1

12�x
(
–3w(x0) – 10w(x1) + 18w(x2) – 6w(x3) + w(x4)

)
+ O

(
�x4),

wx(xM–1) =
1

12�x
(
–w(xM–4) + 6w(xM–3) – 18w(xM–2) + 10w(xM–1) + 3w(xM)

)

+ O
(
�x4).

Consequently, the matrix form of the finite difference method for first-order spatial deriva-
tives is given by

w̄x = D1w̄ + d1,w + O
(
�x4),

where

D1 =
1

12�x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–10 18 –6 1 0
–8 0 8 –1
1 –8 0 8 –1

. . . . . . . . . . . .
1 –8 0 8 –1

1 –8 0 8
0 –1 6 –18 10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, d1,w =
1

12�x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–3w(x0)
w(x0)

0
...
0

–w(xJ )
3w(xJ )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Next, the finite difference method for second order spatial derivative of w(x) at interior
points xi (i = 2, . . . , M – 2) is given by

wxx(xi) =
1

12�x2

(
–w(xi–2) + 16w(xi–1) – 30w(xi) + 16w(xi+1) – w(xi+2)

)
+ O

(
�x4).

Additionally, the formulas for wxx(x1) and wxx(xJ–1) are given as

wxx(x1) =
1

12�x
(
–3w(x0) – 10w(x1) + 18w(x2) – 6w(x3) + w(x4)

)
+ O

(
�x4),

wxx(xM–1) =
1

12�x
(
–w(xM–4) + 6w(xM–3) – 18w(xM–2) + 10w(xM–1) + 3w(xM)

)

+ O
(
�x4).

The finite difference method for a second-order spatial derivative also has the following
matrix form:

w̄xx = D2w̄ + d2,w + O
(
�x4),
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where

D2 =
1

12�x2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–15 –4 14 –6 1 0 . . . 0

16 –30 16 –1 0
...

. . .
...

–1 16 –30 16 –1 0 . . . 0

0
. . . . . . . . . . . . . . . . . .

...
...

. . . –1 16 –30 16 –1 0
0 . . . 0 –1 16 –30 16 –1
...

. . .
... 0 –1 16 –30 16

0 . . . 0 1 –6 14 –4 –15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

d2,w =
1

12�x2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10w(x0)
–w(x0)

0
...
0

–w(xJ )
10w(xJ )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Appendix B: Lagrange interpolation
We briefly review a piecewise Lagrange interpolation of order six to approximate the func-
tion values and its Jacobian at x ∈ [xj, xj+1] (0 ≤ j < J –1). Suppose that η(j) = (J –6)I{j|j>J–3} +
(j – 3)I{j|1<j<J–2} is an index function, where IA denotes the indicator function for a set A.
Then, for function values w(xη(j)+i) (0 ≤ i ≤ 6), the Lagrange interpolation polynomial,
satisfying L[w](xη(j)+i) = w(xη(j)+i) (0 ≤ i ≤ 6), is defined by

L[w](x) =
6∑

i=0

Li,6(x)w(xη(j)+i) and Lx[w](x) =
6∑

i=0

L′
i,6(x)w(xη(j)+i),

where w is a vector comprising the function values w(xj) (0 ≤ j ≤ J), and Li,k(x) is the
Lagrange basis given by

Li,k(x) =
k∏

m=0,m�=i

x – x̃m

x̃i – x̃m
, x̃i = xη(j)+i.

Further, L′
i,k(x) is the derivative of Li,k(x).
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