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Abstract
We study a multi-agent system for the modeling maritime crime. The model involves
three interacting populations of ships: commercial ships, pirate ships, and coast guard
ships. Commercial ships follow commercial routes, are subject to traffic congestion,
and are repelled by pirate ships. Pirate ships travel stochastically, are attracted by
commercial ships and repelled by coast guard ships. Coast guard ships are controlled.
We prove well-posedness of the model and existence of optimal controls that
minimize dangerous contacts. Then we study, in a two-step procedure, the
mean-field limit as the number of commercial ships and pirate ships is large, deriving
a mean-field PDE/PDE/ODE model. Via �-convergence, we study the limit of the
corresponding optimal control problems.
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1 Introduction
Systems featuring interactions among multi-agents have attracted much attention of the
scientific community in recent years as they find applications in various fields. They are a
proper tool to study, e.g., biological aggregation as in flocks, swarms, or fish schools [14,
19, 37], crowd dynamics [2], emergent economic behaviors [16, 21], consensus in collec-
tive decision-making [13, 29], coordination and cooperation in robotics [17, 34]. In this
framework, mathematical analysis has played a role in the proof of well-posedness of the
models, in the derivation of mean-field limit, and in the analysis of optimal control prob-
lems for this kind of models [1, 3–7, 12, 24, 25, 30].

In this paper, we exploit the tools developed for the analysis of multi-agent systems to
study optimal control in a model for the prediction of maritime crime. The majority of
world’s goods is carried by sea [22], but the freedom of navigation is affected by the pres-
ence of modern maritime piracy, which poses serious threats to international traffic and
individual safety. It is a priority to prevent crimes and suppress them [23].
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To face this problem, we devise a model featuring three populations of agents, repre-
senting the types of ships. Our model is inspired by the macroscopic model (i.e., with
a large number of ships) introduced in [18], but it differs from it in that our derivation
starts from a microscopic model (i.e., with a finite number of ships). We briefly outline it
in this Introduction, referring to Sect. 3 for the precise description of all the features and
assumptions on the model.

We consider three populations: N commercial ships with trajectories X1, . . . , XN , M pi-
rate (criminal) ships with trajectories Y1, . . . , YM , and L coast guard (patrol) ships with
trajectories Z1, . . . , ZL. The trajectory of each ship evolves in a time interval [0, T] accord-
ing to a specific dynamical law based on its type and on the presence of other surrounding
ships, as we illustrate now.

Commercial ships tend to follow commercial routes, but their motion is affected by traf-
fic congestion: a commercial ship obstructed by a high density of commercial ships travels
slower than the one with free space. Moreover, in the presence of pirate ships, commercial
ships are repelled by them and adjust their trajectory to travel far from danger. Hence, the
nth commercial ship evolves according to

dXn

dt
(t) = vN

n
(
X(t)

)
(

r
(
Xn(t)

)
+

1
M

M∑

m=1

K cp(Xn(t) – Ym(t)
)
)

, (1.1)

where vN
n is a suitable function depending on all the other commercial ships needed for the

congestion phenomenon, r is the vector field indicating the commercial route, and K cp is
the term due to the repulsion from pirate ships that adjusts the direction of the trajectory.

Pirate ships are attracted by commercial ships and are repelled by coast guard ships.
Moreover, in the absence of other ships, they travel randomly in search of targets. Hence,
the mth pirate ship evolves stochastically according to

dYm(t) =

(
1
L

L∑

�=1

Kpg(Ym(t) – Z�(t)
)

–
1
N

N∑

�=1

Kpc(Ym(t) – Xn(t)
)
)

dt

+
√

2κ dWm(t),

(1.2)

where Kpg and Kpc are the repulsion and attraction terms with coast guard ships and com-
mercial ships, respectively. The term (Wm(t))t∈[0,T] is a Brownian motion accounting for
the stochastic behavior mentioned above. Its effect is a white noise with coefficient

√
2κ

added to the velocity of Ym.
Finally, for coast guard ships, we only impose that they are repelled by each other and

that their trajectory is controllable, at a cost. Hence, the �th coast guard ship evolves ac-
cording to

dZ�

dt
(t) =

1
L

L∑

�′=1

Kgg(Z�(t) – Z�′ (t)
)

+ u�(t),

where Kgg is the repulsion term among coast guard ships and the u�s are the control.
The search of coast guard ships for dangerous contacts between commercial and pirate

ships will be driven by the optimal control of the system based on the cost defined as
follows. The cost of a control u = (u1, . . . , uL) takes into account the effort in modifying the
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trajectories of coast guard ships (it can be thought as the cost of fuel) and the total number
of dangerous contacts among commercial and pirate ships

JN ,M(u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt + E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(Xn(t) – Ym(t)
)

dt

)

, (1.3)

where Hd is a compactly supported convolution kernel used for counting dangerous con-
tacts and E denotes the expected value. We study the problem of finding a control that
minimizes JN ,M .

In Sect. 4 we prove well-posedness of the model that describes the evolution and we
prove the existence of an optimal control.

Next, we proceed with the derivation of the mean-field limit of the optimal control prob-
lem. We carry out this analysis in two steps: first, we let M → +∞ (a large number of pirate
ships), and then N → +∞ (a large number of commercial ships). The reason thereof is that
the limit as M → +∞ is interesting per se, as we explain forthwith.

Under suitable conditions, in Sect. 7 (see Theorem 7.1 and Proposition 7.2) we show
that, as M → +∞, the mean-field behavior of pirate ships is described by a probability
distribution μ̄p. The trajectories of commercial ships X̄n in this mean-field model satisfy

dX̄n

dt
(t) = vN

n
(
X̄(t)

)(
r
(
X̄n(t)

)
+ K cp ∗ μ̄p(t)

(
X̄n(t)

))
, (1.4)

which corresponds to (1.1) with the trajectories of pirate ships replaced by their mean-field
behavior. The probability distribution μ̄p of pirate ships solves the diffusive PDE

∂tμ̄
p – κ�yμ̄

p + divy

((
1
L

L∑

�=1

Kpg(· – Z�(t)
)

–
1
N

N∑

n=1

Kpc(· – X̄n(t)
)
)

μ̄p

)

= 0. (1.5)

This mean-field model is interesting per se when the precise location of pirate ships is
not known, but one can only predict the probability of finding them in certain regions of
the sea. Proving convergence of solutions of the original model to the mean-field model
as M → +∞ requires some technical steps, mainly done following the guidelines in [9].
First, in Sect. 5 we introduce an auxiliary averaged model where the evolution of pirate
ships is replaced by a single stochastic process evolving according to the same dynamics
of (1.2), i.e.,

dȲ (t) =

(
1
L

L∑

�=1

Kpg(Ȳ (t) – Z�(t)
)

–
1
N

N∑

n=1

Kpc(Ȳ (t) – X̄n(t)
)
)

dt +
√

2κ dW (t),

where X̄n evolves according to (1.4), μ̄p being the law of the stochastic process (Ȳ (t))t∈[0,T].
In Sect. 5 we prove well-posedness for this averaged model using a fixed point argument.
Solutions to the original model converge, as M → +∞, to solutions of this auxiliary av-
eraged model. To see this, in Propositions 6.1–6.2 we rely on a propagation of the chaos
principle [15], from which we deduce that the solutions to (1.2) are independent and iden-
tically distributed stochastic processes if so are the initial conditions. Then, a Glivenko–
Cantelli-type result allows us to deduce convergence of the empirical measures of the Yms
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to their common law μ̄p. The parabolic PDE (1.5) is then the Fokker–Planck equation for
pirate ships, as shown in Proposition 7.2.

After deriving the mean-field limit as M → +∞, in Theorem 7.3 we show that the costs
JN ,M defined in (1.3) �-converge, as M → +∞, to the cost for the limit problem

JN (u) :=
1
2

∫ T

0

∣
∣u(t)

∣
∣2 dt +

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt. (1.6)

As a consequence, optimal controls for the original problem converge as M → +∞ to
optimal controls for the limit problem, see Proposition 7.4. This concludes the analysis as
M → +∞.

The next step is to study the mean-field limit as the number of commercial ships is large,
i.e., when N → +∞. In Theorem 8.1 and Proposition 8.3, we show that the mean-field limit
of commercial ships is described in terms of their distribution μc, which solves a scalar
conservation law with a nonlocal flux, apt to describe traffic flow in sea. More precisely,
μc is a solution to the PDE

∂tμ
c + divx

(
v
(
η ∗2 μc)(r + K cp ∗ μp)μc) = 0,

where v(η ∗2 μc) arises from the limit of the congestion velocities and μp is the probability
distribution of pirate ships, evolving according to the parabolic PDE

∂tμ
p – κ�yμ

p + divy

((
1
L

L∑

�=1

Kpg(· – Z�(t)
)

– Kpc ∗ μc

)

μp

)

= 0.

Under suitable assumptions, in Theorem 8.4 we prove the uniqueness of solutions to this
PDE system and, as observed in Remark 8.5, that the measures are absolutely continuous,
i.e., μc = ρc dx and μp = ρp dy.

We conclude the paper by finding in Theorem 8.6 the �-limit of the costs JN defined
in (1.6) as N → +∞. It is given by the cost for the following mean-field system:

J (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt.

Also in this case, we deduce convergence of optimal controls as N → +∞, see Proposi-
tion 8.7. The limit problem is an optimal control problem with a finite number of coast
guard ships driving the densities of commercial and criminal ships.

2 Notation and preliminary results
2.1 Basic notation and preliminary results
Given a matrix A, we let |A| its Frobenius norm. We shall often consider matrices of the
form A ∈R

2×d . By writing A = (A1, . . . , Ad), we make explicit its columns Ai ∈ R
2.

If 	, 	′ are measurable spaces, μ is a measure on 	, and ψ : 	 → 	′ is a measurable
map, then the push-forward ψ#μ is the measure on 	′ satisfying

∫
	′ φ(ω′) dψ#μ(ω′) :=

∫
	

φ(ψ(ω)) dμ(ω) for every measurable function φ.
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Throughout the paper, we systematically apply Grönwall’s inequality. We recall that if
u, v, w : [0, T] →R are continuous and nonnegative functions satisfying

u(t) ≤ w(t) +
∫ t

0
v(s)u(s) ds for every t ∈ [0, T],

then

u(t) ≤ w(t) +
∫ t

0
v(s)w(s)e

∫ t
s v(r) dr ds for every t ∈ [0, T],

cf. [32, Theorem 1.3.2]. If, in addition, w : [0, T] → R is continuous, positive, and nonde-
creasing, then

u(t) ≤ w(t)e
∫ t

0 v(s) ds for every t ∈ [0, T],

cf. [32, Theorem 1.3.1]
If not specified otherwise, we let C denote a constant that might change from line to

line. We make precise the dependence of C on other constants when it is relevant for the
discussion.

2.2 Stochastic processes and Brownian motion
For the theory of stochastic processes and stochastic differential equations, we refer to the
monographs [27, 28, 31]. Here we recall some basic facts and definitions used in the paper.

We fix a probability space (	,F ,P) used throughout the paper. By a.s. (almost surely)
we mean P-almost everywhere. We let E denote the expectation.

A filtration on (	,F ,P) is a collection of σ -algebras (Ft)t∈[0,T] increasing in t, i.e., Fs ⊂
Ft for s ≤ t. When (	,F ,P) is a complete probability space, (Ft)t∈[0,T] is said to satisfy the
usual conditions if it is right-continuous (i.e., Fs =

⋂
t>s Ft for all s) and if NP ⊂F0, where

NP = {A ⊂ 	 s.t. A ⊂ B with B ∈F and P(B) = 0} (if (	,F ,P) is complete, this means that
F0 contains P-null sets).

A stochastic process is a parametrized collection of random variables (S(t))t∈[0,T] defined
on (	,F ,P) and assuming values in R

d (equipped with σ -algebra of Borel sets). Given t ∈
[0, T] and ω ∈ 	, we will write S(t,ω) = S(t)(ω) for the realization of the random variable
S(t) at ω. A path of the stochastic process is a curve in R

d obtained as the realization t 
→
S(t,ω) for some ω ∈ 	. A stochastic process (S(t))t∈[0,T] is adapted to a filtration (Ft)t∈[0,T]

if S(t) is Ft-measurable for every t ∈ [0, T].
Let (Ft)t∈[0,T] be a filtration. A d-dimensional Brownian motion (or Wiener process)

is an R
d-valued stochastic process (W (t))t∈[0,T], adapted to (Ft)t∈[0,T], a.s. with continu-

ous paths such that: W (0) = 0 a.s.; W (t) – W (s) ∼ N (0, (t – s)Idd); W (t) – W (s) is inde-
pendent of Fs for t ≥ s.1 Equivalently, it has components W (t) = (W1(t), . . . , Wd(t)) with
(W1(t))t∈[0,T], . . . , (Wd(t))t∈[0,T] independent 1-dimensional Brownian motions.

1One can speak of a Brownian motion without introducing the filtration (Ft )t∈[0,T ] by replacing the condition that W(t)–W(s)
is independent of Fs with the requirement that it has independent increments. In this case, one implicitly considers a
filtration constructed from (W(t))t∈[0,T ] by letting FW

t be σ -algebra generated by {W(s)|s ≤ t}. If the filtration needs to satisfy
the usual conditions, then FW

t is modified with the augmentation Ft defined as the σ -algebra generated by FW
t and NP ,

see [28, p. 16] or [27, Proposition 2.7.7].
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2.3 Stochastic differential equation
For the general theory about SDEs, we refer to [27, 28, 31]. We recall here some basic
facts. Let (Ft)t∈[0,T] be a filtration satisfying the usual conditions, let (W (t))t∈[0,T] be a d-
dimensional Brownian motion, and let us consider an initial datum S0 given by an F0-
measurable random variable.2

However, in this paper we are only interested in a specific class of SDEs, i.e., those with
a constant dispersion matrix of the form

⎧
⎨

⎩
dS(t) = b(t, S(t)) dt + σ dW (t),

S(0) = S0 a.s.
(2.1)

A stochastic process (S(t))t∈[0,T] is a strong solution to (2.1) if (S(t))t∈[0,T] has a.s. contin-
uous paths, it is adapted to the filtration (Ft)t∈[0,T], satisfies a.s.

∫ T
0 |b(t, S(t))|dt < ∞, and

for every t ∈ [0, T]

S(t) = S0 +
∫ t

0
b
(
s, S(s)

)
ds + σ dW (s).

For this class of SDEs, it is well known that the well-posedness theory is simpler [27,
Equation (2.34)] and requires weaker assumptions on the initial datum S0 than those usu-
ally stated in general theorems. For the reader’s convenience, we state and prove the result
in the form needed in this paper, as we did not find a precise reference in the literature.
Besides, some of the tools used in the proof will be exploited later in the paper. The re-
sult is stated with the Euclidean norm | · | on R

d , but we remark that it holds true when
replacing it with any equivalent norm, e.g., also maxh |Sh|, as long as the assumptions on b
are satisfied with that norm.

Proposition 2.1 Let b : [0, T]×R
d 
→R

d be a Carathéodory function satisfying:
• |b(t, S)| ≤ Cb(1 + |S|) for every t ∈ [0, T] and S ∈R

d ;
• For every R > 0, there exists CR such that |b(t, S) – b(t, S′)| ≤ LipR(b)|S – S′| for all

t ∈ [0, T] and S, S′ ∈R
d such that |S|, |S′| ≤ R.

Let σ ∈ R
d×d . Let (W (t))t∈[0,T] be an R

d-valued Brownian motion, and let S0 be a random
variable such that a.s. |S0| < +∞. Then there exists a unique strong solution (S(t))t∈[0,T]

to (2.1). Moreover, if E(|S0|) < +∞, then E(‖S‖∞) ≤ C(1 + E(|S0|)), where the constant C
depends on Cb, T , and W .

Proof The scheme of the proof is the classical one, see [28, Theorem 3.3].
Let us fix ω ∈ 	 such that |S0(ω)| < +∞ and t 
→ W (t,ω) is continuous, which occurs

almost surely. We consider the Picard iterations

S̃0(t,ω) := S0(ω) for t ∈ [0, T], (2.2)

S̃j+1(t,ω) := S0(ω) +
∫ t

0
b
(
s, S̃j(s,ω)

)
ds + W (t,ω) for t ∈ [0, T], j ≥ 0. (2.3)

2If this is not the case, then the construction explained in Footnote 1 is modified by considering the σ -algebra generated
by S0 , {W(s)|s ≤ t}, and NP .
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Note that the curve t 
→ S̃j(t,ω) is continuous. First of all, let us prove that for all j and for
all t ∈ [0, T]

∣∣̃Sj(t,ω)
∣∣ ≤ (

eCbt – 1
)

+
(∣∣S0(ω)

∣∣ +
∥∥W (·,ω)

∥∥∞
)
eCbt , (2.4)

where Cb is the constant appearing in |b(t, S)| ≤ Cb(1 + |S|). For j = 0, (2.4) is trivially sat-
isfied. Assume that (2.4) is true for j. Then, by (2.3) and by the linear growth of b,

∣∣̃Sj+1(t,ω)
∣∣

≤ ∣
∣S0(ω)

∣
∣ +

∫ t

0
Cb

(
1 +

∣
∣̃Sj(s,ω)

∣
∣)ds +

∣
∣W (t,ω)

∣
∣

≤ Cbt +
∣∣S0(ω)

∣∣ +
∥∥W (·,ω)

∥∥∞

+
∫ t

0
Cb

(
eCbs – 1

)
+ Cb

(∣∣S0(ω)
∣∣ +

∥∥W (·,ω)
∥∥∞

)
eCbs ds

≤ Cbt +
∣∣S0(ω)

∣∣ +
∥∥W (·,ω)

∥∥∞ +
(
eCbt – 1

)
– Cbt

+
(∣∣S0(ω)

∣∣ +
∥∥W (·,ω)

∥∥∞
)(

eCbt – 1
)

=
(
eCbt – 1

)
+

(∣∣S0(ω)
∣∣ +

∥∥W (·,ω)
∥∥∞

)
eCbt ,

which proves (2.4). In particular,

∥
∥̃Sj(·,ω)

∥
∥∞ ≤ (

1 +
∣
∣S0(ω)

∣
∣ +

∥
∥W (·,ω)

∥
∥∞

)
eCbT =: R(ω). (2.5)

Since b is locally Lipschitz, there exists a constant LipR(ω)(b) such that |b(t, S) – b(t, S′)| ≤
LipR(ω)(b)|S – S′| for all t ∈ [0, T] and S, S′ ∈ R

d such that |S|, |S′| ≤ R(ω). Thanks to this,
we show that

sup
0≤s≤t

∣∣̃Sj+1(s,ω) – S̃j(s,ω)
∣∣ ≤ C(ω)

(LipR(ω)(b)t)j

j!
(2.6)

for a suitable constant C(ω) depending on ω. Indeed, for j = 0, by the linear growth of b,
we have that for every s ∈ [0, T]

∣∣̃S1(s,ω) – S̃0(s,ω)
∣∣ ≤

∫ s

0

∣∣b
(
r, S0(ω)

)∣∣dr +
∣∣W (s,ω)

∣∣ ≤ Cbs
(
1 +

∣∣S0(ω)
∣∣) +

∣∣W (s,ω)
∣∣,

hence

sup
0≤s≤t

∣
∣̃S1(s,ω) – S̃0(s,ω)

∣
∣ ≤ CbT

(
1 +

∣
∣S0(ω)

∣
∣) +

∥
∥W (·,ω)

∥
∥∞ =: C(ω). (2.7)

Moreover, by the local Lipschitz continuity of b, we have that for every s ∈ [0, T]

∣∣̃Sj+1(s,ω) – S̃j(s,ω)
∣∣ ≤

∫ s

0

∣∣b
(
r, S̃j(r,ω)

)
– b

(
r, S̃j–1(r,ω)

)∣∣dr

≤ LipR(ω)(b)
∫ s

0

∣
∣̃Sj(r,ω) – S̃j–1(r,ω)

∣
∣dr.
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Assuming (2.6) true for j – 1, we have that

sup
0≤s≤t

∣∣̃Sj+1(s,ω) – S̃j(s,ω)
∣∣ ≤ LipR(ω)(b)

∫ t

0
sup

0≤r≤s

∣∣̃Sj(r,ω) – S̃j–1(r,ω)
∣∣ds

≤ LipR(ω)(b)
∫ t

0
C(ω)

(LipR(ω)(b)s)j–1

(j – 1)!
ds = C(ω)

(LipR(ω)(b)t)j

j!
.

This implies that S̃j(·,ω) is a Cauchy sequence in the uniform norm since for j ≥ i

∥
∥̃Sj(·,ω) – S̃i(·,ω)

∥
∥∞ ≤ C(ω)

+∞∑

h=i

(LipR(ω)(b)T)h

h!
→ 0 as i → +∞. (2.8)

Thus there exists a continuous curve S(·,ω) such that

∥
∥̃Sj(·,ω) – S(·,ω)

∥
∥∞ → 0.

We have constructed S(·,ω) for a.e. ω ∈ 	. The stochastic processes (̃Sj(t))t∈[0,T] are
adapted to the filtration (Ft)t∈[0,T] and have a.s. continuous paths. This implies that the
limit (S(t))t∈[0,T] is a stochastic process adapted to the filtration (Ft)t∈[0,T] and has a.s. con-
tinuous paths. Moreover, passing to the limit in (2.2) for a.e. ω ∈ 	, it is a strong solution
to (2.1).

Uniqueness is proven in a more general setting in [27, Theorem 2.5] via a stopping time
argument.

Assume now E(|S0|) < +∞ and let us prove the estimate on E(‖S‖∞). Passing to the limit
in (2.5), we get that for a.e. ω ∈ 	

∥∥S(·,ω)
∥∥∞ ≤ (

1 +
∣∣S0(ω)

∣∣ +
∥∥W (·,ω)

∥∥∞
)
eCbT . (2.9)

By Doob’s maximal inequality [27, Chap. 1, Theorem 3.8-(iv)] we have that

E
(‖W‖2

∞
) ≤ 4E

(∣∣W (T)
∣∣2),

and thus, by Hölder’s inequality,

E
(‖W‖∞

) ≤ (
E

(‖W‖2
∞

)) 1
2 ≤ 2E

(∣∣W (T)
∣∣2) 1

2 . (2.10)

Hence, taking the expectation in (2.9),

E
(‖S‖∞

) ≤ (
1 + E

(∣∣S0∣∣) + 2E
(∣∣W (T)

∣
∣2) 1

2
)
eCbT ,

which concludes the proof. �

Remark 2.2 A comment about the Picard iterations used in the proof of Proposition 2.1
is in order. If b is globally Lipschitz, i.e., |b(t, S) – b(t, S′)| ≤ Lip(b)|S – S′| and E(|S0|) <
+∞, then the convergence of the Picard iterations can be improved. Indeed, E(|S0|) < +∞
and (2.10) yield E(C(ω)) < +∞, where C(ω) is the constant defined in (2.7). Then, taking
the expectation in (2.8) and replacing LipR(ω)(b) with the global Lipschitz constant Lip(b),
we deduce that E(‖̃Sj – S‖∞) → 0.
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2.4 Wasserstein space
Given a complete metric space (B, d), we let P1(B) denote the 1-Wasserstein space, i.e., the
space of Borel probability measures μ ∈P(B) such that

∫

B
d(x, x0) dμ(x) < +∞,

where x0 ∈ B is fixed. The 1-Wasserstein space is equipped with the 1-Wasserstein dis-
tance defined for every μ1,μ2 ∈P1(B) by (see [39, Definition 6.1])

W1(μ1,μ2) := inf
γ

∫

B×B
d
(
x, x′)dγ

(
x, x′),

where the infimum is taken over all transport plans γ ∈P(B×B) with marginals π1
# γ = μ1

and π2
# γ = μ2, where π i is the projection on the ith component.

We shall often exploit the dual formulation of the 1-Wasserstein distance. By Kan-
torovich’s duality [39, Theorem 5.10], we have that

W1(μ1,μ2) = sup
ψ∈L1(μ1)
ψ d-convex

(∫

B
ψd(x′)dμ2

(
x′) –

∫

B
ψ(x) dμ1(x)

)
,

where ψd is the d-transform ψd(x′) = infx∈B(ψ(x) + d(x, x′)). Since d is a distance on a
metric space, a d-convex function ψ is a Lipschitz function with Lipschitz constant 1 and
it coincides with its d-transform, cf. [39, Particular Case 5.4]. Hence, if ψ is a Lipschitz
function with Lipschitz constant Lip(ψ), then we have that

∣∣
∣∣

∫

B
ψ(x) d(μ2 – μ1)(x)

∣∣
∣∣ ≤ Lip(ψ)W1(μ1,μ2).

When in this paper we refer to Kantorovich’s duality, we apply this inequality. Note that
the condition ψ ∈ L1(μ1)∩L1(μ2) is satisfied since |ψ(x)| ≤ |ψ(0)|+Lip(ψ)|x| and μ1,μ2 ∈
P1(B).

2.5 Wiener space
Given an interval [0, T], we shall consider the so-called Wiener space of Rd-valued contin-
uous functions C0([0, T];Rd) equipped with the uniform norm. Given t ∈ [0, T], we con-
sider the evaluation function evt : C0([0, T];Rd) → R

d defined by evt(ϕ) := ϕ(t) for every
ϕ ∈ C0([0, T];Rd). The family of evaluation functions {evt}t∈[0,T] generates a σ -algebra on
C0([0, T];Rd), which coincides with the Borel σ -algebra with respect to the uniform norm
in C0([0, T];Rd).3 This is generated by cylindrical sets of the form {ϕ ∈ C0([0, T];Rd) :
ϕ(t1) ∈ A1, . . . ,ϕ(tk) ∈ Ak}, where A1, . . . , Ak ⊂ R

d are Borel sets.
Let (S(t))t∈[0,T] be an R

d-valued stochastic process a.s. with continuous paths. This
means that there exists an event E ∈F such that P(E) = 1 and t 
→ S(t,ω) is continuous for
all ω ∈ E. We can redefine S(t,ω) = 0 for all t ∈ [0, T] when ω ∈ 	 \ E. This new stochas-
tic process is indistinguishable from the previous one and satisfies S(·,ω) ∈ C0([0, T];Rd)

3The reason for this is that the evaluation maps evt are continuous with respect to the uniform norm, thus Borel measurable;
conversely, open balls in the Wiener space (which is separable) are measurable with respect to the σ -algebra generated by
{evt}t∈[0,T ] since ‖ϕ‖∞ = supt∈[0,T ]∩Q |evt (ϕ)|.
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for all ω ∈ 	. The stochastic process (S(t))t∈[0,T] can be regarded as the random variable
S : 	 → C0([0, T];Rd) such that ω 
→ S(·,ω).

The σ -algebra generated by this random variable is the σ -algebra generated by sets of
the form S–1(A) where A ⊂ C0([0, T];Rd) is a cylindrical Borel set. This means that A =
{ϕ ∈ C0([0, T];Rd) : ϕ(t1) ∈ A1, . . . ,ϕ(tk) ∈ Ak}, where A1, . . . , Ak ⊂ R

d are Borel sets. For
these sets, we have that

S–1(A) =
{
ω ∈ 	 : S(·,ω) ∈ A

}
=

{
ω ∈ 	 : S(t1,ω) ∈ A1, . . . , S(tk ,ω) ∈ Ak

}
,

and thus the σ -algebra generated by S : 	 → C0([0, T];Rd) coincides with the σ -algebra
generated by the family {S(t)}t∈[0,T] of random variables S(t, ·) : 	 →R

d , i.e., the σ -algebra
generated by the stochastic process.

In particular, if (S1(t))t∈[0,T], . . . , (SK (t))t∈[0,T] are stochastic processes a.s. with continu-
ous paths, then they are independent as stochastic processes if and only if they are inde-
pendent as random variables S1, . . . , SK : 	 → C0([0, T];Rd).

Finally, we remark that a random variable S : 	 → C0([0, T];Rd) induces the probability
measure S#P on the space C0([0, T];Rd). We let Law(S) := S#P ∈P(C0([0, T];Rd)).4

If μ ∈P(C0([0, T];Rd)), then we let μ(t) := (evt)#μ ∈P(Rd).

2.6 Empirical measures
Given random variables X1, . . . , XK : 	 → R

d with E(|Xk|) < +∞, we define their empirical
measure as the random measure5 μK : 	 →P1(Rd) given by

μK (ω) :=
1
K

K∑

k=1

δXk (ω)

for a.e. ω ∈ 	. Note that indeed μK ∈P1(Rd) a.s. since

E

(∫

Rd
|x|dμK (x)

)
=

1
K

K∑

k=1

E
(|Xk|

)
< +∞.

Empirical measures of independent samples from a law approximate the law itself. More
precisely, let us fix a law μ ∈P1(Rd) and (Xk)k∈N a sequence of i.i.d. random variables with
law μ (which thus satisfy E(|Xk|) < +∞). Let μK be the empirical measure of X1, . . . , XK .
Then E(W1(μK ,μ)) → 0 as K → +∞, see, e.g., [33, Lemma 4.7.1]. In fact, also precise rates
of convergence are available in the literature, see [26, Theorem 1].

2.7 �-convergence
For the theory of �-convergence, we refer to the monograph [20]. In this paper it will be
used to find the limits of optimal control problems.

4This discussion applies, in particular, to a Brownian motion (W(t))t∈[0,T ] . The probability measure Law(W) is known as
Wiener measure on C0([0, T ];Rd).
5The map μK : 	 → P1(Rd) is indeed measurable with respect to the Borel σ -algebra on the 1-Wasserstein space P1(Rd).
To see this, we observe that P1(Rd) endowed with the 1-Wasserstein distance is separable, see, e.g., [39, Theorem 6.18],
hence the Borel σ -algebra is generated by balls {μ ∈ P1(Rd) : W1(μ,μ0) < r}. The pre-image of such a ball through μK

is the event {ω ∈ 	 :W1( 1K
∑K

k=1 δXk (ω) ,μ0) < r}. This is measurable since the function (x1, . . . , xK ) 
→ W1( 1K
∑K

k=1 δxk ,μ0) is
Lipschitz continuous.
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Table 1 Summary of the notation for ships

Item Meaning Comment

[0, T ] time interval fixed
X = (X1, . . . ,XN) trajectories of N commercial ships unknown of the system
Y = (Y1, . . . ,YM) trajectories ofM pirate ships unknown of the system
Z = (Z1, . . . ,ZL) trajectories of L guard ships unknown of the system
·c related to commercial ships
·p related to pirate ships
·g related to guard ships

3 Description of the model
To better describe the phenomena that we aim to capture, we introduce all the ingredients
that enter in the model step by step. For the reader’s convenience, all the unknowns, the
parameters, and the initial data of the model are summarized in Tables 1–5.

The model is an evolutionary system analyzed in a fixed time interval [0, T].
Ships. The system describes the evolution of N commercial ships, M pirate (criminal)

ships, and L coast guard (patrol) ships, whose trajectories are curves Xn : [0, T] → R
2 for

n ∈ {1, . . . , N}, Ym : [0, T] → R
2 for m ∈ {1, . . . , M}, and Z� : [0, T] → R

2 for � ∈ {1, . . . , L},
respectively.

We shall often collect the trajectories based on their type by considering the matrix-
valued curves X = (X1, . . . , XN ) : [0, T] → R

2×N , Y = (Y1, . . . , YM) : [0, T] → R
2×M , and Z =

(Z1, . . . , ZM) : [0, T] → R
2×L. The letters X, Y , Z will unambiguously indicate the type of

ship, even when decorated, e.g., as X̄, X̃, or with superscripts and subscripts.
Hereafter, whenever a variable is related to commercial, pirate, or guard ships, it is in-

dexed with the superscript c, p, or g, respectively.
Evolution of commercial ships.
Step 1. We start by describing the evolution of commercial ships in safe waters (absence

of pirate ships) and in the absence of congestion in the traffic. We assume that there is a
vector field r : R2 → R

2 indicating safe commercial routes. In this ideal setting, commer-
cial ships evolve according to the ODEs

⎧
⎨

⎩

dXn
dt (t) = r(Xn(t)),

Xn(0) = X0
n , n = 1, . . . , N ,

where X0 = (X0
1 , . . . , X0

N ) ∈R
2×N is the initial position of commercial ships.

We shall assume that r is globally Lipschitz continuous.
Step 2. To include congestion in the model, we introduce vN = (vN

1 , . . . , vN
N ) : R2×N →

[0, vmax]N . The component vN
n weighs the speed of the trajectory of the nth commercial

ship according to the presence of all the other commercial ships:

⎧
⎨

⎩

dXn
dt (t) = vN

n (X(t))r(Xn(t)),

Xn(0) = X0
n , n = 1, . . . , N .

The assumptions on vN needed throughout the paper are the following: vN is Lipschitz
continuous with respect to the max norm with a Lipschitz constant independent of N , i.e.,
|vN (X) – vN (X ′)| ≤ C maxn |Xn – X ′

n|.
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For vN , we have in mind a precise expression that will be used in Sect. 8. We consider
a globally Lipschitz smooth convolution kernel η : R2×R

2 → [0, 1] satisfying η(X, 0) = 0.
The quantity

N∑

n′=1

η
(
Xn(t), Xn(t) – Xn′ (t)

)

suitably counts6 the number of commercial ships around the nth commercial ship at
time t. Hence, the quantity

1
N – 1

N∑

n′=1

η
(
Xn(t), Xn(t) – Xn′ (t)

)

can be regarded as the density of commercial ships around the nth commercial ship at
time t. The precise expression of the scaling factor 1

N–1 is relevant only to interpret the
previous expression as a density and can, in fact, be replaced by a sequence converging
to zero with the same rate of 1

N . Given a Lipschitz function v : [0, 1] → [0, vmax], the cor-
rected speed of the nth commercial ship depends on the density of its surrounding ships
as follows:

vN
n
(
X(t)

)
= v

(
1

N – 1

N∑

n′=1

η
(
Xn(t), Xn(t) – Xn′ (t)

)
)

.

To model congestion, v must be assumed to be nonincreasing in the density.
Step 3. Eventually, let us modify the dynamics of commercial ships in the presence of

pirate ships. We consider a globally Lipschitz vector-valued interaction kernel K cp : R2 →
R

2 (here cp stands for commercial-pirate). To model repulsion of the nth commercial
ship from the pirate ships, we modify the direction of the trajectory Xn(t) by averaging the
vectors K cp(Xn(t) – Ym(t)), i.e.,

⎧
⎨

⎩

dXn
dt (t) = vN

n (X(t))(r(Xn(t)) + 1
M

∑M
m=1 K cp(Xn(t) – Ym(t))),

Xn(0) = X0
n , n = 1, . . . , N .

For K cp, we have in mind the following expression:

K cp(Xn(t) – Ym(t)
)

= Hcp(Xn(t) – Ym(t)
)(

Xn(t) – Ym(t)
)
, (3.1)

where Hcp has compact support with a radius given by the length for which the pres-
ence of a pirate ship at Ym(t) affects the trajectory Xn(t). An example of Hcp is Hcp(w) =
h(|w|)
|w| , where h is compactly supported in (0, +∞) so that K cp(Xn(t) – Ym(t)) = h(|Xn(t) –

Ym(t)|) Xn(t)–Ym(t)
|Xn(t)–Ym(t)| and Xn(t)–Ym(t)

|Xn(t)–Ym(t)| is, for Xn(t), the direction pointing opposite to Ym(t).

6For example, let η̂ ∈ C∞
c (R2) be supported in a ball B2δ of radius 2δ with η̂ = 1 on Bδ . If η(X ,X ′) = η̂(X – X ′), then

∑N
n′=1 η̂(Xn(t) – Xn′ (t)) (approximately) counts the number of ships in a δ-neighborhood of Xn(t) (around all directions).

Instead, if η(X ,X ′) = η̂(X –X ′ –δr(X)), then
∑N

n′=1 η̂(Xn(t) –Xn′ (t) –δr(Xn(t))) (approximately) counts the number of commercial
ships obstructing the commercial route in front of Xn(t).
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Table 2 Summary of functions used in the model for evolution of commercial ships

Item Meaning Comment

η kernel to compute the density of commercial ships smooth and globally Lipschitz
v velocity as a function of the density Lipschitz continuous
vN = (vN1 , . . . , vNN ) obtained from η and v Lipschitz continuous, with Lipschitz

constant independent of N

Table 3 Interaction kernels used in the model

Item Meaning Comment

Kcp effect of pirate ships on commercial ships Lipschitz continuous
Kpg effect of guard ships on pirate ships Lipschitz continuous
Kpc effect of commercial ships on pirate ships Lipschitz continuous
Kgg effect of guard ships on guard ships Lipschitz continuous

Evolution of pirate ships.
Step 1. Pirate ships are repelled by guard ships and are attracted by commercial ships. To

model this, we consider globally Lipschitz vector-valued interaction kernels Kpg : R2 →
R

2 and Kpc : R2 →R
2. Then

⎧
⎨

⎩

dYm
dt (t) = 1

L
∑L

�=1 Kpg(Ym(t) – Z�(t)) – 1
N

∑N
�=1 Kpc(Ym(t) – Xn(t)),

Ym(0) = Y 0
m, m = 1, . . . , M,

where Y 0 = (Y 0
1 , . . . , Y 0

M) ∈R
2×M is the initial position of pirate ships.

For the precise form of Kpg, Kpc, see the analogous discussion for commercial ships done
after (3.1).

Step 2. In the absence of commercial and guard ships, pirate ships explore the envi-
ronment in search of targets by navigating randomly. To model this, we add a stochastic
term in the evolution of pirate ships by considering M Brownian motions (W1(t))t∈[0,T], . . . ,
(WM(t))t∈[0,T]. The pirate ships then evolve according to the following SDEs:

⎧
⎪⎪⎨

⎪⎪⎩

dYm(t) = ( 1
L
∑L

�=1 Kpg(Ym(t) – Z�(t))

– 1
N

∑N
�=1 Kpc(Ym(t) – Xn(t))) dt +

√
2κ dWm(t),

Ym(0) = Y 0
m a.s.,m = 1, . . . , M,

where κ > 0.
Evolution of guard ships. The last part of the system describes guard ships. In the absence

of other ships, guard ships tend to repel each other. To model this, we consider globally
Lipschitz vector-valued interaction kernel Kgg : R2 → R

2. In this setting, the guard ships
evolve according to

⎧
⎨

⎩

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)),

Z�(0) = Z0
� , � = 1, . . . , L,

where Z0 = (Z0
1, . . . , Z0

L) ∈ R
2×L is the initial position of guard ships. We do not require

more on the dynamics of guard ships as we want the global dynamics of the system to be
governed by the optimal control policy for guard ships.
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Table 4 Summary of initial data

Item Meaning Comment

X0 = (X01 , . . . ,X0N) initial positions of commercial ships points in R
2, |X0n | ≤ R0

Y01 , . . . ,Y0M initial positions of pirate ships random variables in R
2

Z0 = (Z01 , . . . ,Z0L ) initial positions of guard ships points in R
2

Controls. We consider a set of admissible controls U ⊂ R
2×L. We assume U to be com-

pact. A fixed control u = (u1, . . . , uL) ∈ L∞([0, T];U ) drives the evolution of guard ships as
follows:

⎧
⎨

⎩

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

Z�(0) = Z0
� , � = 1, . . . , L.

Full model. In conclusion, we are interested in the following ODE/SDE/ODE model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXn(t) = vN
n (X(t))(r(Xn(t)) + 1

M
∑M

m=1 K cp(Xn(t) – Ym(t))) dt,

dYm(t) = ( 1
L
∑L

�=1 Kpg(Ym(t) – Z�(t)) – 1
N

∑N
n=1 Kpc(Ym(t) – Xn(t))) dt

+
√

2κ dWm(t),
dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

Xn(0) = X0
n a.s., Ym(0) = Y 0

m a.s., Z�(0) = Z0
� ,

n = 1, . . . , N , m = 1, . . . , M,� = 1, . . . , L.

(3.2)

(The first equation is expressed as an SDE to stress that the solution X is a stochastic
process. However, given a trajectory Y , the first equation is, in fact, an ODE.)

We prove well-posedness for (3.2) in Sect. 4.1.
Initial data. The initial data in (3.2) will be given by X0 = (X0

1 , . . . , X0
N ) ∈R

2×N with |X0
n| ≤

R0 for some R0 > 0; R2-valued i.i.d. random variables Y 0
1 , . . . , Y 0

M ; Z0 = (Z0
1, . . . , Z0

L) ∈R
2×L.

Optimal control. As previously mentioned, the dynamics of guard ships will be driven
by an optimal control. To define the cost, we consider a bounded and globally Lipschitz
function Hd : R2 → R. If the quantity Hd(Xn(t) – Ym(t)) is significantly different from zero
when Ym(t) is close to Xn(t) and is small when Ym(t) is far from Xn(t) (e.g., when Hd is
compactly supported), then this function can be used to count contacts between com-
mercial and pirate ships (the superscript d stands for “danger”). Hence we consider the
cost functional JN ,M : L∞([0, T];U ) →R defined for every control u ∈ L∞([0, T];U ) by

JN ,M(u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt + E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(Xn(t) – Ym(t)
)

dt

)

, (3.3)

where the stochastic processes (X(t))t∈[0,T] = (X1(t), . . . , XN (t)))t∈[0,T] and (Y (t))t∈[0,T] =
(Y1(t), . . . , YM(t)))t∈[0,T] are given by the unique strong solutions to (3.2) corresponding
to the control u obtained in Proposition 4.1.

The objective is to minimize the cost JN ,M .

4 Well-posedness of the ODE/SDE/ODE model
4.1 Well-posedness of the ODE/SDE/ODE model for a fixed control
In this section we prove well-posedness for the model presented in (3.2).
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Table 5 Summary of the items regarding control

Item Meaning Comment

U ⊂R
2×L set of admissible controls compact

Hd kernel for dangerous contacts in cost functional bounded and Lipschitz continuous
JN,M cost functional associated to (3.2), for fixed N,M defined in (3.3)
JN cost functional defined in (7.16), for fixed N obtained as the �-limit of JN,M asM→ +∞

in Theorem 7.3
J cost functional defined in (8.58) obtained as the �-limit of JN as N → +∞

in Theorem 8.6

We remark that the solutions depend on N and M. Not to overburden the notation, in
this section we drop the dependence on N and M as we will not consider limits as N → +∞
or M → +∞.

Proposition 4.1 Assume the following:
• Let (W1(t))t∈[0,T], . . . , (WM(t))t∈[0,T] be independent Brownian motions;
• Let X0 = (X0

1 , . . . , X0
N ) ∈R

2×N ;
• Let Y 0

1 , . . . , Y 0
M be R2-valued random variables with |Y 0

m| < +∞ a.s. for m = 1, . . . , M;
• Let Z0 = (Z0

1, . . . , Z0
L) ∈R

2×L;
• Let u ∈ L∞([0, T];U ).

Then there exists a unique strong solution to (3.2), (X(t))t∈[0,T] = (X1(t), . . . , XN (t))t∈[0,T],
(Y (t))t∈[0,T] = (Y1(t), . . . , YM(t))t∈[0,T], and Z = (Z1, . . . , ZL). Moreover, if E(|Y 0

m|) < +∞ for
m = 1, . . . , M, then E(maxm ‖Ym‖∞) < +∞.

Proof We start by noticing that the ODEs involving the variables Z� are decoupled from
the equations involving Xn and Ym. Given a control u = (u1, . . . , uL) ∈ L∞([0, T];U ), we
solve

⎧
⎨

⎩

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

Z�(0) = Z0
� , � = 1, . . . , L.

We observe that there exists a unique solution for all times t ∈ [0, T] to the previous ODE
system. Too see this, we introduce the function f = fu = (fu,1, . . . , fu,L) : [0, T]×R

2×L →R
2×L

(we drop the dependence on u for ease of notation) defined by

f�(t, Z) :=
1
L

L∑

�′=1

Kgg(Z� – Z�′ ) + u�(t) for � = 1, . . . , L,

and we notice that the system reads

⎧
⎨

⎩

dZ
dt (t) = f (t, Z(t)),

Z(0) = Z0,
(4.1)

where Z = (Z1, . . . , ZL). The right-hand side f (t, Z) is a Carathéodory function, globally
Lipschitz continuous in the Z variable (with Lipschitz constant independent of t). These
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properties are sufficient for the well-posedness of the ODE.7 We remark that solutions
to (4.1) are bounded. Indeed,

∣
∣f (t, Z)

∣
∣ ≤ ∣

∣f (t, 0)
∣
∣ +

∣
∣f (t, Z) – f (t, 0)

∣
∣ ≤ ∥

∥Kgg∥∥∞ + ‖u‖∞ + C|Z| ≤ C
(
1 + |Z|), (4.2)

hence

∣∣Z(t)
∣∣ ≤ ∣∣Z0∣∣ +

∫ t

0
C

(
1 +

∣∣Z(s)
∣∣)ds ≤ ∣∣Z0∣∣ + CT +

∫ t

0

∣∣Z(s)
∣∣ds

and, by Grönwall’s inequality, for t ∈ [0, T],

∣
∣Z(t)

∣
∣ ≤ (∣∣Z0∣∣ + CT

)
eCt ≤ (∣∣Z0∣∣ + CT

)
eCT , (4.3)

where the constant C depends on Kgg and U (compact).
We exploit the solution Z(t) to solve the ODE/SDE/ODE system, which now we write in

a more compact way. Let us introduce the R
2×(M+N)-valued stochastic process (S(t))t∈[0,T]

defined by

S(t) :=
(
Y1(t), . . . , YM(t), X1(t), . . . , XN (t)

)

(we put the components Y1(t), . . . , YM(t) in the first block for consistency later). We con-
sider the drift vector bZ = b = (b1, . . . , bM+N ) : [0, T]×R

2×(M+N) → R
2×(M+N) (we drop

the dependence on Z for the ease of notation) defined for every S = (S1, . . . , SM+N ) ∈
R

2×(M+N) by

bi(t, S) :=
1
L

L∑

�=1

Kpg(Si – Z�(t)
)

–
1
N

M+N∑

j=M+1

Kpc(Si – Sj) (4.4)

for i = 1, . . . , M and

bi(t, S) := vN
i–M

(
(Sj)M+N

j=M+1
)
(

r(Si) +
1
M

M∑

j=1

K cp(Si – Sj)

)

(4.5)

for i = M + 1, . . . , M + N . Moreover, let σ ∈R
(2×2)×(M+N) be the constant dispersion tensor

given by the collection σ = (σ1, . . . ,σM+N ) of the matrices σi : R2×(M+N) → R
2×2 defined by

σi :=
√

2κId2 for i = 1, . . . , M

and σi := 0 for i = M + 1, . . . , M + N . For W = (W1, . . . , WM+N ) ∈ R
2×(M+N), we adopt the

short-hand notation σW to denote the element in R
2×(M+N) with columns (σW )1, . . . ,

(σW )M+N ∈ R
2 given by (σW )i = σiWi.

7The result is classical: one considers the Picard operator S : C0([0, T ];R2×L) → C0([0, T ];R2×L) defined by S(Z)(t) := Z0 +
∫ t
0 f (s,Z(s))ds, which is a contraction with respect to the norm (equivalent to the uniform norm) |||ϕ|||α := supt∈[0,T ](e–αt|ϕ(t)|)

for suitable α > 0 (depending on the Lipschitz constant of f ).



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 17 of 68

By setting S0 := (Y 0
1 , . . . , Y 0

M, X0
1 , . . . , X0

N ), the system reads

⎧
⎨

⎩
dS(t) = b(t, S(t)) dt + σ dW (t),

S(0) = S0 a.s.,
(4.6)

where (W (t))t∈[0,T] is an R
2×(M+N)-valued Brownian motion. Note that W1(t), . . . , WM(t)

correspond to the M independent R
2-valued Brownian motions already introduced

for (3.2). This is the reason why we chose to put the Yms in place of the Xns in the first
block of S.

We are now left to check that the conditions for the existence and uniqueness stated
in Proposition 2.1 are satisfied by (4.6). By the continuity of Z(t), the function t 
→ b(t, S)
is continuous for every S. Let i ∈ {1, . . . , M}, so that bi is given by (4.4). By the Lipschitz
continuity of Kpg, we have that

∣∣Kpg(z1 – z2)
∣∣ ≤ ∣∣Kpg(z1 – z2) – Kpg(0)

∣∣ +
∣∣Kpg(0)

∣∣ ≤ C|z1 – z2| +
∣∣Kpg(0)

∣∣

≤ C
(
1 + |z1| + |z2|

)
.

(4.7)

Reasoning analogously for Kpc, it follows that

∣∣bi(t, S)
∣∣ ≤ 1

L

L∑

�=1

∣∣Kpg(Si – Z�(t)
)∣∣ +

1
N

M+N∑

j=M+1

∣∣Kpc(Si – Sj)
∣∣

≤ 1
L

L∑

�=1

C
(
1 + |Si| +

∣
∣Z�(t)

∣
∣) +

1
N

M+N∑

j=M+1

C
(
1 + |Si| + |Sj|

)

≤ C
(

1 + max
h

|Sh|
)

,

(4.8)

where we used the continuity, and thus boundedness, of Z�(t) for t ∈ [0, T]. Let us check
the Lipschitz continuity condition. By the Lipschitz continuity of Kpg and Kpc, we have
that

∣
∣bi(t, S) – bi

(
t, S′)∣∣ ≤ 1

L

L∑

�=1

∣
∣Kpg(Si – Z�(t)

)
– Kpg(S′

i – Z�(t)
)∣∣

+
1
N

M+N∑

j=M+1

∣
∣Kpc(Si – Sj) – Kpc(S′

i – S′
j
)∣∣

≤ 1
L

L∑

�=1

C
∣∣Si – S′

i
∣∣ +

1
N

M+N∑

j=M+1

C
∣∣Si – Sj – S′

i + S′
j
∣∣

≤ 1
L

L∑

�=1

C
∣∣Si – S′

i
∣∣ +

1
N

M+N∑

j=M+1

C
(∣∣Si – S′

i
∣∣ +

∣∣Sj – S′
j
∣∣)

≤ C max
h

∣∣Sh – S′
h
∣∣,

(4.9)

where the constant C depends on Kpg, Kpc. (In fact, bi is even globally Lipschitz continuous
for i ∈ {1, . . . , M}).



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 18 of 68

Let now i ∈ {M + 1, . . . , M + N}, so that bi is given by (4.5). By the boundedness of vN , by
the bound r(x) ≤ C(1 + |x|), and reasoning for K cp as in (4.7), we have that

∣
∣bi(t, S)

∣
∣ ≤ ∥

∥vN∥
∥∞

(

C
(
1 + |Si|

)
+

1
M

M∑

j=1

∣
∣K cp(Si – Sj)

∣
∣
)

≤ C
(

1 + max
h

|Sh|
)

. (4.10)

To check the local Lipschitz continuity of bi, let us fix R > 0. For t ∈ [0, T] and maxh |Sh| ≤
R, maxh |S′

h| ≤ R. By the boundedness and the Lipschitz property of vN (recall that it has
a Lipschitz constant independent of N ) and by the Lipschitz continuity of r and K cp, we
have that

∣∣bi(t, S) – bi
(
t, S′)∣∣

≤ ∣∣vN
i–M

(
(Sj)M+N

j=M+1
)

– vN
i–M

((
S′

j
)M+N

j=M+1

)∣∣ ·
∣
∣∣
∣∣
r(Si) +

1
M

M∑

j=1

K cp(Si – Sj)

∣
∣∣
∣∣

+
∣∣vN

i–M
((

S′
j
)M+N

j=M+1

)∣∣

×
∣∣
∣∣∣
r(Si) +

1
M

M∑

j=1

K cp(Si – Sj) – r
(
S′

i
)

–
1
M

M∑

j=1

K cp(S′
i – S′

j
)
∣∣
∣∣∣

≤ max
h

(
C

∣∣Sh – S′
h
∣∣(1 + |Sh|

)
+ C

∣∣Sh – S′
h
∣∣)

≤ max
h

(
C

∣∣Sh – S′
h
∣∣(1 + |Sh|

)) ≤ C max
h

∣∣Sh – S′
h
∣∣(1 + R),

(4.11)

where the constant C depends on vN , r, and K cp (independent of N ). Choosing CR = C(1 +
R), we get the desired inequality.

Applying Proposition 2.1, we conclude the proof of existence and uniqueness. Moreover,
we also get E(maxh ‖Sh‖∞) < +∞ and, in particular, E(maxm ‖Ym‖∞) < +∞. �

4.2 Existence of an optimal control for the ODE/SDE/ODE model
LetJN ,M be the cost defined in (3.3). We have the following result concerning the existence
of optimal controls.

Proposition 4.2 Under the assumptions of Proposition 4.1, there exists an optimal control
u∗ ∈ L∞([0, T];U ), i.e.,

JN ,M
(
u∗) = min

u∈L∞([0,T];U )
JN ,M(u).

Proof The result is obtained via the direct method in the calculus of variations. We divide
the proof into steps for the sake of presentation.

Step 1. (Preliminary steps) Let uj ∈ L∞([0, T];U ) be a minimizing sequence, i.e.,
JN ,M(uj) → minJN ,M as j → +∞. Since uj is bounded in L∞([0, T];U ), there exist
u∗ ∈ L∞([0, T];U ) and a subsequence (not relabeled) such that uj ∗

⇀ u∗ weakly-* in
L∞([0, T];U ). We claim that u∗ is an optimal control.

To prove the claim, let us fix (Xj(t))t∈[0,T] = (Xj
1(t), . . . , Xj

N (t))t∈[0,T], (Y j(t))t∈[0,T] =
(Y j

1(t), . . . , Y j
M(t))t∈[0,T], and Zj = (Zj

1, . . . , Zj
L), the strong solutions to (3.2) corresponding to
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the controls uj obtained in Proposition 4.1. We adopt the notation of the proof of Propo-
sition 4.1 and let S = (Y1, . . . , YM, X1, . . . , XN ). In this way, for every j, we have that

⎧
⎨

⎩

dZj

dt (t) = fuj (t, Zj(t)),

Zj(0) = Z0,

(we stress the dependence of fuj on the controls uj) and

⎧
⎨

⎩
dSj(t) = bZj (t, Sj(t)) dt + σ dW (t),

Sj(0) = S0 a.s.,

(we stress the dependence of the drift vector R2×L on the trajectories Zj).
Step 2. (Identifying the limit of Zj) We remark that (4.3) yields ‖Zj‖∞ ≤ C for every j,

where C depends on Z0, T , Kgg, and U . Let us check that the Zjs are also equicontinuous.
By (4.2), for every j and for s ≤ t, we have that

∣
∣Zj(t) – Zj(s)

∣
∣ ≤

∫ t

s

∣
∣fuj

(
r, Zj(r)

)∣∣dr ≤
∫ t

s

(∥∥Kgg∥∥∞ +
∥
∥uj∥∥∞ + C

∥
∥Zj∥∥∞

)
dr

≤ (∥∥Kgg∥∥∞ +
∥∥uj∥∥∞ + C

∥∥Zj∥∥∞
)|t – s| ≤ C|t – s|,

where C depends on Z0, T , Kgg, and U (compact). By Arzelà–Ascoli’s theorem, we obtain
Z∗ ∈ C0([0, T];R2) such that ‖Zj – Z∗‖∞ → 0 up to a subsequence that we do not relabel.
This together with the convergence uj ∗

⇀ u∗ and

Zj
�(t) = Z0 +

∫ t

0

(
1
L

L∑

�′=1

Kgg(Zj
�(s) – Zj

�′ (s)
)

+ uj
�(s)

)

ds

yields, letting j → +∞,

Z∗
� (t) = Z0 +

∫ t

0

(
1
L

L∑

�′=1

Kgg(Z∗
� (s) – Z∗

�′ (s)
)

+ u∗
�(s)

)

ds,

i.e., Z∗ is the solution to

⎧
⎨

⎩

dZ∗
dt (t) = fu∗ (t, Z∗(t)),

Z∗(0) = Z0.

Step 3. (Identifying the limit of Sj) We let (S∗(t))t∈[0,T] be the R
2-valued stochastic pro-

cess obtained as the strong solution to

⎧
⎨

⎩
dS∗(t) = bZ∗ (t, S∗(t)) dt + σ dW (t),

S∗(0) = S0 a.s.
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We claim that a.s. maxh ‖Sj
h – S∗

h‖∞ → 0 as j → +∞. We start by observing that a.s. for
0 ≤ s ≤ t ≤ T and i = 1, . . . , M + N

∣∣Sj
i(s) – S∗

i (s)
∣∣ ≤

∫ s

0

∣∣bi,Zj
(
r, Sj(r)

)
– bi,Z∗

(
r, S∗(r)

)∣∣dr

≤
∫ s

0

∣
∣bZj ,i

(
r, Sj(r)

)
– bZj ,i

(
r, S∗(r)

)∣∣dr

+
∫ s

0

∣
∣bZj ,i

(
r, S∗(r)

)
– bZ∗ ,i

(
r, S∗(r)

)∣∣dr.

(4.12)

We estimate the former integrand by exploiting the Lipschitz property of bZj ,i obtained
in (4.9) and (4.11)

∣∣bZj ,i
(
r, Sj(r)

)
– bZj ,i

(
r, S∗(r)

)∣∣

≤ max
h

(
C

(
1 +

∣∣S∗
h(r)

∣∣)∣∣Sj
h(r) – S∗

h(r)
∣∣)

≤ max
h

(
C

(
1 +

∥
∥S∗

h
∥
∥∞

)
sup

0≤r≤s

∣
∣Sj

h(r) – S∗
h(r)

∣
∣
)

a.s.,

(4.13)

where the constant C depends on Kpg, Kpc, K cp, vN , and r (independent of N ). To estimate
the latter integrand in (4.12), we resort to the definition of bZ . By (4.4), for i = 1, . . . , M, we
get that

∣∣bZj ,i
(
r, S∗(r)

)
– bZ∗ ,i

(
r, S∗(r)

)∣∣ ≤ 1
L

L∑

�=1

∣∣Kpg(S∗
i – Zj

�(r)
)

– Kpg(S∗
i – Z∗

� (r)
)∣∣

≤ 1
L

L∑

�=1

C
∣∣Zj

�(r) – Z∗
� (r)

∣∣ ≤ C
∥∥Zj – Z∗∥∥∞ a.s.,

(4.14)

where the constant C depends on Kpg. For i = M + 1, . . . , M + N , by (4.5) we have instead
that |bZj ,i(r, S∗(r)) – bZ∗ ,i(r, S∗(r))| = 0. We observe that Proposition 2.1 also gives us that
E(maxh ‖S∗

h‖∞) < C(1 + E(maxh |S0
h|)), thus a.s. maxh ‖S∗

h‖∞ < +∞.
We are now in a position to prove that a.s. maxh ‖Sj

h – S∗
h‖∞ → 0. For k ≥ 1, let us con-

sider the events

Ak :=
{
ω ∈ 	 : max

h

∥∥S∗
h(·,ω)

∥∥∞ ≤ k
}

.

We remark that P(
⋃

k Ak) = 1 since a.s. maxh ‖S∗
h‖∞ < +∞. Let us fix ω ∈ Ak and such

that (4.12)–(4.14) hold true. Then we have that

max
h

sup
0≤s≤t

∣∣Sj
h(s,ω) – S∗

h(s,ω)
∣∣

≤ C
(

1 + max
k

∥
∥S∗

k (·,ω)
∥
∥∞

)∫ t

0
max

h
sup

0≤r≤s

∣
∣Sj

h(r,ω) – S∗
h(r,ω)

∣
∣ds + CT

∥
∥Zj – Z∗∥∥∞.
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Integrating on Ak , we get that

∫

Ak

max
h

sup
0≤s≤t

∣∣Sj
h(s,ω) – S∗

h(s,ω)
∣∣dP(ω)

≤ CT
∥
∥Zj – Z∗∥∥∞ + C(1 + k)

∫ t

0

∫

Ak

max
h

sup
0≤r≤s

∣
∣Sj

h(r,ω) – S∗
h(r,ω)

∣
∣dP(ω) ds.

By Grönwall’s inequality, we deduce that

∫

Ak

max
h

sup
0≤s≤t

∣
∣Sj

h(s,ω) – S∗
h(s,ω)

∣
∣dP(ω) ≤ CT

∥
∥Zj – Z∗∥∥∞eC(1+k)t

and, in particular,

∫

Ak

max
h

∥
∥Sj

h(·,ω) – S∗
h(·,ω)

∥
∥∞ dP(ω) ≤ CT

∥
∥Zj – Z∗∥∥∞eC(1+k)T .

By Step 2 we have that ‖Zj – Z∗‖∞ → 0 as j → +∞, and thus maxh ‖Sj
h(·,ω) – S∗

h(·,ω)‖∞ →
0 for a.e. ω ∈ Ak . Since P(

⋃
k Ak) = 1, we conclude that a.s. maxh ‖Sj

h – S∗
h‖∞ → 0.

Step 4. (Limit of the cost) Let us show that

JN ,M
(
u∗) ≤ lim inf

j→+∞ JN ,M
(
uj).

Since uj is a minimizing sequence, this will be sufficient to conclude that JN ,M(u∗) =
minu JN ,M(u).

By sequential weak semicontinuity of the L2-norm, we get that

1
2

∫ T

0

∣∣u∗(t)
∣∣dt ≤ lim inf

j→+∞
1
2

∫ T

0

∣∣uj(t)
∣∣dt.

From Step 3 we have that a.s. maxh ‖Sj
h – S∗

h‖∞ → 0, thus a.s. maxm ‖Y j
m – Y ∗

m‖∞ → 0 and
maxn ‖Xj

n – X∗
n‖∞ → 0 (recall that S = (Y1, . . . , YM, X1, . . . , XN )). Then, using the fact that

Hd is bounded, by the dominated convergence theorem

E

(∫ T

0

1
N

1
M

∑

n,m
Hd(Xj

n(t) – Y j
m(t)

)
dt

)
→ E

(∫ T

0

1
N

1
M

∑

n,m
Hd(X∗

n(t) – Y ∗
m(t)

)
dt

)

as j → +∞. By the superadditivity of the lim inf, we conclude the proof. �

5 An averaged ODE/SDE/ODE system
5.1 Introducing the averaged ODE/SDE/ODE system
To study the mean-field limit of (3.2) as M → +∞, we consider an averaged ODE/SDE/
ODE system, where the trajectories Ym(t) are replaced by a single trajectory Ȳ (t) interact-
ing with the other agents via its probability distribution. More precisely, let (W (t))t∈[0,T]



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 22 of 68

be an R
2-valued Brownian motion and consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄n
dt (t) = vN

n (X̄(t))(r(X̄n(t)) + K cp ∗ μ̄p(t)(X̄n(t))),

dȲ (t) = ( 1
L
∑L

�=1 Kpg(Ȳ (t) – Z�(t))

– 1
N

∑N
n=1 Kpc(Ȳ (t) – X̄n(t))) dt +

√
2κ dW (t),

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

X̄n(0) = X0
n , Z�(0) = Z0

� , n = 1, . . . , N ,� = 1, . . . , L,

Ȳ (0) = Ȳ 0 a.s., μ̄p = Law(Ȳ ).

(5.1)

We start by giving a precise definition for the notion of solutions to the previous system.

Definition 5.1 A strong solution to (5.1) is given by a curve X̄ = (X̄1, . . . , X̄N ) ∈ C0([0, T];
R

2×N ), an R
2-valued stochastic process (Ȳ (t))t∈[0,T] a.s. with continuous paths, and a curve

Z = (Z1, . . . , ZL) ∈ C0([0, T];R2×L) such that
(1) a.s. for all t ∈ [0, T],

Ȳ (t) = Ȳ 0 +
∫ t

0

(
1
L

L∑

�=1

Kpg(Ȳ (s) – Z�(s)
)

–
1
N

N∑

n=1

Kpc(Ȳ (s) – X̄n(s)
)
)

dt

+
√

2κW (t);

(2) setting μ̄p := Law(Ȳ ) ∈P(C0([0, T];R2)), the curves X̄ and Z satisfy

X̄n(t) = X0
n +

∫ t

0
vN

n
(
X̄(s)

)(
r
(
X̄n(s)

)
+ K cp ∗ μ̄p(t)

(
X̄n(s)

))
ds

and

Z�(t) = Z0
� +

∫ t

0

(
1
L

L∑

�′=1

Kgg(Z�(s) – Z�′ (s)
)

+ u�(s)

)

ds

for all t ∈ [0, T].

5.2 Well-posedness of the averaged ODE/SDE/ODE system
Let us prove the following well-posedness result.

Proposition 5.2 Assume the following:
• Let (W (t))t∈[0,T] be a Brownian motion;
• Let X0 = (X0

1 , . . . , X0
N ) ∈R

2×N ;
• Let Ȳ 0 be a random variable with E(|Ȳ 0|) < +∞;
• Let Z0 = (Z0

1, . . . , Z0
L) ∈R

2×L;
• Let u ∈ L∞([0, T];U ).

Then there exists a unique strong solution to (5.1). Moreover, E(‖Ȳ‖∞) < +∞ and μ̄p ∈
P1(C0([0, T];R2)).
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Proof As recalled in the proof of Proposition 4.1, for every control u = (u1, . . . , uL) ∈
L∞([0, T];U ), there exists a unique continuous solution to

Z�(t) = Z0
� +

∫ t

0

(
1
L

L∑

�′=1

Kgg(Z�(s) – Z�′ (s)
)

+ u�(s)

)

ds, t ∈ [0, T], (5.2)

hence Z�(t) will be treated as fixed in the following.
The proof now mainly follows the lines of [9, Theorem 3.1]. For the sake of brevity, we

let C0 = C0([0, T];R2).
Step 1. (Decoupling the system) Let us fix μ ∈P1(C0) (μ plays the role of μ̄p in the equa-

tion and is used to apply a fixed point argument). Let us consider the decoupled system

⎧
⎨

⎩

dX̃n
dt (t) = vN

n (X̃(t))(r(X̃n(t)) + K cp ∗ μ(t)(X̃n(t))),

X̃n(0) = X0
n , n = 1, . . . , N ,

(5.3)

⎧
⎪⎪⎨

⎪⎪⎩

dỸ (t) = ( 1
L
∑L

�=1 Kpg(Ỹ (t) – Z�(t))

– 1
N

∑N
n=1 Kpc(Ỹ (t) – X̃n(t))) dt +

√
2κ dW (t),

Ỹ (0) = Ȳ 0 a.s.,

(5.4)

where the Z�(t) are obtained in (5.2).
Substep 1.1. We start by commenting about the existence (and uniqueness) of contin-

uous curves X̃ = (X̃1, . . . , X̃N ) ∈ C0([0, T];R2×N ) solutions to (5.3). For this, we need to
check the conditions for well-posedness of ODE systems. Let us consider the function
gμ = (gμ,1, . . . , gμ,N ) : [0, T]×R

2×N →R
2×N defined by

gμ,n(t, X) := vN
n (X)

(
r(Xn) + K cp ∗ μ(t)(Xn)

)
(5.5)

for n = 1, . . . , N . The system then reads

⎧
⎨

⎩

dX̃
dt (t) = gμ(t, X̃(t)),

X̃n(0) = X0
n , n = 1, . . . , N .

(5.6)

The dependence of gμ on the time variable t is only due to the terms

K cp ∗ μ(t)(Xn) =
∫

R2
K cp(Xn – x) dμ(t)(x) =

∫

R2
K cp(Xn – x) d

(
(evt)#μ

)
(x)

=
∫

C0
K cp(Xn – evt(ϕ)

)
dμ(ϕ) =

∫

C0
K cp(Xn – ϕ(t)

)
dμ(ϕ),

which are continuous in t. This follows from, e.g., the dominated convergence theorem by
observing that the Lipschitz continuity of K cp yields

∣∣K cp(Xn – ϕ(t)
)∣∣ ≤ ∣∣K cp(0)

∣∣ + C
∣∣Xn – ϕ(t)

∣∣ ≤ C
(
1 + |Xn| + ‖ϕ‖∞

)

and
∫

C0 ‖ϕ‖∞ dμ(ϕ) < +∞ since μ ∈P1(C0). The functions gμ,n are locally Lipschitz in X,
i.e., given R > 0, there exists CR > 0 such that for t ∈ [0, T] and maxn |Xn| ≤ R, maxn |X ′

n| ≤ R
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it holds that

max
n

∣∣gμ,n(t, X) – gμ,n
(
t, X ′)∣∣ ≤ CR max

n

∣∣Xn – X ′
n
∣∣. (5.7)

The computations are analogous to those in (4.11), the only difference being in the term

∣
∣K cp ∗ μ(t)(Xn) – K cp ∗ μ(t)

(
X ′

n
)∣∣ ≤

∫

R2

∣
∣K cp(Xn – x) – K cp(X ′

n – x
)∣∣dμ(t)(x)

≤
∫

R2
C

∣∣Xn – X ′
n
∣∣dμ(t)(x) ≤ C

∣∣Xn – X ′
n
∣∣.

In conclusion, gμ(t, X) is continuous in t and locally Lipschitz in X with respect to the max

norm. By Picard–Lindelhöf ’s theorem, the ODE system (5.6) admits a unique solution for
small times. For the existence for all times, with computation analogous to those in (4.10),
we observe that we have linear growth for gμ, i.e.,

max
n

∣∣gμ,n(t, X)
∣∣ ≤ C

(
1 + max

n
|Xn|

)
,

the constant C above depending on ‖vN‖∞, r, and K cp. This upper bound allows for a
Grönwall inequality. Indeed,

∣∣X̃n(t)
∣∣ ≤ ∣∣X0

n
∣∣ +

∫ t

0

∣∣∣
∣
dX̃n

dt
(s)

∣∣∣
∣ds =

∣∣X0
n
∣∣ +

∫ t

0

∣∣gμ,n
(
s, X̃(s)

)∣∣ds

≤ max
n′

∣∣X0
n′
∣∣ +

∫ t

0
C

(
1 + max

n′ |Xn′ |
)

ds = max
n′

∣∣X0
n′
∣∣ + CT + C

∫ t

0
max

n′ |Xn′ |ds,

which yields

max
n

∣∣X̃n(t)
∣∣ ≤ C

(
max

n

∣∣X0
n
∣∣ + T

)
eCt for all t ∈ [0, T], (5.8)

and, in particular, the boundedness of solutions in terms of the initial datum X0 and final
time T (in addition to ‖vN‖∞, r, and K cp). This is enough to deduce global existence in
time.

Substep 1.2. Given the continuous curves X̃ and Z obtained previously, we consider
SDE (5.4). We rewrite this SDE by introducing the drift vector bX̃ : [0, T]×R

2 → R
2 (de-

pending on X̃)

bX̃(t, Y ) :=
1
L

L∑

�=1

Kpg(Y – Z�(t)
)

–
1
N

N∑

n=1

Kpc(Y – X̃n(t)
)

(5.9)

and by considering the constant dispersion matrix σ =
√

2κId2, so that the SDE reads

⎧
⎨

⎩
dỸ (t) = bX̃(t, Ỹ (t)) dt + σ dW (t),

Ỹ (0) = Ȳ 0 a.s.
(5.10)

For the existence and uniqueness of a strong solution to this SDE, we check that the as-
sumptions of Proposition 2.1 are satisfied. The drift bX̃ is continuous in t: it follows from
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the continuity of the curves X̃n and Z�. The drift bX̃ is globally Lipschitz continuous in Y .
Indeed, we have that

∣
∣bX̃(t, Y ) – bX̃

(
t, Y ′)∣∣

≤ 1
L

L∑

�=1

∣
∣Kpg(Y – Z�(t)

)
– Kpg(Y ′ – Z�(t)

)∣∣

+
1
N

N∑

n=1

∣
∣Kpc(Y – X̃n(t)

)
– Kpc(Y ′ – X̃n(t)

)∣∣ ≤ C
∣
∣Y – Y ′∣∣,

(5.11)

the constant C only depending on the Lipschitz constants of Kpg and Kpc. Finally, bX̃ sat-
isfies the linear growth condition. This follows from (4.7) and the analogous condition for
Kpc, which yield

∣∣bX̃(t, Y )
∣∣ ≤ 1

L

L∑

�=1

∣∣Kpg(Y – Z�(t)
)∣∣ +

1
N

N∑

n=1

∣∣Kpc(Y – X̃n(t)
)∣∣

≤ ∣∣Kpg(0)
∣∣ +

1
L

L∑

�=1

C
∣∣Y – Z�(t)

∣∣ +
∣∣Kpc(0)

∣∣ +
1
N

N∑

n=1

C
∣∣Y – X̃n(t)

∣∣

≤ ∣∣Kpg(0)
∣∣ +

∣∣Kpc(0)
∣∣ + ‖Z‖∞ + max

n
‖X̃n‖∞ + |Y | ≤ C

(
1 + |Y |),

where the constant C depends on Kpg, Kpc, ‖Z‖∞, and maxn ‖X̃n‖∞ and we used the
boundedness of X̃ obtained in (5.8).

We are in a position to apply Proposition 2.1, which also gives us that

E
(‖Ỹ‖∞

) ≤ C
(
1 + E

(∣∣Ȳ 0∣∣)). (5.12)

This implies that Law(Ỹ ) ∈P1(C0). Indeed,

∫

C0
‖ϕ‖∞ dLaw(Ỹ )(ϕ) =

∫

C0
‖ϕ‖∞ d(Ỹ#P)(ϕ) =

∫

	

∥∥Ỹ (·,ω)
∥∥∞ dP(ω)

= E
(‖Ỹ‖∞

)
< +∞.

Step 2. (Fixed-point argument) Let us implement the machinery to carry out a fixed
point argument.

Substep 2.1. (Definition of Picard operator) We consider the functional L : P1(C0) →
P1(C0) defined as follows: given μ ∈ P1(C0), we let X̃ = (X̃1, . . . , X̃N ) and (Ỹ (t))t∈[0,T] be
the unique solution to (5.3)–(5.4) obtained as explained in the previous step. Then we set
L(μ) := Law(Ỹ ), which belongs to P1(C0), as explained in the previous step. We shall show
that L is a contraction with respect to a suitable auxiliary distance on P1(C0) to deduce
the existence of a fixed point.

Substep 2.2. (Definition of equivalent Wasserstein distance) The auxiliary distance we
consider on P1(C0) is defined as follows. We let α > 0 (its choice is made precise later
in (5.22)) and we define on C0 the norm

|||ϕ|||α := sup
t∈[0,T]

(
e–αt∣∣ϕ(t)

∣
∣). (5.13)
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Then we define the auxiliary distance on P1(C0) by

W1,α(μ1,μ2) := inf
γ

∫

C0×C0
|||ϕ – ψ |||α dγ (ϕ,ψ),

where the infimum is taken over all transport plans γ ∈P(C0×C0) with marginals π1
# γ =

μ1 and π2
# γ = μ2, where π i is the projection on the ith component. Since the norm ||| · |||α

is equivalent to the usual uniform norm ‖ · ‖∞ on C0, the distance W1,α is equivalent to
the usual 1-Wasserstein distance W1 on P1(C0).

Substep 2.3. (Start of the proof of the contraction property) Given μ,μ′ ∈P1(C0), let us
estimate W1,α(L(μ),L(μ′)). Let X̃ = (X̃1, . . . , X̃N ), Ỹ and X̃ ′ = (X̃ ′

1, . . . , X̃ ′
N ), Ỹ ′ be solutions

obtained in Step 1 corresponding to μ and μ′, respectively. By Kantorovich’s duality, there
exists a functional � : C0 → C0 Lipschitz continuous with respect to ||| · |||α with Lipschitz
constant 1 such that, using the fact that L(μ) = Law(Ỹ ) and L(μ′) = Law(Ỹ ′),

W1,α
(
L(μ),L

(
μ′)) =

∫

C0
�(ϕ)L(μ)(ϕ) –

∫

C0
�

(
ϕ′)L

(
μ′)(ϕ′)

= E
(
�(Ỹ ) – �

(
Ỹ ′)) ≤ E

(∣∣∣∣∣∣Ỹ – Ỹ ′∣∣∣∣∣∣
α

)
.

(5.14)

The following substeps show how to estimate the term E(|||Ỹ – Ỹ ′|||α).
Substep 2.4. (Estimate of |Ỹ (t) – Ỹ ′(t)|) We start by observing that from (5.10), from the

definition of bX̃ in (5.9), by the Lipschitz continuity of Kpc, and by the Lipschitz continuity
of bX̃′ obtained in (5.11), we have that a.s.

∣
∣Ỹ (t) – Ỹ ′(t)

∣
∣

=
∣∣
∣∣

∫ t

0
bX̃

(
s, Ỹ (s)

)
ds –

∫ t

0
b̃X̃′

(
s, Ỹ ′(s)

)
ds

∣∣
∣∣

≤
∫ t

0

(∣∣bX̃
(
s, Ỹ (s)

)
– bX̃′

(
s, Ỹ (s)

)∣∣ +
∣
∣bX̃′

(
s, Ỹ (s)

)
– bX̃′

(
s, Ỹ ′(s)

)∣∣)ds

≤
∫ t

0

(
1
N

N∑

n=1

∣
∣Kpc(Ỹ (s) – X̃n(s)

)
– Kpc(Ỹ (s) – X̃ ′

n(s)
)∣∣ + C

∣
∣Ỹ (s) – Ỹ ′(s)

∣
∣
)

ds

≤
∫ t

0
C

(
max

n

∣
∣X̃n(s) – X̃ ′

n(s)
∣
∣ +

∣
∣Ỹ (s) – Ỹ ′(s)

∣
∣
)

ds,

(5.15)

the constant C depending only on the Lipschitz constants of Kpg and Kpc.
Substep 2.5. (Estimate of |X̃n(s) – X̃ ′

n(s)|) The curves X̃ and X̃ ′ are solutions to (5.6). As
obtained in (5.8), they are bounded by a constant R > 0 depending on the initial datum X0,
the final time T , and the parameters of the problem (‖v‖∞, r, and K cp), i.e., maxn ‖X̃n‖∞ ≤
R, maxn ‖X̃ ′

n‖∞ ≤ R. We recall that gμ and gμ′ are locally Lipschitz, hence there exists C > 0
(depending on R) such that (5.7) is satisfied. It follows that for n = 1, . . . , N

∣
∣X̃n(s) – X̃ ′

n(s)
∣
∣

≤
∫ s

0

∣∣gμ,n
(
r, X̃(r)

)
– gμ′ ,n

(
r, X̃ ′(r)

)∣∣dr

≤
∫ s

0

(∣∣gμ,n
(
r, X̃(r)

)
– gμ,n

(
r, X̃ ′(r)

)∣∣ +
∣
∣gμ,n

(
r, X̃ ′(r)

)
– gμ′ ,n

(
r, X̃ ′(r)

)∣∣)dr
(5.16)
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≤
∫ s

0

(
C max

n′
∣∣X̃n′ (r) – X̃ ′

n′ (r)
∣∣ +

∣∣gμ,n
(
r, X̃ ′(r)

)
– gμ′ ,n

(
r, X̃ ′(r)

)∣∣
)

dr.

Let us now apply the definition of gμ and gμ′ in (5.5) to estimate for n = 1, . . . , N and r ∈ [0, s]

∣∣gμ,n
(
r, X̃ ′(r)

)
– gμ′ ,n

(
r, X̃ ′(r)

)∣∣ ≤ ‖v‖∞
∣∣K cp ∗ μ(r)

(
X̃ ′

n(r)
)

– K cp ∗ μ′(r)
(
X̃ ′

n(r)
)∣∣

≤ C
∣∣
∣∣

∫

R2
K cp(X̃ ′

n(r) – x
)

d
(
μ(r) – μ′(r)

)
(x)

∣∣
∣∣,

(5.17)

where the constant C depends on ‖v‖∞. We observe that by the Lipschitz continuity of
x 
→ K cp(X̃ ′

n(r) – x) and by Kantorovich’s duality,

∣∣
∣∣

∫

R2
K cp(X̃ ′

n(r) – x
)

d
(
μ(r) – μ′(r)

)
(x)

∣∣
∣∣ ≤ CW1

(
μ(r),μ′(r)

)
, (5.18)

where C is the Lipschitz constant of K cp. To bound this term, let us fix an optimal plan
γ ∈P(C0×C0) with marginals π1

# γ = μ, π2
# γ = μ′ and satisfying

W1,α
(
μ,μ′) =

∫

C0×C0
|||ϕ – ψ |||α dγ (ϕ,ψ).

We remark that γ (r) = (evr)#γ ∈ P(R2×R
2) has marginals π1

# (evr)#γ = (evr)#π
1
# γ = μ(r)

and π2
# (evr)#γ = (evr)#π

2
# γ = μ′(r), hence, by the optimality of W1 and by the definition of

||| · |||α in (5.13), we obtain for r ∈ [0, s]

W1
(
μ(r),μ′(r)

)

≤
∫

R2×R2

∣∣x – x′∣∣dγ (r)
(
x, x′) =

∫

R2×R2

∣∣x – x′∣∣d(evr)#γ
(
x, x′)

=
∫

C0×C0

∣∣ϕ(r) – ψ(r)
∣∣dγ (ϕ,ψ) ≤ eαr

∫

C0×C0
e–αr∣∣ϕ(r) – ψ(r)

∣∣dγ (ϕ,ψ)

≤ eαr
∫

C0×C0
|||ϕ – ψ |||α dγ (ϕ,ψ) = eαrW1,α

(
μ,μ′).

Integrating in r, we get that

∫ s

0
W1

(
μ(r),μ′(r)

)
dr ≤ eαs – 1

α
W1,α

(
μ,μ′) ≤ eαs

α
W1,α

(
μ,μ′). (5.19)

Putting together (5.16)–(5.19), we conclude that

max
n

∣
∣X̃n(s) – X̃ ′

n(s)
∣
∣ ≤ C

(∫ s

0
max

n

∣
∣X̃n(r) – X̃ ′

n(r)
∣
∣dr +

eαs

α
W1,α

(
μ,μ′)

)
dr.

By Grönwall’s inequality, we conclude that

max
n

∣∣X̃n(s) – X̃ ′
n(s)

∣∣ ≤ C
eαs

α
eCsW1,α

(
μ,μ′) ≤ CeCT eαs

α
W1,α

(
μ,μ′)

≤ C
eαs

α
W1,α

(
μ,μ′).

(5.20)
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To sum up, the constant C in the previous formula depends on X0, T , ‖v‖∞, r, and
K cp.

Substep 2.6. (Concluding the estimate of |Ỹ (t) – Ỹ ′(t)|) Substituting (5.20) in (5.15), we
obtain that

∣
∣Ỹ (s) – Ỹ ′(s)

∣
∣ ≤ C

∫ s

0

(
eαr

α
W1,α

(
μ,μ′) +

∣
∣Ỹ (r) – Ỹ ′(r)

∣
∣
)

dr

≤ C
(

eαs – 1
α2 W1,α

(
μ,μ′) +

∫ s

0

∣
∣Ỹ (r) – Ỹ ′(r)

∣
∣dr

)

≤ C
(

eαs

α2 W1,α
(
μ,μ′) +

∫ s

0

∣∣Ỹ (r) – Ỹ ′(r)
∣∣dr

)
.

Multiplying both sides by e–αs and using that e–αs ≤ e–αr , we get that a.s. for s ∈ [0, t]

e–αs∣∣Ỹ (s) – Ỹ ′(s)
∣∣ ≤ C

(
1
α2 W1,α

(
μ,μ′) +

∫ s

0
e–αr∣∣Ỹ (r) – Ỹ ′(r)

∣∣dr
)

≤ C
(

1
α2 W1,α

(
μ,μ′) +

∫ t

0
sup

0≤r≤s
e–αr∣∣Ỹ (r) – Ỹ ′(r)

∣∣ds
)

.

Taking the supremum for s ∈ [0, t] and the expectation, we deduce that

E

(
sup

0≤s≤t
e–αs∣∣Ỹ (s) – Ỹ ′(s)

∣
∣
)

≤ C
(

1
α2 W1,α

(
μ,μ′) +

∫ t

0
E

(
sup

0≤r≤s
e–αr∣∣Ỹ (r) – Ỹ ′(r)

∣∣
)

ds
)

,

and thus, by Grönwall’s inequality,

E

(
sup

0≤s≤t
e–αs∣∣Ỹ (s) – Ỹ ′(s)

∣∣
)

≤ C
α2 W1,α

(
μ,μ′)eCt ,

which for t = T yields

E
(∣∣∣∣∣∣Ỹ – Ỹ ′∣∣∣∣∣∣

α

) ≤ C
α2 W1,α

(
μ,μ′)eCT ≤ C

α2 W1,α
(
μ,μ′). (5.21)

Keeping track of the constant C, it depends on X0, T , ‖v‖∞, r, K cp, Kpg, and Kpc.
Substep 2.7. (Choice of α and end of the proof of the contraction property) We choose

α > 0 in such a way that

Cα :=
C
α2 < 1, (5.22)

where C is the constant obtained in (5.21). In this way, by (5.14) and (5.21) we conclude
that

W1,α
(
L(μ),L

(
μ′)) ≤ CαW1,α

(
μ,μ′),

i.e., L : P1(C0) → P1(C0) is a contraction with respect to the equivalent Wasserstein dis-
tance W1,α . As such, it admits a unique fixed point μ̄p ∈P1(C0).
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Step 3. Given the fixed point μ̄p ∈P1(C0) of L, we define X̄ = (X̄1, . . . , X̄N ) as the solution
to (5.3) corresponding to μ̄p, and then we let Ȳ be the solution to (5.4) corresponding to
X̄. Since μ̄p is a fixed point, we have that L(μ̄p) = μ̄p, i.e., Law(Ȳ ) = μ̄p. Hence we found
the unique strong solution to the coupled system. This concludes the proof. �

Remark 5.3 By (5.8), it follows that maxn ‖X̄n‖∞ is bounded by a constant depending on
the initial datum X0, the final time T , ‖vN‖∞, r, and K cp.

By (5.12), it follows that E(‖Ȳ‖∞) ≤ C(1 + E(|Ȳ 0|)), where the constant C depends on
Kpg, Kpc, ‖Z‖∞, maxn ‖X̄n‖∞, T , and W .

6 Propagation of chaos
Proposition 6.1 Assume the following:

• Let (W1(t))t∈[0,T] and (W2(t))t∈[0,T] be two R
2-valued Brownian motions.

• Let X0 = (X0
1 , . . . , X0

N ) ∈R
2×N ;

• Let Y 0
1 , Y 0

2 be identically distributed R
2-valued random variables with E(|Y 0

m|) < +∞;
• Let Z0 = (Z0

1, . . . , Z0
L) ∈R

2×L;
• Let u ∈ L∞([0, T];U ).

For m = 1, 2, let X̄m = (X̄m,1, . . . , X̄m,N ), (Ȳm(t))t∈[0,T], Z = (Z1, . . . , ZL) be the unique strong
solution to8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄m,n
dt (t) = vN

n (X̄m(t))(r(X̄m,n(t)) + K cp ∗ μ̄
p
m(t)(X̄m,n(t))),

dȲm(t) = ( 1
L
∑L

�=1 Kpg(Ȳm(t) – Z�(t))

– 1
N

∑N
n=1 Kpc(Ȳm(t) – X̄m,n(t))) dt +

√
2κ dWm(t),

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

X̄m,n(0) = X0
n , Z�(0) = Z0

� , n = 1, . . . , N ,� = 1, . . . , L,

Ȳm(0) = Y 0
m a.s., μ̄

p
m = Law(Ȳm).

(6.1)

Then the stochastic processes (Ȳ1(t))t∈[0,T] and (Ȳ2(t))t∈[0,T] are identically distributed and
X̄1(t) = X̄2(t) for t ∈ [0, T].

Proof We fix Z = (Z1, . . . , ZL) as the solution to
⎧
⎨

⎩

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

Z�(0) = Z0
� , � = 1, . . . , L,

which is independent of m since it is decoupled from the first two sets of equations.
Let m ∈ {1, 2}. We resort to some tools already considered in Step 2 in the proof of Propo-

sition 5.2. As in that proof, we set C0 := C0([0, T];R2).
Step 1. (Exploiting the decoupled system) Given μ ∈P1(C0), we let X̃ = (X̃1, . . . , X̃N ) and

(Ỹm(t))t∈[0,T] be the unique solution to the decoupled system

⎧
⎨

⎩

dX̃n
dt (t) = vN

n (X̃(t))(r(X̃n(t)) + K cp ∗ μ(t)(X̃n(t))),

X̃n(0) = X0
n , n = 1, . . . , N ,

(6.2)

8This corresponds to the averaged ODE/SDE/ODE system (5.1) with initial data X0 , Y0m , Z0 , with Brownian motion Wm ,
and with control u provided by Proposition 5.2.
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⎧
⎪⎪⎨

⎪⎪⎩

dỸm(t) = ( 1
L
∑L

�=1 Kpg(Ỹm(t) – Z�(t))

– 1
N

∑N
n=1 Kpc(Ỹm(t) – X̃n(t))) dt +

√
2κ dWm(t),

Ỹm(0) = Y 0
m a.s.,

(6.3)

obtained as explained in Step 1 in the proof of Proposition 5.2. We claim that

Law(Ỹ1) = Law(Ỹ2). (6.4)

Using the short-hand notation introduced in (5.9), we have a.s. for t ∈ [0, T]

Ỹm(t) = Y 0
m +

∫ t

0
bX̃

(
s, Ỹm(s)

)
ds +

√
2κWm(t).

Substep 1.1. (Proof of claim (6.4) for Picard iterations Ỹ j
m) We consider the Picard iterations

(used in the proof of Proposition 2.1) constructed as follows for m = 1, 2: for ω ∈ 	,

Ỹ 0
m(t,ω) := Y 0

m(ω) for t ∈ [0, T], (6.5)

Ỹ j
m(t,ω) := Y 0

m(ω) +
∫ t

0
bX̃

(
s, Ỹ j–1

m (s,ω)
)

ds +
√

2κWm(t,ω) for t ∈ [0, T], j ≥ 1. (6.6)

We observe that Law(Ỹ 0
1 ) = Law(Ỹ 0

2 ), as by (6.5) they coincide with the common law of
the identically distributed random variables given by the initial data Y 0

1 , Y 0
2 . This is the

base step of an induction argument. Let j ≥ 1 and assume Law(Ỹ j–1
1 ) = Law(Ỹ j–1

2 ). Let
� : R2×C0×C0 → C0 be the continuous map defined by

�(ξ ,ϕ, w)(t) := ξ +
∫ t

0
bX̃

(
s,ϕ(s)

)
ds +

√
2κw(t).

With this notation, (6.6) reads Y j
m(·,ω) = �(Y 0

m(ω), Ỹ j–1
m (·,ω), Wm(·,ω)) for ω ∈ 	 such that

Wm(·,ω) is a continuous path (this occurs a.s.). Then we have that

Law
(
Ỹ j

m
)

=
(
Ỹ j

m
)

#P = �#
(
Y 0

m, Ỹ j–1
m , Wm

)
#P.

Since Y 0
1 , Y 0

2 are identically distributed, by the induction assumption, and since Law(W1) =
Law(W2) (it is the Wiener measure), we have that (Y 0

1 , Ỹ j–1
1 , W1)#P = (Y 0

2 , Ỹ j–1
2 , W2)#P.

Thus, repeating backward the same computations for Ỹ j
2, we conclude that Law(Ỹ j

1) =
Law(Ỹ j

2).
Substep 1.2. (Convergence of Picard iterations to Ỹm) By Remark 2.2 we have that

E(‖Ỹ j
m – Ỹm‖∞) → 0. (Note that bX̃ is globally Lipschitz continuous, as proven in (5.11).)

Substep 1.3. (Proof of claim (6.4)) The convergence E(‖Ỹ j
m – Ỹm‖∞) → 0 implies that

Ỹ j
m → Ỹm in law, hence Law(Ỹ1) = Law(Ỹ2), which is our claim (6.4).
Step 2. (Exploiting the fixed point) For m = 1, 2, we consider the functionals Lm =

LY 0
m ,Wm : P1(C0) → P1(C0) defined as in Step 2 in the proof of Proposition 5.2 (we stress

here the dependence on m to keep track of the dependence on the initial datum Y 0
m and

the Brownian motion Wm). Given μ ∈P1(C0), we let X̃ = (X̃1, . . . , X̃N ) and (Ỹm(t))t∈[0,T] be
the unique solution to the decoupled system (6.2)–(6.3). Then we set Lm(μ) := Law(Ỹm).
By the discussion in Step 1, we have that L1(μ) = L2(μ).
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Let us now fix an initial guess for the law μ, e.g., μ = δ0 ∈ P1(C0) (it is enough that it
satisfies W1(μ, μ̄p

m) < +∞). We apply iteratively L0
m(μ) = μ, Lj

m(μ) = Lm(Lj–1
m (μ)). Since

Lm is a contraction with respect to the modified 1-Wasserstein distance W1,α , Lj
m(μ) →

μ̄
p
m as j → +∞, where μ̄

p
m is the unique fixed point μ̄

p
m = Lm(μ̄p

m). Since L1(μ) = L2(μ), we
conclude that μ̄

p
1 = μ̄

p
2, i.e., the law given by the solution Ȳm to (6.1) does not depend on m.

In conclusion, Ȳ1, Ȳ2 are identically distributed. We let μ̄p denote their common law.
The solution X̄m = (X̄m,1, . . . , X̄m,N ) is then obtained as the solution to (6.2) corresponding

to μ̄p. Thus it does not depend on m, yielding X̄1 = X̄2. �

Proposition 6.2 Assume the following:
• Let (Wm(t))t∈[0,T], m = 1, . . . , M be M independent R2-valued Brownian motions;
• Let X0 = (X0

1 , . . . , X0
N ) ∈R

2×N ;
• Let Y 0

1 , . . . , Y 0
M be i.i.d. R2-valued random variables with E(|Y 0

m|) < +∞ and
independent of the Brownian motions (Wm(t))t∈[0,T];

• Let Z0 = (Z0
1, . . . , Z0

L) ∈R
2×L;

• Let u ∈ L∞([0, T];U ).
For every m = 1, . . . , M, let X̄ = (X̄1, . . . , X̄N ), (Ȳm(t))t∈[0,T], Z = (Z1, . . . , ZL) be the unique
strong solution to9

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄n
dt (t) = vN

n (X̄(t))(r(X̄n(t)) + K cp ∗ μ̄p(t)(X̄n(t))),

dȲm(t) = ( 1
L
∑L

�=1 Kpg(Ȳm(t) – Z�(t))

– 1
N

∑N
n=1 Kpc(Ȳm(t) – X̄n(t))) dt +

√
2κ dWm(t)

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

X̄n(0) = X0
n , Z�(0) = Z0

� , n = 1, . . . , N ,� = 1, . . . , L,

Ȳm(0) = Y 0
m a.s., μ̄p = Law(Ȳm).

(6.7)

Then the stochastic processes (Ȳ1(t))t∈[0,T], . . . , (ȲM(t))t∈[0,T] are independent.

Proof The leading idea of the proof is to write Ȳm in terms of the initial datum Y 0
m and the

Brownian motion Wm.
We consider the solution operator S : R2×C0 → C0 defined by S(ξ , w) := ϕ, where ϕ is

the unique solution to the integral equation

ϕ(t) = ξ +
∫ t

0
bX̄

(
s,ϕ(s)

)
ds +

√
2κw(t), t ∈ [0, T].

The fact that there exists a unique solution to the previous problem follows from the fact
that the operator � : R2×C0×C0 → C0 defined by

�(ξ ,ϕ, w)(t) := ξ +
∫ t

0
bX̄

(
s,ϕ(s)

)
ds +

√
2κw(t) for t ∈ [0, T]

9This corresponds to the averaged ODE/SDE/ODE system (5.1) with initial data X0 , Y0m , Z0 , with Brownian motion Wm ,
and with control u. The solution is provided by Proposition 5.2. Note that we applied Proposition 6.1 to deduce that
(Ȳ1(t))t∈[0,T ] , . . . , (ȲM(t))t∈[0,T ] are identically distributed with common law μ̄p and the curve X̄ is independent of m.



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 32 of 68

is such that �(ξ , ·, w) : C0 → C0 is a contraction with respect to the auxiliary norm |||ϕ|||α :=
supt∈[0,T](e–αt|ϕ(t)|) for suitable α > 0. Indeed, by the Lipschitz continuity of bX̄ ,

e–αt∣∣�(ξ ,ϕ1, w)(t) – �(ξ ,ϕ2, w)(t)
∣∣

≤ e–αt
∫ t

0

∣∣bX̄
(
s,ϕ1(s)

)
– bX̄

(
s,ϕ2(s)

)∣∣ds

≤ Ce–αt
∫ t

0
eαse–αs∣∣ϕ1(s) – ϕ2(s)

∣
∣ds ≤ Ce–αt|||ϕ1 – ϕ2|||α eαt – 1

α
≤ C

α
|||ϕ1 – ϕ2|||α ,

hence, choosing α > 0 such that Cα = C
α

< 1,

|||�(ξ ,ϕ1, w) – �(ξ ,ϕ2, w)|||α ≤ Cα|||ϕ1 – ϕ2|||α ,

and thus it has a unique fixed point.
We now observe that the solution operator S : R2×C0 → C0 is continuous. Indeed, it

is Lipschitz with respect to both variables. Letting ϕ1 = S(ξ1, w) and ϕ2 = S(ξ2, w), by the
Lipschitz continuity of bX̄ , we have that

∣
∣ϕ1(t) – ϕ2(t)

∣
∣ ≤ |ξ1 – ξ2| +

∫ t

0

∣
∣bX̄

(
s,ϕ1(s)

)
– bX̄

(
s,ϕ2(s)

)∣∣ds

≤ |ξ1 – ξ2| + C
∫ t

0

∣∣ϕ1(s) – ϕ2(s)
∣∣ds,

thus, by Grönwall’s inequality,

∣∣ϕ1(t) – ϕ2(t)
∣∣ ≤ |ξ1 – ξ2|eCt �⇒ ∥∥S(ξ1, w) – S(ξ2, w)

∥∥∞ ≤ |ξ1 – ξ2|eCT .

Analogously, letting ϕ1 = S(ξ , w1) and ϕ2 = S(ξ , w2), by the Lipschitz continuity of bX̄ , we
have that

∣∣ϕ1(t) – ϕ2(t)
∣∣ ≤

∫ t

0

∣∣bX̄
(
s,ϕ1(s)

)
– bX̄

(
s,ϕ2(s)

)∣∣ds +
∣∣w1(t) – w2(t)

∣∣

≤ C
∫ t

0

∣
∣ϕ1(s) – ϕ2(s)

∣
∣ds + ‖w1 – w2‖∞,

thus, by Grönwall’s inequality,

∣
∣ϕ1(t) – ϕ2(t)

∣
∣ ≤ ‖w1 – w2‖∞eCt �⇒ ∥

∥S(ξ , w1) – S(ξ , w2)
∥
∥∞ ≤ ‖w1 – w2‖∞eCT .

We are now in a position to write the stochastic processes (Ȳm(t))t∈[0,T] as Ym(·,ω) =
S(Y 0

m(ω), Wm(·,ω)) for a.e. ω ∈ 	. Note that Y 0
1 , . . . , Y 0

M : 	 → R
2 and W1, . . . , WM : 	 →

C0 are independent random variables. It follows that (Ȳ1(t))t∈[0,T], . . . , (ȲM(t))t∈[0,T] are in-
dependent stochastic processes. This concludes the proof. �

7 Mean-field limit for a large number of pirate ships
In this section we study the limit of the problem as M → +∞. For this reason we will stress
the dependence of initial data and solutions on M. Still, we do not stress dependence on
N , not to overburden the notation.
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7.1 Mean-field ODE/SDE/ODE limit model as M → +∞
In the following theorem we shall describe convergence of solutions in terms of empirical
measures. Given stochastic processes (S1(t))t∈[0,T], . . . , (SM(t))t∈[0,T] a.s. with continuous
paths, we associate the empirical measure10 νM : 	 → P(C0([0, T];R2)) defined for a.e.
ω ∈ 	 by

νM(·,ω) :=
1
M

M∑

m=1

δSm(·,ω).

(The first placeholder is kept free for the time variable.) If maxm E(‖Sm‖∞) < +∞, then a.s.
νM ∈P1(C0([0, T];R2)). Indeed,

E

(∫

C0([0,T];R2)
‖ϕ‖∞ dνM(·, ·)(ϕ)

)
=

1
M

M∑

m=1

E

(∫

C0([0,T];R2)
‖ϕ‖∞ dδSm

)

=
1
M

M∑

m=1

E
(‖Sm‖∞

)
< +∞.

(7.1)

We set νM(t,ω) := (evt)#νM(·,ω) for all ω ∈ 	 and t ∈ [0, T]. With a slight abuse of notation,
we let νM(t) denote the random measure νM(t) : 	 →P(R2).

Theorem 7.1 Assume the following:
• Let (Wm(t))t∈[0,T], m ≥ 1, be a sequence of independent R2-valued Brownian motions;
• Let X0 = (X0

1 , . . . , X0
N ) ∈R

2×N ;
• Let Y 0 = (Y 0

1 , . . . , Y 0
M), where Y 0

1 , . . . , Y 0
M are i.i.d. R2-valued random variables with

E(|Y 0
m|) < +∞ and independent of the Brownian motions (Wm(t))t∈[0,T];

• Let Z0 = (Z0
1, . . . , Z0

L) ∈R
2×L;

• Let (W (t))t∈[0,T] be a Brownian motion;
• Let Ȳ 0 be an R

2-valued random variable identically distributed to Y 0
1 , . . . , Y 0

M .
Let uM, u ∈ L∞([0, T];U ) be such that uM ∗

⇀ u weakly* in L∞([0, T];U ).11 Let
(XM(t))t∈[0,T] = (XM

1 (t), . . . , XM
N (t))t∈[0,T], (Y M(t))t∈[0,T] = (Y M

1 (t), . . . , Y M
M (t))t∈[0,T], and ZM =

(ZM
1 , . . . , ZM

L ) be the unique strong solution to12

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXM
n (t) = vN

n (XM(t))(r(XM
n (t)) + 1

M
∑M

m=1 K cp(XM
n (t) – Y M

m (t))) dt,

dY M
m (t) = ( 1

L
∑L

�=1 Kpg(Y M
m (t) – ZM

� (t))

– 1
N

∑N
n=1 Kpc(Y M

m (t) – XM
n (t))) dt +

√
2κ dWm(t),

dZM
�

dt (t) = 1
L
∑L

�′=1 Kgg(ZM
� (t) – ZM

�′ (t)) + uM
� (t),

XM
n (0) = X0

n a.s., Y M
m (0) = Y 0

m a.s., ZM
� (0) = Z0

� ,

n = 1, . . . , N , m = 1, . . . , M,� = 1, . . . , L.

(7.2)

10The measurability of these random variables is proven with an argument analogous to the one in Footnote 5, keeping in
mind the separability of C0([0, T ];R2).
11In fact, by the boundedness of U , this is equivalent to requiring that uM ⇀ u weakly in L1([0, T ];U ).
12This corresponds to the original ODE/SDE/ODE system (3.2) with initial data X0 , Y0 , Z0 and with control uM . The solution
is provided by Proposition 4.1. We stressed the dependence on M since we are interested in the limit as M → +∞.
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Let ν
p
M be the empirical measures associated with (Y M

1 (t))t∈[0,T], . . . , (Y M
M (t))t∈[0,T]. Then

there exist X̄ = (X̄1, . . . , X̄N ), (Ȳ (t))t∈[0,T], and Z = (Z1, . . . , ZL) such that

E

(
max

n

∥∥XM
n – X̄n

∥∥∞
)

+
∫ T

0
E

(
W1

(
ν

p
M(t), μ̄p(t)

))
dt +

∥∥ZM – Z
∥∥∞ → 0

as M → +∞.
(7.3)

Moreover, X̄ = (X̄1, . . . , X̄N ), (Ȳ (t))t∈[0,T], and Z = (Z1, . . . , ZL) are the unique strong solution
to (5.1).13

Proof To prove the result, we need to exploit an intermediate problem. For m = 1, . . . , M,
let X̄ = (X̄1, . . . , X̄N ), (Ȳ M

m (t))t∈[0,T], and Z = (Z1, . . . , ZL) be the unique strong solution to14

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄n
dt (t) = vN

n (X̄(t))(r(X̄n(t)) + K cp ∗ μ̄p(t)(X̄n(t))),

dȲ M
m (t) = ( 1

L
∑L

�=1 Kpg(Ȳ M
m (t) – Z�(t))

– 1
N

∑N
n=1 Kpc(Ȳ M

m (t) – X̄n(t))) dt +
√

2κ dWm(t),
dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

X̄n(0) = X0
n , Z�(0) = Z0

� , n = 1, . . . , N ,� = 1, . . . , L,

Ȳ M
m (0) = Y 0

m a.s., μ̄p = Law(Ȳ M
m ).

(7.4)

Our first task is to prove that

E

(
max

n

∥∥XM
n – X̄n

∥∥∞
)

+E

(
max

m

∥∥Y M
m – Ȳ M

m
∥∥∞

)
+

∥∥ZM –Z
∥∥∞ → 0 as M → +∞, (7.5)

from which (7.3) will follow as shown in Step 5.
As in the previous proofs, let C0 := C0([0, T];R2). Let us also consider the empirical

measures15 ν̄
p
M : 	 →P(C0) associated with (Ȳ M

1 (t))t∈[0,T], . . . , (Ȳ M
M (t))t∈[0,T]. To be precise,

we have that for a.e. ω ∈ 	

ν
p
M(·,ω) :=

1
M

M∑

m=1

δY M
m (·,ω), ν̄

p
M(·,ω) :=

1
M

M∑

m=1

δȲ M
m (·,ω).

(The first placeholder is kept free for the time variable.) Notice that, in fact, a.s. ν
p
M ∈

P1(C0) and ν̄
p
M ∈P1(C0) by (7.1) and since by Proposition 4.1 and Proposition 5.2 we have

that E(maxm ‖Y M
m ‖∞) < +∞ and E(maxm ‖Ȳ M

m ‖∞) < +∞, respectively.
Step 1. (Estimate of |Y M

m – Ȳ M
m |) Using the fact that Y M

m and Ȳ M
m are strong solutions

to (7.2) and (7.4), respectively, and by the Lipschitz continuity of Kpg and Kpc, we have

13Corresponding to the initial data X0 , Ȳ0 , Z0 with Brownian motion W and control u. We recall that the solution is provided
by Proposition 5.2.
14This corresponds to the averaged ODE/SDE/ODE system (5.1) with initial data X0 , Y0m , Z0 , with Brownian motion Wm ,
and with control u. The solution is provided by Proposition 5.2. Note that we applied Proposition 6.1 to deduce that
(ȲM1 (t))t∈[0,T ] , . . . , (ȲMM (t))t∈[0,T ] are identically distributed with common law μ̄p and the curve X̄ does not depend on m and M.
15The random measure ν̄

p
M : 	 → P(C0) (empirical measure of ȲM1 , . . . , ȲMM ) must not be confused with ν

p
M : 	 → P(C0)

(empirical measure of YM1 , . . . ,YMM ) or μ̄p ∈ P(C0) (common law of the stochastic processes (ȲM1 (t))t∈[0,T ] , . . . , (ȲMM (t))t∈[0,T ] , and
(Ȳ(t))t∈[0,T ]).
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that a.s. for 0 ≤ s ≤ t and m = 1, . . . , M

∣
∣Y M

m (s) – Ȳ M
m (s)

∣
∣

≤
∫ s

0

(
1
L

L∑

�=1

∣∣Kpg(Y M
m (r) – ZM

� (r)
)

– Kpg(Ȳm(r) – Z�(r)
)∣∣

+
1
N

N∑

n=1

∣∣Kpc(Y M
m (r) – XM

n (r)
)

– Kpc(Ȳ M
m (r) – X̄n(r)

)∣∣
)

dr

≤
∫ s

0
C

(
∣∣Y M

m (r) – Ȳ M
m (r)

∣∣ +
1
L

L∑

�=1

∣∣ZM
� (r) – Z�(r)

∣∣ +
1
N

N∑

n=1

∣∣XM
n (r) – X̄n(r)

∣∣
)

dr

≤
∫ t

0
C

(
max

n
sup

0≤r≤s

∣
∣XM

n (r) – X̄n(r)
∣
∣ + max

m′ sup
0≤r≤s

∣
∣Y M

m′ (r) – Ȳ M
m′ (r)

∣
∣
)

ds

+ CT
∥∥ZM – Z

∥∥∞,

the constant C depending on Kpg and Kpc. Taking the supremum in s ∈ [0, t], the maxi-
mum in m and then the expectation, we obtain that for every t ∈ [0, T]

E

(
max

m
sup

0≤s≤t

∣∣Y M
m (s) – Ȳ M

m (s)
∣∣
)

≤ C
∫ t

0
E

(
max

m
sup

0≤r≤s

∣
∣Y M

m (r) – Ȳ M
m (r)

∣
∣ + max

n
sup

0≤r≤s

∣
∣XM

n (r) – X̄n(r)
∣
∣
)

ds

+ CT
∥
∥ZM – Z

∥
∥∞.

(7.6)

Step 2. (Estimate of |XM
n – X̄n|) To estimate |XM

n (s) – X̄n(s)|, we rewrite

1
M

M∑

m=1

K cp(XM
n (t)–Y M

m (t)
)

=
∫

R2
K cp(XM

n (t)–y
)

dν
p
M(t)(y) = K cp ∗ν

p
M(t)

(
XM

n (t)
)
. (7.7)

Then we exploit the properties of vN , r, and K cp and (7.7) to get from (7.2) that a.s. for
0 ≤ s ≤ t and n = 1, . . . , N

∣∣XM
n (s) – X̄n(s)

∣∣

≤
∫ s

0

∣∣∣
∣∣
vN

n
(
XM(r)

)
(

r
(
XM

n (r)
)

+
1
M

M∑

m=1

K cp(XM
n (t) – Y M

m (r)
)
)

– vN
n
(
X̄(r)

)(
r
(
X̄n(r)

)
+ K cp ∗ μ̄p(r)

(
X̄n(r)

))
∣
∣∣∣
∣
dr

≤
∫ s

0

∥∥vN∥∥∞
(∣∣r

(
XM

n (r)
)

– r
(
X̄M

n (r)
)∣∣

+
∣∣K cp ∗ ν

p
M(r)

(
Xn(r)

)
– K cp ∗ μ̄p(r)

(
X̄n(r)

)∣∣)

+
∣∣vN

n
(
XM(r)

)
– vN

n
(
X̄(r)

)∣∣∣∣r
(
X̄n(r)

)
– K cp ∗ μ̄p(r)

(
X̄n(r)

)∣∣dr.

(7.8)
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To estimate the term involving |K cp ∗ν
p
M(r)(XM

n (r)) – K cp ∗ μ̄p(r)(X̄n(r))| in (7.8), we exploit
Kantorovich’s duality and the Lipschitz continuity of K cp to get that a.s.

∣
∣K cp ∗ ν

p
M(r)

(
XM

n (r)
)

– K cp ∗ μ̄p(r)
(
X̄n(r)

)∣∣

=
∣∣∣
∣

∫

R2
K cp(XM

n (r) – y
)

dν
p
M(r)(y) –

∫

R2
K cp(X̄n(r) – y

)
dμ̄p(r)(y)

∣∣∣
∣

≤
∣∣
∣∣

∫

R2
K cp(XM

n (r) – y
)

d
(
ν

p
M(r) – μ̄p(r)

)
(y)

∣∣
∣∣

+
∣∣
∣∣

∫

R2

(
K cp(XM

n (r) – y
)

– K cp(X̄n(r) – y
))

dμ̄p(t)(y)
∣∣
∣∣

≤ CW1
(
ν

p
M(r), μ̄p(r)

)
+ C

∣
∣XM

n (r) – X̄n(r)
∣
∣

≤ C max
n′

∣
∣XM

n′ (r) – X̄n′ (r)
∣
∣ + CW1

(
ν

p
M(r), ν̄p

M(r)
)

+ CW1
(
ν̄

p
M(r), μ̄p(r)

)
.

(7.9)

We bound W1(νp
M(r), ν̄p

M(r)) using for a.e. ω ∈ 	 as an admissible transport plan the diag-
onal transport γ (ω) = 1

N
∑N

n=1 δ(Y M
n (r,ω),Ȳ M

n (r,ω)) to obtain that a.s.

W1
(
ν

p
M(r), ν̄p

M(r)
) ≤

∫

R2×R2

∣∣y – y′∣∣dγ
(
y, y′) =

1
M

M∑

m=1

∣∣Y M
m (r) – Ȳ M

m (r)
∣∣

≤ max
m

∣
∣Y M

m (r) – Ȳ M
m (r)

∣
∣.

(7.10)

To estimate the term involving K cp ∗ μ̄p(r)(X̄n(r)) in (7.8), we use the fact that |K cp(z)| ≤
|K cp(0)| + C|z| to get that

∣
∣K cp ∗ μ̄p(r)

(
X̄n(r)

)∣∣

≤
∫

R2

∣∣K cp(X̄n(r) – y
)∣∣dμ̄p(r)(y)

≤
∫

R2
C

(
1 +

∣
∣X̄n(r)

∣
∣ + |y|)dμ̄p(r)(y)

≤ C
(

1 + max
n′ ‖X̄n′ ‖∞ + sup

0≤r≤T

(∫

R2
|y|dμ̄p(r)(y)

))

≤ C
(

1 + max
n′ ‖X̄n′ ‖∞ +

∫

C0
‖ϕ‖∞ dμ̄p(ϕ)

)
,

where in the last inequality we used that

∫

R2
|y|dμ̄p(r)(y) =

∫

R2
|y|d

(
(evr)#μ̄

p)(y) =
∫

C0

∣
∣evr(ϕ)

∣
∣dμ̄p(ϕ) ≤

∫

C0
‖ϕ‖∞ dμ̄p(ϕ),

which is finite since μ̄p ∈ P1(C0) by Proposition 5.2. By Remark 5.3 we recall that
maxn ‖X̄n‖∞ is bounded by a constant depending on maxn ‖X0

n‖∞, T , ‖vN‖∞, r, and K cp.
Hence

∣∣K cp ∗ μ̄p(r)
(
X̄n(r)

)∣∣ ≤ C. (7.11)
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Then we can proceed with the estimate in (7.8): By (7.9)–(7.11) and by exploiting also
the Lipschitz continuity of r and vN , we obtain that

∣∣XM
n (s) – X̄n(s)

∣∣

≤ C
∫ s

0
max

n′
∣
∣XM

n′ (r) – X̄n′ (r)
∣
∣dr + C

∫ s

0
max

m

∣
∣Y M

m (r) – Ȳ M
m (r)

∣
∣dr

+ C
∫ s

0
W1

(
ν̄

p
M(r), μ̄p(r)

)
dr

≤ C
∫ t

0
max

n′ sup
0≤r≤s

∣∣XM
n′ (r) – X̄n′ (r)

∣∣ds + C
∫ t

0
max

m
sup

0≤r≤s

∣∣Y M
m (r) – Ȳ M

m (r)
∣∣ds

+ C
∫ T

0
W1

(
ν̄

p
M(s), μ̄p(s)

)
ds.

Taking the supremum in s, the maximum in n, and then the expectation, we obtain that
for every t ∈ [0, T]

E

(
max

n
sup

0≤s≤t

∣∣XM
n (s) – X̄n(s)

∣∣
)

≤ C
∫ t

0
E

(
max

n
sup

0≤r≤s

∣∣XM
n (r) – X̄n(r)

∣∣
)

ds

+ C
∫ t

0
E

(
max

m
sup

0≤r≤s

∣∣Y M
m (r) – Ȳ M

m (r)
∣∣
)

ds + C
∫ T

0
E

(
W1

(
ν̄

p
M(s), μ̄p(s)

))
ds.

(7.12)

Step 3. (Grönwall’s inequality) Putting together (7.6) and (7.12), we have that for every
t ∈ [0, T]

E

(
max

n
sup

0≤s≤t

∣∣XM
n (s) – X̄n(s)

∣∣ + max
m

sup
0≤s≤t

∣∣Y M
m (s) – Ȳ M

m (s)
∣∣
)

≤ C
∫ t

0
E

(
max

n
sup

0≤r≤s

∣
∣XM

n (r) – X̄n(r)
∣
∣ + max

m
sup

0≤r≤s

∣
∣Y M

m (r) – Ȳ M
m (r)

∣
∣
)

ds

+ CT
∥∥ZM – Z

∥∥∞ + C
∫ T

0
E

(
W1

(
ν̄

p
M(s), μ̄p(s)

))
ds.

By Grönwall’s inequality, we deduce that for every t ∈ [0, T]

E

(
max

n
sup

0≤s≤t

∣
∣XM

n (s) – X̄n(s)
∣
∣ + max

m
sup

0≤s≤t

∣
∣Y M

m (s) – Ȳ M
m (s)

∣
∣
)

≤ CeCt
(

CT
∥∥ZM – Z

∥∥∞ +
∫ T

0
E

(
W1

(
ν̄

p
M(s), μ̄p(s)

))
ds

)
.

In particular,

E

(
max

n

∥∥XM
n – X̄M

n
∥∥∞ + max

m

∥∥Y M
m – Ȳ M

m
∥∥∞

)

≤ C
(∥∥ZM – Z

∥∥∞ +
∫ T

0
E

(
W1

(
ν̄

p
M(s), μ̄p(s)

))
ds

)
=: α(M),

where the constant depends additionally on T .
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Step 4. (Convergence to zero of α(M)) To conclude the proof, we show that α(M) → 0
as M → +∞.

Substep 4.1. Let us show that ‖ZM – Z‖∞ → 0 as M → +∞. We start by observing that
by (7.2) and (7.4)

∣∣ZM
� (t) – Z�(t)

∣∣

≤ 1
L

L∑

�′=1

∫ t

0

∣∣Kgg(ZM
� (s) – ZM

�′ (s)
)

– Kgg(Z�(s) – Z�′ (s)
)∣∣ds +

∣
∣∣∣

∫ t

0

(
uM

� (s) – u�(s)
)

ds
∣
∣∣∣

≤
∫ t

0
C

∣
∣ZM(s) – Z(s)

∣
∣ds +

∣∣
∣∣

∫ t

0

(
uM(s) – u(s)

)
ds

∣∣
∣∣,

where the constant C depends on Kgg. By Grönwall’s inequality, it follows that

∣∣ZM(t) – Z(t)
∣∣ ≤ RM(t) +

∫ t

0
RM(s)CeC(t–s) ds ≤ RM(t) + CeCT

∫ T

0
RM(s) ds,

where RM(t) = | ∫ t
0 (uM(s) – u(s)) ds|, hence

∥
∥ZM – Z

∥
∥∞ ≤ C‖RM‖∞.

Since uM ∗
⇀ u weakly* in L∞([0, T];U ), we have that RM(t) → 0 for every t ∈ [0, T]. More-

over, by the boundedness of U , RM(t) are equibounded and equi-Lipschitz. It follows that
‖RM‖∞ → 0, thus ‖ZM – Z‖∞ → 0.

Substep 4.2. Let us show that
∫ T

0 E(W1(ν̄p
M(s), μ̄p(s))) ds → 0 as M → +∞.

To show this, we apply the discussion in Sect. 2.6 about the approximation of a law (here
played by μ̄p(s)) with empirical measures on independent samples of the law (here played
by ν̄

p
M(s)). Let us check that all the assumptions hold true. For every s ∈ [0, T], we have that

μ̄p(s) ∈ P1(Rd). This follows from the fact that, by Proposition 6.1, μ̄p = Law(Ȳ M
1 ) = · · · =

Law(Ȳ M
M ) = Law(Ȳ ), thus

∫

R2
|y|dμ̄p(s)(y) =

∫

R2
|y|d

(
(evs)#(Ȳ )#P

)
(y) =

∫

	

∣
∣Ȳ (s,ω)

∣
∣dP(ω)

= E
(∣∣Ȳ (s)

∣∣) ≤ E
(‖Ȳ‖∞

)
< +∞,

(7.13)

where the finiteness of E(‖Ȳ‖∞) follows from Proposition 5.2. Moreover, the random
variables Ȳ M

1 (s), . . . , Ȳ M
M (s) are i.d. with law (Ȳ M

m (s, ·))#P = (evs)#(Ȳ M
m )#P = (evs)#μ̄

p = μ̄p(s).
Finally, by Proposition 6.2 we have that (Ȳ M

1 (t))t∈[0,T], . . . , (Ȳ M
M (t))t∈[0,T] are independent

stochastic processes, thus, in particular, Ȳ M
1 (s), . . . , Ȳ M

M (s) are independent random vari-
ables. By [33, Lemma 4.7.1] we conclude that

E
(
W1

(
ν̄

p
M(s), μ̄p(s)

)) → 0 for every s ∈ [0, T],



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 39 of 68

as M → +∞. Let us now show that s 
→ E(W1(ν̄p
M(s), μ̄p(s))) is dominated. Indeed, since

Ȳ1(s), . . . , ȲM(s) are identically distributed and by (7.13), for every s ∈ [0, T], we have that

E
(
W1

(
ν̄

p
M(s), μ̄p(s)

)) ≤ E
(
W1

(
ν̄

p
M(s), δ0

))
+ W1

(
μ̄p(s), δ0

)

≤ E

(∫

R2
|y|dν̄

p
M(s)(y)

)
+

∫

R2
|y|dμ̄p(s)(y)

≤ 1
M

M∑

m=1

E
(∣∣Ȳ M

m (s)
∣
∣) +

∫

R2
|y|dμ̄p(s)(y)

≤ E
(∣∣Ȳ (s)

∣∣) +
∫

R2
|y|dμ̄p(s)(y) ≤ 2E

(‖Ȳ‖∞
)

< +∞,

where the finiteness of the last term follows from Proposition 5.2. We conclude that

∫ T

0
E

(
W1

(
ν̄

p
M(s), μ̄p(s)

))
ds → 0 (7.14)

as M → +∞. This concludes the proof of (7.5).
Step 5. (Conclusion with the proof of (7.3)) By (7.10), we have that

∫ T

0
E

(
W1

(
ν

p
M(s), ν̄p

M(s)
))

ds ≤ TE

(
max

m

∥∥Y M
m – Ȳ M

m
∥∥∞

)
.

Combining this with (7.14) and (7.5), we obtain (7.3) and we conclude the proof. �

Proposition 7.2 Under the assumptions of Theorem 7.1, the curve X̄ = (X̄1, . . . , X̄N ), the
law μ̄p ∈ P1(C0([0, T];R2)), and the curve Z = (Z1, . . . , ZL) from (7.4) are solutions to the
ODE/PDE/ODE system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄n
dt (t) = vN (X̄(t))(r(X̄n(t)) + K cp ∗ μ̄p(t)(X̄n(t))),

∂tμ̄
p – κ�yμ̄

p + divy(( 1
L
∑L

�=1 Kpg(· – Z�(t))

– 1
N

∑N
n=1 Kpc(· – X̄n(t)))μ̄p) = 0,

dZ�

dt (t) = ( 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t)) dt,

X̄n(0) = X0
n , Z�(0) = Z0

� , n = 1, . . . , N ,� = 1, . . . , L,

μ̄p(0) = Law(Ȳ 0),

(7.15)

where the parabolic PDE is understood in the sense of distributions.16

Proof We exploit the fact that μ̄p is the law of stochastic processes (Ȳ (t))t∈[0,T], where
(Ȳ (t))t∈[0,T] solves the SDE

⎧
⎨

⎩
dȲ (t) = ( 1

L
∑L

�=1 Kpg(Ȳ (t) – Z�(t)) – 1
N

∑N
n=1 Kpc(Ȳ (t) – X̄n(t))) dt +

√
2κ dW (t),

Ȳ (0) = Ȳ 0 a.s.

16To be precise, we regard μ̄p ∈ P1(C0([0, T ];R2)) as the distribution defined by the duality

∫ 0

–∞

∫

R2
ξ (t, y)dμ̄p(0)(y)dt +

∫ T

0

∫

R2
ξ (t, y)dμ̄p(t)(y)dt for every ξ ∈ C∞

c ((–∞, T )×R
2)).
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Let us fix a test function ξ ∈ C∞
c ((–∞, T)×R

2). By Itô’s formula [28, Theorem 6.4], we
have that (ξ (t, Ȳ (t)))t∈[0,T] is an Itô process solving the SDE

d
(
ξ
(
t, Ȳ (t)

))

= ∂tξ
(
t, Ȳ (t)

)
dt + κ�yξ

(
t, Ȳ (t)

)
dt

+

(
1
L

L∑

�=1

Kpg(Ȳ (t) – Z�(t)
)

–
1
N

N∑

n=1

Kpc(Ȳ (t) – X̄n(t)
)
)

· ∇yξ
(
t, Ȳ (t)

)
dt

+ ∇yξ
(
t, Ȳ (t)

) · dW (t)

with initial datum ξ (0, Ȳ 0). This means that a.s. for every t ∈ [0, T]

ξ
(
t, Ȳ (t)

)

= ξ
(
0, Ȳ 0) +

∫ t

0

[

∂tξ
(
s, Ȳ (s)

)
+ κ�yξ

(
s, Ȳ (s)

)

+

(
1
L

L∑

�=1

Kpg(Ȳ (s) – Z�(s)
)

–
1
N

N∑

n=1

Kpc(Ȳ (s) – X̄n(s)
)
)

· ∇yξ
(
s, Ȳ (s)

)
]

ds

+
∫ t

0
∇yξ

(
s, Ȳ (s)

) · dW (s).

By [28, Lemma 5.4] we have that

E

(∫ t

0
∇yξ

(
s, Ȳ (s)

) · dW (s)
)

= 0.

Thus, taking the expectation, we obtain in particular that

E
(
ξ
(
T , Ȳ (T)

))

= E
(
ξ
(
0, Ȳ 0)) +

∫ T

0
E

[

∂tξ
(
t, Ȳ (t)

)
+ κ�yξ

(
t, Ȳ (t)

)

+

(
1
L

L∑

�=1

Kpg(Ȳ (t) – Z�(t)
)

–
1
N

N∑

n=1

Kpc(Ȳ (t) – X̄n(t)
)
)

· ∇yξ
(
t, Ȳ (t)

)
]

dt.

Note that the function t 
→ ∫
R2 ξ (t, y)dμ̄p(t)(y) =

∫
C0([0,T ];R2) ξ (t,ϕ(t))dμ(ϕ) is continuous in t, e.g., by the dominated conver-

gence theorem. A solution to the PDE in the sense of distributions satisfies

∫

R2
ξ (0, y)dLaw(Ȳ01 )(y) +

∫ T

0

∫

R2

[
∂tξ (t, y) + κ�yξ (t, y)

+
(
1
L

L∑

�=1

Kpg(y – Z�(t)) –
1
N

N∑

n=1

Kpc(y – X̄n(t))

)
· ∇yξ (t, y)

]
dμ̄p(t)(y)dt = 0

for every ξ ∈ C∞
c ((–∞, T )×R

2)).
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Using the fact that μ̄p(t) = Law(Ȳ (t)) and ξ (T , ·) ≡ 0, we get that

0 =
∫

R2
ξ (T , y) dμ̄p(T)(y)

=
∫

R2
ξ (0, y) dLaw

(
Ȳ 0)(y) +

∫ T

0

∫

R2

[

∂tξ (t, y) + κ�yξ (t, y)

+

(
1
L

L∑

�=1

Kpg(y – Z�(t)
)

+
1
N

N∑

n=1

Kpc(y – X̄n(t)
)
)

· ∇yξ (t, y)

]

dμ̄p(t)(y) dt.

This concludes the proof. �

7.2 Limit of optimal control problems as M → +∞
Let us consider the following cost functional for the limit problem obtained in (7.1). Let
JN : L∞([0, T];U ) →R be defined for every u ∈ L∞([0, T];U ) by

JN (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt, (7.16)

where X̄ = (X̄1, . . . , X̄N ) and (Ȳ (t))t∈[0,T] are the unique strong solutions to (5.1) provided by
Proposition 5.2. Notice that the definition of JN does not depend on the particular initial
random datum Ȳ 0 but only on its law since this is also the case for μ̄p by Proposition 6.1.

Theorem 7.3 Let us fix N ≥ 1. Under the assumptions of Theorem 7.1, the sequence of
functionals (JN ,M)M≥1 �-converges to JN as M → +∞ with respect to the weak* topology
in L∞([0, T];U ).17

Proof Step 1. (Asymptotic lower bound). Let us fix a sequence of controls (uM)M≥1, uM ∈
L∞([0, T];U ) such that uM ∗

⇀ u weakly* in L∞([0, T];U ) as M → +∞. Let us show that

JN (u) ≤ lim inf
M→+∞JN ,M

(
uM)

. (7.17)

On the one hand, by Definition (3.3), we have that

JN ,M
(
uM)

=
1
2

∫ T

0

∣∣uM(t)
∣∣2 dt + E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(XM
n (t) – Y M

m (t)
)

dt

)

,

where the stochastic processes (XM(t))t∈[0,T] = (XM
1 (t), . . . , XM

N (t))t∈[0,T], (Y M(t))t∈[0,T] =
(Y M

1 (t), . . . , Y M
M (t))t∈[0,T] (and the curve ZM = (ZM

1 , . . . , ZM
L )) are the unique strong solution

to (7.2). On the other hand, we have that

JN (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt,

17Note that the weak* convergence in L∞([0, T ];U ) is metrizable since U is bounded, hence we can use the sequential
characterization of �-limits, cf. [20, Proposition 8.1].
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where the curve X̄ = (X̄1, . . . , X̄N ), the stochastic process (Ȳ (t))t∈[0,T] with law μ̄p (and the
curve Z = (Z1, . . . , ZL)) are the unique strong solution to (5.1).

By the weak sequential lower semicontinuity of the L2-norm, we have that

∫ T

0

∣
∣u(t)

∣
∣2 dt ≤ lim inf

M→+∞

∫ T

0

∣
∣uM(t)

∣
∣2 dt.

Let us prove the convergence

E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(XM
n (t) – Y M

m (t)
)

dt

)

→ 1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt,

(7.18)

as M → +∞. This will conclude the proof of (7.17).
We exploit the equality

1
M

M∑

m=1

Hd(XM
n (t) – Y M

m (t)
)

= Hd ∗ ν
p
M(t)

(
XM

n (t)
)

to deduce that

∣
∣∣
∣∣
E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(XM
n (t) – Y M

m (t)
)

dt

)

–
1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt

∣
∣∣∣
∣

≤ 1
N

N∑

n=1

∫ T

0

∣
∣E

(
Hd ∗ ν

p
M(t)

(
XM

n (t)
))

– Hd ∗ μ̄p(t)
(
X̄n(t)

)∣∣dt

≤ 1
N

N∑

n=1

∫ T

0
E

(∣∣Hd ∗ ν
p
M(t)

(
XM

n (t)
)

– Hd ∗ ν
p
M(t)

(
X̄n(t)

)∣∣)dt

+
1
N

N∑

n=1

∫ T

0
E

(∣∣Hd ∗ ν
p
M(t)

(
X̄n(t)

)
– Hd ∗ μ̄p(t)

(
X̄n(t)

)∣∣)dt.

(7.19)

We estimate the first term on the right-hand side of (7.19) by using the fact that, by the
Lipschitz continuity of Hd, a.s. for every t ∈ [0, T]

∣
∣Hd ∗ ν

p
M(t)

(
XM

n (t)
)

– Hd ∗ ν
p
M(t)

(
X̄n(t)

)∣∣

≤
∫

R2

∣∣Hd(XM
n (t) – y

)
– Hd(X̄n(t) – y

)∣∣dν
p
M(t)(y)

≤ C
∣
∣XM

n (t) – X̄n(t)
∣
∣ ≤ C max

n′
∥
∥XM

n′ – X̄n′
∥
∥∞.
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We estimate the second term on the right-hand side of (7.19) by Kantorovich’s duality,
which by the Lipschitz continuity of Hd(X̄n(t) – ·) yields a.s. for every t ∈ [0, T]

∣
∣Hd ∗ ν

p
M(t)

(
X̄n(t)

)
– Hd ∗ μ̄p(t)

(
X̄n(t)

)∣∣

=
∣∣
∣∣

∫

R2
Hd(X̄n(t) – y

)
d
(
ν

p
M(t) – μ̄p(t)

)
(y)

∣∣
∣∣

≤ CW1
(
ν

p
M(t), μ̄p(t)

)
.

Putting together the previous inequalities, we conclude that

∣∣
∣∣∣
E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(XM
n (t) – Y M

m (t)
)

dt

)

–
1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt

∣∣∣
∣∣

≤ CE

(
max

n

∥∥XM
n – X̄n

∥∥∞
)

+ C
∫ T

0
E

(
W1

(
ν

p
M(t), μ̄p(t)

))
dt,

whence (7.18) by Theorem 7.1.
Step 2. (Asymptotic upper bound). Let us fix u ∈ L∞([0, T];U ). For every M ≥ 1, let us

set uM = u. As in Step 1, we have that

JN ,M
(
uM)

=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt + E

(∫ T

0

1
N

1
M

N∑

n=1

M∑

m=1

Hd(XM
n (t) – Y M

m (t)
)

dt

)

,

where the stochastic processes (XM(t))t∈[0,T], (Y M(t))t∈[0,T] (and the curve ZM) are the
unique strong solution to (7.2) corresponding to the control uM = u and

JN (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄n(t) – y

)
dμ̄p(t)(y) dt,

where the curve X̄, the stochastic process (Ȳ (t))t∈[0,T] with law μ̄p (and the curve Z) are the
unique strong solution to (5.1). Trivially, we have uM ∗

⇀ u, hence we deduce (7.18) once
again and, in particular, the asymptotic upper bound

lim
M→+∞JN ,M(u) = JN (u).

This concludes the proof. �

As a byproduct, we obtain the following result.

Proposition 7.4 Under the assumptions of Proposition 5.2, there exists an optimal control
u∗ ∈ L∞([0, T];U ), i.e.,

JN
(
u∗) = min

u∈L∞([0,T];U )
JN (u).
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Proof The proof is standard in the theory of �-convergence. Let us consider a sequence of
independent Brownian motions (Wm(t))t∈[0,T], m ≥ 1 and Y 0

1 , . . . , Y 0
M i.i.d. random variable

with the same law of Ȳ 0. Let (uM)M≥1 be a sequence such that JN ,M(uM) = infJN ,M . Since
(uM)M≥1 is bounded in L∞([0, T];U ), there exist u∗ and a subsequence (not relabeled) such
that uM ∗

⇀ u∗ weakly-* in L∞([0, T];U ). By Theorem 7.3 we have that

JN
(
u∗) ≤ lim inf

M→+∞JN ,M
(
uM)

= lim inf
M→+∞ infJN ,M ≤ lim sup

M→+∞
infJN ,M

≤ lim sup
M→+∞

JN ,M
(
u∗) = JN

(
u∗).

(Here we used the fact that the recovery sequence for u∗ is the constant sequence given
by u∗, see the proof of Theorem 7.3.) �

8 Mean-field limit for a large number of commercial ships
In this section we study the limit of the problem as N → +∞. For this reason we will stress
the dependence of initial data and solutions on N .

8.1 Mean-field limit as N → +∞
In this section, we will use the explicit formula for the velocity correction

vN
n (X) = v

(
1

N – 1

N∑

n′=1

η(Xn, Xn – Xn′ )

)

= v

(
1
N

N∑

n′=1

ηN (Xn, Xn – Xn′ )

)

,

where we set

ηN =
N

N – 1
η. (8.1)

In what follows, we shall use the symbol ∗2 to indicate that the convolution is done with
respect to the second variable, i.e., η ∗2 ν(x) =

∫
R2 η(x, x – x′) dν(x′).

Theorem 8.1 Assume the following:
• Let (W (t))t∈[0,T] be an R

2-valued Brownian motion;
• Let XN ,0 = (X0

1 , . . . , X0
N ) ∈R

2×N and assume that maxn ‖XN ,0
n ‖∞ ≤ R0 with R0

independent of N ;
• Let Ȳ 0 be an R

2-valued random variable with E(|Ȳ 0|) < +∞;
• Let Z0 = (Z0

1, . . . , Z0
L) ∈R

2×L;
• Let μc

0 ∈P1(R2) with supp(μc
0) ⊂ B̄R0 be such that W1( 1

N
∑N

n=1 δX0
n
,μc

0) → 0 as
N → +∞;
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Let uN , u ∈ L∞([0, T];U ) be such that uN ∗
⇀ u weakly* in L∞([0, T];U ).18 Let X̄N =

(X̄N
1 , . . . , X̄N

N ), (Ȳ N (t))t∈[0,T], and ZN = (ZN
1 , . . . , ZN

L ) be the unique strong solution to19

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̄N
n

dt (t) = vN
n (X̄N (t))(r(X̄N

n (t)) + K cp ∗ μ̄
p
N (t)(X̄N

n (t))),

dȲ N (t) = ( 1
L
∑L

�=1 Kpg(Ȳ N (t) – ZN
� (t)) – 1

N
∑N

n=1 Kpc(Ȳ N (t) – X̄N
n (t))) dt

+
√

2κ dW (t),
dZN

�

dt (t) = 1
L
∑L

�′=1 Kgg(ZN
� (t) – ZN

�′ (t)) + uN
� (t),

X̄N
n (0) = X0

n , ZN
� (0) = Z0

� , n = 1, . . . , N ,� = 1, . . . , L,

Ȳ N (0) = Ȳ 0 a.s., μ̄
p
N = Law(Ȳ N ).

(8.2)

Let us consider the measures

νc
N (t) :=

1
N

N∑

n=1

δX̄N
n (t). (8.3)

Then there exist μc ∈ C0([0, T];P1(R2)), (Ȳ (t))t∈[0,T], and Z = (Z1, . . . , ZL) such that

sup
t∈[0,T]

W1
(
νc

N (t),μc(t)
)

+ E
(∥∥Ȳ N – Ȳ

∥
∥∞

)
+

∥
∥ZN – Z

∥
∥∞ → 0 as N → +∞.

Moreover, μc ∈ C0([0, T];P1(R2)), (Ȳ (t))t∈[0,T], and Z = (Z1, . . . , ZL) provide the unique so-
lution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tμ
c + divx(v(η ∗2 μc)(r + K cp ∗ μp)μc) = 0,

dȲ (t) = ( 1
L
∑L

�=1 Kpg(Ȳ (t) – Z�(t)) – Kpc ∗ μc(t)(Ȳ (t))) dt +
√

2κ dW (t),
dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

μc(0) = μc
0,

Ȳ (0) = Ȳ 0 a.s., μp = Law(Ȳ ),

Z�(0) = Z0
� , � = 1, . . . , L.

(8.4)

Proof Step 1. (PDE solved by the empirical measures) In terms of νc
N (t), vN

n (X̄N (t)) reads

vN
n
(
X̄N (t)

)
= v

(
1
N

N∑

n′=1

ηN
(
X̄N

n (t), X̄N
n (t) – X̄N

n′ (t)
)
)

= v
(∫

R2
ηN

(
X̄N

n (t), X̄N
n (t) – x′)dνc

N (t)
(
x′)

)
= v

(
ηN ∗2 νc

N (t)
(
X̄N

n (t)
))

.

(8.5)

18In fact, by the boundedness of U , this is equivalent to requiring that uN ⇀ u weakly in L1([0, T ];U ).
19This corresponds to the averaged ODE/SDE/ODE system (5.1) with initial data XN,0 , Ȳ0 , Z0 , with Brownian motion W
and control uN . The solution is provided by Proposition 5.2.
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Let us derive the PDE solved by νc
N (t) in the sense of distributions.20 Let us fix ξ ∈

C∞
c ((–∞, T)×R

2). By (8.2) and (8.5) we have that

0 =
d
dt

(∫ 0

–∞

∫

R2
ξ (t, x) dνc

N (0)(x) dt +
∫ T

0

∫

R2
ξ (t, x) dνc

N (t)(x) dt
)

=
1
N

N∑

n=1

d
dt

(∫ 0

–∞
ξ
(
t, X0

n
)

dt +
∫ T

0
ξ
(
t, X̄N

n (t)
)

dt
)

=
1
N

N∑

n=1

(
∫ 0

–∞
∂tξ

(
t, X0

n
)

dt

+
∫ T

0

(
∂tξ

(
t, X̄N

n (t)
)

+
dX̄N

n
dt

(t) · ∇xξ
(
t, X̄N

n (t)
)

dt
)

=
1
N

N∑

n=1

(
ξ
(
0, X0

n
)

+
∫ T

0

(
∂tξ

(
t, X̄N

n (t)
)

+ v
(
ηN ∗2 νc

N (t)
(
X̄N

n (t)
))

× (
r
(
X̄N

n (t)
)

+ K cp ∗ μ̄
p
N (t)

(
X̄N

n (t)
)) · ∇xξ

(
t, X̄N

n (t)
))

dt
)

=
∫

R2
ξ (0, x) d

(
1
N

N∑

n=1

δX0
n

)

(x) +
∫ T

0

∫

R2

(
∂tξ (t, x) + v

(
ηN ∗2 νc

N (t)(x)
)

× (
r(x) + K cp ∗ μ̄

p
N (t)(x)

) · ∇xξ (t, x)
)

dνc
N (t)(x) dt.

(8.6)

This means that νc
N is a distributional solution to

⎧
⎨

⎩
∂tν

c
N + divx(v(ηN ∗2 νc

N )(r + K cp ∗ μ̄
p
N )νc

N ) = 0,

νc
N (0) = 1

N
∑N

n=1 δX0
n
.

(8.7)

Step 2. (Convergence of empirical measures νc
N ) To show the compactness of the se-

quence of curves νc
N ∈ C0([0, T];P1(R2)), we rely on the Arzelà–Ascoli theorem for

metric-valued functions. We split the proof in substeps.
Substep 2.1. (Equiboundedness of supports) By Remark 5.3, we have that maxn ‖X̄N

n ‖∞ ≤
R, where the constant R depending on the initial datum X0, the final time T , ‖vN‖∞, r, and
K cp. This implies that supp(νc

N (t)) are contained in the closed ball B̄R for every t ∈ [0, T].
Substep 2.2. (Equicontinuity) Let us prove that νc

N ∈ C0([0, T];P1(R2)) are equicontinu-
ous.

We observe that the sequence ‖ZN‖∞ is bounded. Indeed, by (8.2),

∣∣ZN
� (t)

∣∣ ≤ ∣∣Z0
�

∣∣ +
∫ t

0

(∣∣
∣∣
∣

1
L

L∑

�′=1

Kgg(ZN
� (s) – ZN

�′ (s)
)
∣∣
∣∣
∣

+
∣∣uN

� (s)
∣∣
)

ds

≤ ∣∣Z0∣∣ +
∫ t

0
C

(
1 +

∣∣ZN (s)
∣∣)ds ≤ ∣∣Z0∣∣ + CT +

∫ t

0
C

∣∣ZN (s)
∣∣ds,

20We use here the duality introduced in Footnote 16.
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the constant C depending on Kgg and the set of admissible controls U (bounded). Taking
the norm of ZN and by Grönwall’s inequality, we obtain that

∣∣ZN (t)
∣∣ ≤ (∣∣Z0∣∣ + CT

)
eCt ≤ R′,

where the constant R′ depends on Kgg, U , and T .
By Remark 5.3, for every r ∈ [0, T], we have that

∫

R2
|y|dμ̄

p
N (r)(y) = E

(∣∣Ȳ N (r)
∣∣) ≤ C

(
1 + E

(∣∣Ȳ 0∣∣)), (8.8)

where the constant C depends on Kpg, Kpc, ‖ZN‖∞ (bounded by R′), maxn ‖X̄N
n ‖∞

(bounded by R), T , and W . Then the Lipschitz continuity of K cp and (8.8) yield

∣
∣K cp ∗ μ̄

p
N (r)(x)

∣
∣ ≤

∫

R2

∣
∣K cp(x – y)

∣
∣dμ̄

p
N (r)(y)

≤
∫

R2

(∣∣K cp(0)
∣
∣ + C|x| + C|y|)dμ̄

p
N (r)(y)

≤ C
(
1 + E

(∣∣Ȳ 0∣∣) + |x|) ≤ C
(
1 + |x|),

(8.9)

where the constant C additionally depends on E(|Ȳ 0|).
By (8.2) and (8.9), for s ≤ t and n = 1, . . . , N , we have that

∣∣X̄N
n (s) – X̄N

n (t)
∣∣ ≤

∫ t

s

∣∣vN
n
(
X̄N (r)

)(
r
(
X̄N

n (r)
)

+ K cp ∗ μ̄
p
N (r)

(
X̄N

n (r)
))∣∣dr

≤
∫ t

s
C

(
1 +

∣∣X̄N
n (r)

∣∣)dr ≤ C|t – s|,

where the constant C depends on the constant obtained in (8.9) and additionally on
‖vN‖∞ and r. Using as a transport plan between νc

N (s) and νc
N (t) the measure γ =

1
N

∑N
n=1 δ(X̄N

n (s),X̄N
n (t)), we obtain that

W1
(
νc

N (s),νc
N (t)

) ≤
∫

R2×R2

∣
∣x – x′∣∣dγ

(
x, x′) =

1
N

N∑

n=1

∣
∣X̄N

n (s) – X̄N
n (t)

∣
∣ ≤ C|t – s|,

i.e., the curves νc
N ∈ C0([0, T];P1(B̄R)) are equi-Lipschitz with respect to the 1-Wasserstein

distance.
Substep 2.3. (Compactness) Since the ball B̄R is compact, the Wasserstein space P1(B̄R)

is compact too [39, Remark 6.19].21 Hence the Arzelà–Ascoli theorem for continu-
ous functions with values in a metric space guarantees the existence of a curve μc ∈
C0([0, T];P1(B̄R)) and a subsequence Nk such that

sup
t∈[0,T]

W1
(
νc

Nk
(t),μc(t)

) → 0 as Nk → +∞. (8.10)

21In fact, the curves νc
N ∈ C0([0, T ];P1(R2)) take values in a compact set of P1(R2) independent of N even un-

der weaker assumptions. This is the case, e.g., when q-moments of νc
N(t) with q > 1 are uniformly bounded, i.e.,

supN supt
∫
R2 |x|q dνc

N(t)(x) < +∞ for some q > 1 (this can be proven based on [39, Theorem 6.9]. A uniform bound on
the q-moments follows from the analogous assumption on the distribution of initial data by a Grönwall inequality.
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Without loss of generality, we do not relabel this subsequence and denote it simply by N .
This does not affect the proof as in Theorem 8.2 we shall prove the uniqueness of solutions
for the limit problem.

Step 3. (Convergence of ZN ) We let Z = (Z1, . . . , ZL) be the unique solution to

⎧
⎨

⎩

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

Z�(0) = Z0
� .

As in Substep 4.1, in the proof of Theorem 7.1 we get that

∥
∥ZN – Z

∥
∥∞ → 0 as N → +∞. (8.11)

Step 4. (Convergence of Ȳ N ) Let us consider the SDE

⎧
⎨

⎩
dȲ (t) = ( 1

L
∑L

�=1 Kpg(Ȳ (t) – Z�(t)) – Kpc ∗ μc(t)(Ȳ (t))) dt +
√

2κ dW (t),

Ȳ (0) = Ȳ 0 a.s.
(8.12)

We will show that Ȳ N converges to Ȳ .
Substep 4.1. (Well-posedness of (8.12)) There exists a unique strong solution to (8.12).

Indeed, let us consider the drift

b(t, Y ) :=
1
L

L∑

�=1

Kpg(Y – Z�(t)
)

– Kpc ∗ μc(t)(Y )

and the constant dispersion matrix σ =
√

2κId2, so that
⎧
⎨

⎩
dȲ (t) = b(t, Ȳ (t)) dt + σ dW (t),

Ȳ (0) = Ȳ 0 a.s.

Let us observe that b is continuous in t and Lipschitz continuous in Y (with Lipschitz
constant independent of t). Indeed, Z is a continuous curve, while by Kantorovich’s duality

∣∣Kpc ∗ μc(t)(Y ) – Kpc ∗ μc(s)(Y )
∣∣

=
∣∣
∣∣

∫

R2
Kpc(Y – x) d

(
μc(t) – μc(s)

)
(x)

∣∣
∣∣ ≤ CW1

(
μc(t),μc(s)

)
,

(8.13)

and t 
→ μc(t) is a continuous curve in the Wasserstein space P1(R2). Moreover, the func-
tion Y 
→ Kpg(Y – Z�(t)) is Lipschitz continuous, and so is Y 
→ Kpc ∗ μc(t)(Y ) since

∣
∣Kpc ∗ μc(t)(Y ) – Kpc ∗ μc(t)

(
Y ′)∣∣ ≤

∫

R2

∣
∣Kpc(Y – x) – Kpc(Y ′ – x

)∣∣dμc(t)(x)

≤
∫

R2
C

∣∣Y – Y ′∣∣dμc(t)(x) = C
∣∣Y – Y ′∣∣.

Moreover, we have that

∣∣b(t, Y )
∣∣ ≤ ∣∣b(t, 0)

∣∣ +
∣∣b(t, 0) – b(t, Y )

∣∣ ≤ ∣∣b(t, 0)
∣∣ + C|Y |
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and

∣∣b(t, 0)
∣∣ ≤ 1

L

L∑

�=1

∣∣Kpg(–Z�(t)
)∣∣ +

∣∣Kpc ∗ μc(t)(0)
∣∣

≤ C
(
1 +

∣∣Z(t)
∣∣) +

∫

R2
C

(
1 + |x|)dμc(t)(x) ≤ C

(
1 + ‖Z‖∞

)
+ C(1 + R) ≤ C,

where the last inequality follows from the fact that Z is bounded and μc(t) has support in
the ball B̄R(0) for every t ∈ [0, T]. We conclude that

∣
∣b(t, Y )

∣
∣ ≤ C

(
1 + |Y |), (8.14)

where the constant C depends on Kpg, Kpc, ‖Z‖∞, R. Thus the assumptions of Proposi-
tion 2.1 are satisfied. Proposition 2.1 also gives us that

E
(‖Ȳ‖∞

) ≤ C, (8.15)

where the constant C depends on Kpg, Kpc, ‖Z‖∞, R, Ȳ 0, T , and W .
Substep 4.2. (Convergence of Ȳ N to Ȳ ) Let us prove that

E
(∥∥Ȳ N – Ȳ

∥
∥∞

) → 0 as N → +∞. (8.16)

We start by noticing that

1
N

N∑

n=1

Kpc(Ȳ N (t) – X̄N
n (t)

)
= Kpc ∗ νc

N (t)
(
Ȳ N (t)

)
.

Hence, by (8.2), (8.12), (8.13), and by Kantorovich’s duality, we have a.s. for 0 ≤ s ≤ t ≤ T

∣∣Ȳ N (s) – Ȳ (s)
∣∣

≤ 1
L

L∑

�=1

∫ s

0

∣
∣Kpg(Ȳ N (r) – ZN

� (r)
)

– Kpg(Ȳ (r) – Z�(r)
)∣∣dr

+
∫ s

0

∣∣Kpc ∗ νc
N (r)

(
Ȳ N (r)

)
– Kpc ∗ μc(r)

(
Ȳ (r)

)∣∣dr

≤
∫ s

0
C

∣∣Ȳ N (r) – Ȳ (r)
∣∣dr + CT

∥∥ZN – Z
∥∥∞

+
∫ s

0

∣∣Kpc ∗ νc
N (r)

(
Ȳ N (r)

)
– Kpc ∗ μc(r)

(
Ȳ N (r)

)∣∣dr

+
∫ s

0

∣
∣Kpc ∗ μc(r)

(
Ȳ N (r)

)
– Kpc ∗ μc(r)

(
Ȳ (r)

)∣∣dr

≤
∫ s

0
C

∣
∣Ȳ N (r) – Ȳ (r)

∣
∣dr + CT

∥
∥ZN – Z

∥
∥∞ + CT sup

r∈[0,T]
W1

(
νc

N (r),μc(r)
)
.



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 50 of 68

Taking the supremum and the expectation, we deduce that

E

(
sup

0≤s≤t

∣∣Ȳ N (s) – Ȳ (s)
∣∣
)

≤
∫ t

0
CE

(
sup

0≤r≤s

∣∣Ȳ N (r) – Ȳ (r)
∣∣
)

ds

+ CT
∥
∥ZN – Z

∥
∥∞ + CT sup

r∈[0,T]
W1

(
νc

N (r),μc(r)
)

and, by Grönwall’s inequality,

E

(
sup

0≤s≤t

∣∣Ȳ N (s) – Ȳ (s)
∣∣
)

≤ CT
(∥∥ZN – Z

∥∥∞ + sup
r∈[0,T]

W1
(
νc

N (r),μc(r)
))

eCt .

In particular,

E
(∥∥Ȳ N – Ȳ

∥∥∞
) ≤ C

(∥∥ZN – Z
∥∥∞ + sup

r∈[0,T]
W1

(
νc

N (r),μc(r)
))

,

the constant C depending also on T . By (8.11) and (8.10), we obtain (8.16).
Step 5. (Limit problem) With (8.10), (8.11), and (8.16) at hand, we are in a position to

pass to the limit as N → +∞ in (8.7) and prove that μc is a distributional solution to

⎧
⎨

⎩
∂tμ

c + divx(v(η ∗2 μc)(r + K cp ∗ μp)μc) = 0,

μc(0) = μc
0,

(8.17)

i.e.,

0 =
∫

R2
ξ (0, x) dμc

0(x)

+
∫ T

0

∫

R2

(
∂tξ (t, x) + v

(
η ∗2 μc(t)(x)

)

× (
r(x) + K cp ∗ μp(t)(x)

) · ∇xξ (t, x)
)

dμc(t)(x) dt.

(8.18)

We divide the proof in substeps.
Substep 5.1. (Convergence of initial datum term) By the Lipschitz continuity of x 
→

ξ (0, x) and by Kantorovich’s duality, we have that

∣∣
∣∣
∣

∫

R2
ξ (0, x) d

(
1
N

N∑

n=1

δX0
n

– μc
0

)

(x)

∣∣
∣∣
∣
≤ CW1

(
1
N

N∑

n=1

δX0
n
,μc

0

)

.

By the assumption on the initial data, we have that W1( 1
N

∑N
n=1 δX0

n
,μc

0) → 0, hence

∫

R2
ξ (0, x) d

(
1
N

N∑

n=1

δX0
n

)

(x) →
∫

R2
ξ (0, x) dμc

0. (8.19)

Substep 5.2. (Convergence of time-derivative term) Since x 
→ ∂tξ (t, x) is Lipschitz con-
tinuous with a Lipschitz constant independent of t, by Kantorovich’s duality we have that

∣∣
∣∣

∫

R2
∂tξ (t, x) d

(
νc

N (t) – μc(t)
)
(x)

∣∣
∣∣ ≤ CW1

(
νc

N (t),μc(t)
)
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for every t. By (8.10) it follows that
∫
R2 ∂tξ (t, x) dνc

N (t)(x) → ∫
R2 ∂tξ (t, x) dμc(t)(x) as N →

+∞ uniformly in t, thus

∫ T

0

∫

R2
∂tξ (t, x) dνc

N (t)(x) dt →
∫ T

0

∫

R2
∂tξ (t, x) dμc(t)(x) dt. (8.20)

Substep 5.3. (Convergence of divergence term – I) Let us show that

∫ T

0

∫

R2
v
(
η ∗2 νc

N (t)(x)
)
r(x) · ∇xξ (t, x) dνc

N (t)(x) dt

→
∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
r(x) · ∇xξ (t, x) dμc(t)(x) dt as N → +∞.

(8.21)

We start by splitting

∣∣∣
∣

∫ T

0

∫

R2
v
(
η ∗2 νc

N (t)(x)
)
r(x) · ∇xξ (t, x) dνc

N (t)(x) dt

–
∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
r(x) · ∇xξ (t, x) dμc(t)(x) dt

∣
∣∣∣

≤
∫ T

0

∫

R2

∣
∣v

(
ηN ∗2 νc

N (t)(x)
)

– v
(
η ∗2 μc(t)(x)

)∣∣
∣
∣r(x)∇xξ (t, x)

∣
∣dνc

N (t)(x) dt

+
∣
∣∣∣

∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
r(x) · ∇xξ (t, x) d

(
νc

N (t) – μc(t)
)
(x) dt

∣
∣∣∣.

(8.22)

By the Lipschitz continuity of v, by (8.1), by the Lipschitz continuity of η, and by Kan-
torovich’s duality, we have that for every x ∈R

2 and t ∈ [0, T]

∣
∣v

(
ηN ∗2 νc

N (t)(x)
)

– v
(
η ∗2 μc(t)(x)

)∣∣

≤ C
∣
∣ηN ∗2 νc

N (t)(x) – η ∗2 μc(t)(x)
∣
∣

≤ C
∣
∣ηN ∗2 νc

N (t)(x) – η ∗2 νc
N (t)(x)

∣
∣ + C

∣
∣η ∗2 νc

N (t)(x) – η ∗2 μc(t)(x)
∣
∣

≤ C
∫

R2

∣∣ηN
(
x, x – x′) – η

(
x, x – x′)∣∣dνc

N (t)
(
x′)

+ C
∣
∣∣∣

∫

R2
η
(
x, x – x′)d

(
νc

N (t) – μc(t)
)(

x′)
∣
∣∣∣

≤ C
(

1
N – 1

+ sup
s∈[0,T]

W1
(
νc

N (s),μc(s)
)
)

,

(8.23)

where the constant C depends on v and η. Integrating in time and space and using the fact
that |r(x)| ≤ C(1 + |x|), thus it is bounded on the compact support of ξ , we obtain that

∫ T

0

∫

R2

∣∣v
(
ηN ∗2 νc

N (t)(x)
)

– v
(
η ∗2 μc(t)(x)

)∣∣∣∣r(x)∇xξ (t, x)
∣∣dνc

N (t)(x) dt

≤ C
(

1
N – 1

+ sup
s∈[0,T]

W1
(
νc

N (s),μc(s)
)
)

,
(8.24)

where the constant C depends on v, η, r, ξ , and T .



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 52 of 68

Moreover, the function x 
→ v(η ∗2 μc(t)(x))r(x) · ∇xξ (t, x) is Lipschitz continuous with
a Lipschitz constant independent of t and depending on v, η, r, and ξ . For x 
→ v(η ∗2

μc(t)(x)) satisfies the latter property since

∣∣v
(
η ∗2 μc(t)(x)

)
– v

(
η ∗2 μc(t)

(
x′))∣∣

≤ C
∣∣η ∗2 μc(t)(x) – η ∗2 μc(t)

(
x′)∣∣

≤ C
∫

R2

∣
∣η

(
x, x – x′′) – η

(
x′, x′ – x′′)∣∣dμc(t)

(
x′′) ≤ C

∣
∣x – x′∣∣,

(8.25)

where the constant C depends on v and η. As above, r is bounded on the support of
ξ . By the Lipschitz continuity of r and ∇xξ , we conclude that the product x 
→ v(η ∗2

μc(t)(x))r(x) · ∇xξ (t, x) is also Lipschitz continuous. Thus by Kantorovich’s duality we ob-
tain that for every t ∈ [0, T]

∣∣
∣∣

∫

R2
v
(
η ∗2 μc(t)(x)

)
r(x) · ∇xξ (t, x) d

(
νc

N (t) – μc(t)
)
(x)

∣∣
∣∣

≤ C sup
s∈[0,T]

W1
(
νc

N (s),μc(s)
)
,

(8.26)

where C depends on v, η, r, ξ . Combining (8.22), (8.24), and (8.26), by (8.10) it follows that

∣
∣∣
∣

∫ T

0

∫

R2
v
(
η ∗2 νc

N (t)(x)
)
r(x) · ∇xξ (t, x) dνc

N (t)(x) dt

–
∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
r(x) · ∇xξ (t, x) dμc(t)(x) dt

∣∣
∣∣

≤
∫ T

0

∫

R2
C

∣∣v
(
ηN ∗2 νc

N (t)(x)
)

– v
(
η ∗2 μc(t)(x)

)∣∣dνc
N (t)(x) dt

+
∣∣
∣∣

∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
r(x) · ∇xξ (t, x) dνc

N (t)(x) dt

–
∫ T

0

∫

R2
v
(
η ∗2 μc(t)

(
x′))r

(
x′) · ∇xξ

(
t, x′)dμc(t)

(
x′)dt

∣
∣∣
∣

≤ C
(

1
N – 1

+ sup
t∈[0,T]

W1
(
νc

N (t),μc(t)
)) → 0 as N → +∞,

where the constant C depends on v, η, r, ξ , and T .
Substep 5.4. (Convergence of divergence term – II) Let us prove that

∫ T

0

∫

R2
v
(
ηN ∗2 νc

N (t)(x)
)
K cp ∗ μ̄

p
N (t)(x) · ∇xξ (t, x) dνc

N (t)(x) dt

→
∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
K cp ∗ μp(t)(x) · ∇xξ (t, x) dμc(t)(x) dt

as N → +∞.

(8.27)



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 53 of 68

We start by splitting

∣∣
∣∣

∫ T

0

∫

R2
v
(
ηN ∗2 νc

N (t)(x)
)
K cp ∗ μ̄

p
N (t)(x) · ∇xξ (t, x) dνc

N (t)(x) dt

–
∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
K cp ∗ μp(t)(x) · ∇xξ (t, x) dμc(t)(x) dt

∣∣∣
∣

≤
∫ T

0

∫

R2

∣∣v
(
ηN ∗2 νc

N (t)(x)
)

– v
(
η ∗2 μc(t)(x)

)∣∣

× ∣
∣K cp ∗ μ̄

p
N (t)(x) · ∇xξ (t, x)

∣
∣dνc

N (t)(x) dt

+
∫ T

0

∫

R2

∣
∣v

(
η ∗2 μc(t)(x)

)∣∣

× ∣∣(K cp ∗ μ̄
p
N (t)(x) – K cp ∗ μp(t)(x)

) · ∇xξ (t, x)
∣∣dνc

N (t)(x) dt

+
∣∣
∣∣

∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
K cp ∗ μp(t)(x)

× ∇xξ (t, x) d
(
νc

N (t) – μc(t)
)
(x) dt

∣∣
∣∣.

(8.28)

For the first term on the right-hand side of (8.28), we argue analogously to (8.24) to obtain
that

∫ T

0

∫

R2

∣∣v
(
ηN ∗2 νc

N (t)(x)
)

– v
(
η ∗2 μc(t)(x)

)∣∣∣∣K cp ∗ μ̄
p
N (t)(x) · ∇xξ (t, x)

∣∣dνc
N (t)(x) dt

≤ C
(

1
N – 1

+ sup
s∈[0,T]

W1
(
νc

N (s),μc(s)
)
)

→ 0 as N → +∞,

where the constant C depends on v, η, K cp, ξ , and T . The only difference consists in the
fact that we have K cp ∗ μ̄

p
N (t)(x) in place of r(x). For this, we need to observe that

∣
∣K cp ∗ μ̄

p
N (t)(x)

∣
∣ =

∣∣
∣∣

∫

R2
K cp(x – y) dμ̄

p
N (t)(y)

∣∣
∣∣

≤
∫

R2

(∣∣K cp(0)
∣
∣ + C|x| + C|y|)dμ̄

p
N (t)(y)

≤ C
(
1 + |x|).

(8.29)

In the last inequality, we used the fact that, since μ̄
p
N (t) is the law of Ȳ N (t),

∫

R2
|y|dμ̄

p
N (t)(y) ≤ E

(∥∥Ȳ N∥
∥∞

) ≤ C,

where the boundedness follows from the convergence (8.16).
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For the second term on the right-hand side of (8.28), we start by observing that K cp is
Lipschitz, thus we have for every x ∈ R

2 and t ∈ [0, T]

∣∣K cp ∗ μ̄
p
N (t)(x) – K cp ∗ μp(t)(x)

∣∣

=
∣
∣∣∣

∫

R2
K cp(x – y) dμ̄

p
N (t)(y) –

∫

R2
K cp(x – y′)dμp(t)

(
y′)

∣
∣∣∣

=
∣
∣E

(
K cp(x – Ȳ N (t)

)
– K cp(x – Ȳ (t)

))∣∣ ≤ CE
(∣∣Ȳ N (t) – Ȳ (t)

∣
∣) ≤ E

(∥∥Ȳ N – Ȳ
∥
∥∞

)
.

By (8.16), it follows that

∫ T

0

∫

R2

∣∣v
(
η ∗2 μc(t)(x)

)∣∣∣∣K cp ∗ μ̄
p
N (t)(x) – K cp ∗ μp(t)(x)

∣∣∣∣∇xξ (t, x)
∣∣dνc

N (t)(x) dt

≤ CT‖v‖∞‖∇xξ‖∞E
(∥∥Ȳ N – Ȳ

∥∥∞
) → 0 as N → +∞.

For the third term on the right-hand side of (8.28), we observe that the function x 
→
v(η ∗2 μc(t)(x))K cp ∗ μp(t)(x) · ∇xξ (t, x) is Lipschitz continuous with a Lipschitz constant
independent of t and depending on v, η, K cp, μp, and ξ . This follows from (8.25), from the
fact that ξ is compactly supported, and the inequality

∣
∣K cp ∗ μp(t)(x)

∣
∣ ≤ C

(
1 + |x|)

obtained as in (8.29). By Kantorovich’s duality,

∣∣
∣∣

∫ T

0

∫

R2
v
(
η ∗2 μc(t)(x)

)
K cp ∗ μp(t)(x) · ∇xξ (t, x) d

(
νc

N (t) – μc(t)
)
(x) dt

∣∣
∣∣

≤ CW1
(
νc

N (t),μc(t)
) ≤ sup

s∈[0,T]
CW1

(
νc

N (s),μc(s)
) → 0 as N → +∞,

by (8.10).
Substep 5.5. (Conclusion) Combining (8.6), (8.19), (8.20), (8.21), and (8.27), we conclude

the proof of (8.18).
We prove the uniqueness of the solution in Theorem 8.2. �

Theorem 8.2 Under the assumptions of Theorem 8.1, the solution μc ∈ C0([0, T];P1(R2)),
(Ȳ (t))t∈[0,T], and Z = (Z1, . . . , ZL) to (8.4) is unique.

Proof The uniqueness of Z is direct as the ODE for Z is decoupled from the first two
equations.

Assume now that μc
i ∈ C0([0, T];P1(R2)), (Ȳi(t))t∈[0,T] for i = 1, 2 are solutions to (8.4)

with the same initial data, i.e.,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tμ
c
i + divx(v(η ∗2 μc

i )(r + K cp ∗ μ
p
i )μc

i ) = 0,

dȲi(t) = ( 1
L
∑L

�=1 Kpg(Ȳi(t) – Z�(t)) – Kpc ∗ μc
i (t)(Ȳi(t))) dt +

√
2κ dW (t),

dZ�

dt (t) = ( 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t)) dt,

μc
i (0) = μc

0,

Ȳi(0) = Ȳ 0 a.s., μ
p
i = Law(Ȳi),

Z�(0) = Z0
� , � = 1, . . . , L,

(8.30)
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where supp(μc
i (0)) = supp(μc

0) ⊂ B̄R. As customary in uniqueness proofs for evolutionary
problems, we will temporary neglect the assumption that the initial data Ȳ1(0) and Ȳ2(0)
are a.s. equal and μc

1(0) and μc
2(0) are equal in order to carry out a Grönwall-type argument

to deduce stability with respect to the initial data. The objective is to prove the following
pair of estimates:

E
(‖Ȳ1 – Ȳ2‖∞

) ≤ C
(
E

(∣∣Ȳ1(0) – Ȳ2(0)
∣∣) +

∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

)
, (8.31)

W1
(
μc

1(t),μc
2(t)

) ≤ C
(
W1

(
μc

1(0),μc
2(0)

)
+ E

(‖Ȳ1 – Ȳ2‖∞
))

. (8.32)

These two inequalities provide uniqueness when combined. Indeed, if Ȳ1(0) = Ȳ 0 = Ȳ2(0)
a.s. and μc

1(0) = μc
0 = μc

2(0), then (8.31) simply reads

E
(‖Ȳ1 – Ȳ2‖∞

) ≤ C
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds.

Substituting into (8.32), we get that

W1
(
μc

1(t),μc
2(t)

) ≤ C
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds,

which by Grönwall’s inequality yields W1(μc
1(t),μc

2(t)) = 0 for all t ∈ [0, T]. Then (8.31)
gives E(‖Ȳ1 – Ȳ2‖∞) = 0.

We divide the proof of (8.31)–(8.32) into several steps.
Step 1. (Estimate of E(‖Ȳ1 – Ȳ2‖∞)) By (8.30) we have that a.s. for 0 ≤ s ≤ t ≤ T

∣∣Ȳ1(s) – Ȳ2(s)
∣∣

≤ ∣
∣Ȳ1(0) – Ȳ2(0)

∣
∣ +

∫ s

0

∣
∣∣
∣∣

(
1
L

L∑

�=1

Kpg(Ȳ1(r) – Z�(r)
)

– Kpc ∗ μc
1(r)

(
Ȳ1(r)

)
)

–

(
1
L

L∑

�=1

Kpg(Ȳ2(r) – Z�(r)
)

– Kpc ∗ μc
2(r)

(
Ȳ2(r)

)
)∣

∣∣
∣∣
dr

≤ ∣∣Ȳ1(0) – Ȳ2(0)
∣∣ +

1
L

K∑

�=1

∫ s

0

∣∣Kpg(Ȳ1(r) – Z�(r)
)

– Kpg(Ȳ2(r) – Z�(r)
)∣∣dr

+
∫ s

0

∣
∣Kpc ∗ μc

1(r)
(
Ȳ1(r)

)
– Kpc ∗ μc

1(r)
(
Ȳ2(r)

)∣∣dr

+
∫ s

0

∣∣Kpc ∗ μc
1(r)

(
Ȳ2(r)

)
– Kpc ∗ μc

2(r)
(
Ȳ2(r)

)∣∣dr.

(8.33)

The first integrand in (8.33) is bounded using the Lipschitz continuity of Kpg by

∣∣Kpg(Ȳ1(r) – Z�(r)
)

– Kpg(Ȳ2(r) – Z�(r)
)∣∣ ≤ C

∣∣Ȳ1(r) – Ȳ2(r)
∣∣. (8.34)
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The second integrand in (8.33) is estimated using the Lipschitz continuity of Kpc as fol-
lows:

∣
∣Kpc ∗ μc

1(r)
(
Ȳ1(r)

)
– Kpc ∗ μc

1(r)
(
Ȳ2(r)

)∣∣

≤
∫

R2

∣∣Kpc(Ȳ1(r) – x
)

– Kpc(Ȳ2(r) – x
)∣∣dμc

1(r)(x) ≤ C
∣∣Ȳ1(r) – Ȳ2(r)

∣∣.
(8.35)

The third integrand in (8.33) is estimated using the Lipschitz continuity of Kpc by Kan-
torovich’s duality

∣
∣Kpc ∗ μc

1(r)
(
Ȳ2(r)

)
– Kpc ∗ μc

2(r)
(
Ȳ2(r)

)∣∣

=
∣∣∣
∣

∫

R2
Kpc(Ȳ2(r) – x

)
d
(
μc

1(r) – μc
2(r)

)
(x)

∣∣∣
∣

≤ CW1
(
μc

1(r),μc
2(r)

)
.

(8.36)

Combining (8.33)–(8.36), we infer that a.s. for 0 ≤ s ≤ t ≤ T

∣
∣Ȳ1(s) – Ȳ2(s)

∣
∣ ≤ ∣

∣Ȳ1(0) – Ȳ2(0)
∣
∣ +

∫ s

0

∣
∣Ȳ1(r) – Ȳ2(r)

∣
∣dr + C

∫ s

0
W1

(
μc

1(r),μc
2(r)

)
dr.

Taking the supremum in s and the expectation, we deduce that

E

(
sup

0≤s≤t

∣∣Ȳ1(s) – Ȳ2(s)
∣∣
)

≤ E
(∣∣Ȳ1(0) – Ȳ2(0)

∣∣) + C
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

+ C
∫ t

0
sup

0≤r≤s
E

(∣∣Ȳ1(r) – Ȳ2(r)
∣
∣)dr.

By Grönwall’s inequality,

E

(
sup

0≤s≤t

∣∣Ȳ1(s) – Ȳ2(s)
∣∣
)

≤
(
E

(∣∣Ȳ1(0) – Ȳ2(0)
∣∣) + C

∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

)
eCt

for t ∈ [0, T] and, in particular,

E
(‖Ȳ1 – Ȳ2‖∞

) ≤ C
(
E

(∣∣Ȳ1(0) – Ȳ2(0)
∣∣) +

∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

)

for t ∈ [0, T], where the constant C also depends on T .
Step 2. (Introducing the flow for the transport equation) Following an idea in [35, 36], we

prove uniqueness by regarding the solutions of the transport equation from a Lagrangian
point of view. Let us consider for every x ∈ supp(μc

i (0)) the flow

⎧
⎨

⎩
∂t�i(t, x) = v(η ∗2 μc

i (t)(�i(t, x)))(r(�i(t, x)) + K cp ∗ μ
p
i (t)(�i(t, x))),

�i(0, x) = x.
(8.37)

Then μc
i (t) = �i(t, ·)#μ

c
i (0), see [38, Theorem 5.34].
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Let us show that the flows �i are bounded. We notice that

∣∣K cp ∗ μ
p
i (t)(X)

∣∣ ≤
∫

R2

(∣∣K cp(0)
∣∣ +

∣∣K cp(X – y) – K cp(0)
∣∣)dμ

p
i (t)(y)

≤
∫

R2
C

(
1 + |X| + |y|)dμ

p
i (t)(y) ≤ C

(
1 + |X| + E

(‖Ȳi‖∞
))

≤ C
(
1 + |X|),

where we used bound (8.15). By (8.37) and by the estimate |r(X)| ≤ C(1 + |X|), we deduce
that for every x ∈ B̄R

∣∣�i(t, x)
∣∣ ≤ |x| +

∫ t

0
‖v‖∞

(∣∣r
(
�i(s, x)

)∣∣ +
∣∣K cp ∗ μ

p
i (s)

(
�i(s, x)

)∣∣)

≤ |x| +
∫ t

0
C

(
1 +

∣
∣�i(s, x)

∣
∣)ds = |x| + Ct +

∫ t

0
C

∣
∣�i(s, x)

∣
∣ds.

By Grönwall’s inequality and since x ∈ B̄R, we obtain that

∣
∣�i(t, x)

∣
∣ ≤ (|x| + Ct

)
eCt ≤ (R + CT)eCT ≤ C for t ∈ [0, T], (8.38)

where the constant C depends on ‖v‖∞, r, K cp, R, and T (in addition to the constant
in (8.15)).

In what follows we will show that

∣
∣�1(t, x) – �2

(
t, x′)∣∣

≤ C
∣
∣x – x′∣∣ + C

(∫ t

0
W1

(
μ

p
1(s),μp

2(s)
)

ds +
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

) (8.39)

for x, x′ ∈ B̄R and t ∈ [0, T].
We start by observing that

∣∣�1(t, x) – �2
(
t, x′)∣∣ ≤ ∣∣�1(t, x) – �2(t, x)

∣∣ +
∣∣�2(t, x) – �2

(
t, x′)∣∣ (8.40)

for every x, x′ ∈R
2 and t ∈ [0, T].

Step 3. (Estimate of |�1(t, x)–�2(t, x)|) We estimate the first term on the right-hand side
of (8.40) as follows:

∣∣�1(t, x) – �2(t, x)
∣∣

=
∣
∣∣
∣

∫ t

0
v
(
η ∗2 μc

1(s)
(
�1(s, x)

))(
r
(
�1(s, x)

)
+ K cp ∗ μ

p
1(s)

(
�1(s, x)

))
ds

–
∫ t

0
v
(
η ∗2 μc

2(s)
(
�2(s, x)

))(
r
(
�2(s, x)

)
+ K cp ∗ μ

p
2(s)

(
�2(s, x)

))
ds

∣∣
∣∣

≤
∫ t

0

∣∣v
(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣∣∣r
(
�1(s, x)

)∣∣ds

+
∫ t

0

∣
∣v

(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣ (8.41)
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× ∣∣K cp ∗ μ
p
1(s)

(
�1(s, x)

)∣∣ds

+
∫ t

0
‖v‖∞

∣∣r
(
�1(s, x)

)
– r

(
�2(s, x)

)∣∣ds

+
∫ t

0
‖v‖∞

∣
∣K cp ∗ μ

p
1(s)

(
�1(s, x)

)
– K cp ∗ μ

p
1(s)

(
�2(s, x)

)∣∣ds

+
∫ t

0
‖v‖∞

∣∣K cp ∗ μ
p
1(s)

(
�2(s, x)

)
– K cp ∗ μ

p
2(s)

(
�2(s, x)

)∣∣ds.

In the following substeps we estimate the five terms on the right-hand side of (8.41).
Substep 3.1. Let us estimate the first term on the right-hand side of (8.41). For x ∈

supp(μc
i (0)) and s ∈ [0, T], we split

∣
∣v

(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣

≤ ∣
∣v

(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

1(s)
(
�2(s, x)

))∣∣

+
∣
∣v

(
η ∗2 μc

1(s)
(
�2(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣.

(8.42)

We exploit the Lipschitz continuity of v and η to obtain that

∣∣v
(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

1(s)
(
�2(s, x)

))∣∣

≤ C
∣∣η ∗2 μc

1(s)
(
�1(s, x)

)
– η ∗2 μc

1(s)
(
�2(s, x)

)∣∣ ≤ ∣∣�1(s, x) – �2(s, x)
∣∣.

(8.43)

Moreover, we use the Lipschitz continuity of x′ 
→ η(�2(s, x),�2(s, x) – x′) and Kan-
torovich’s duality to deduce that

∣
∣v

(
η ∗2 μc

1(s)
(
�2(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣

≤ C
∣
∣η ∗2 μc

1(s)
(
�2(s, x)

)
– η ∗2 μc

2(s)
(
�2(s, x)

)∣∣

≤ C
∣∣
∣∣

∫

R2
η
(
�2(s, x),�2(s, x) – x′)d

(
μc

1(s) – μc
2(s)

)(
x′)

∣∣
∣∣

≤ CW1
(
μc

1(s),μc
2(s)

)
.

(8.44)

By (8.38) we have that for x ∈ B̄R and t ∈ [0, T]

∣∣r
(
�1(s, x)

)∣∣ ≤ C
(
1 +

∣∣�1(s, x)
∣∣) ≤ C. (8.45)

By (8.42)–(8.45) we get that for every x ∈ B̄R and t ∈ [0, T]

∫ t

0

∣∣v
(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣∣∣r
(
�1(s, x)

)∣∣ds

≤ C
∫ t

0

(∣∣�1(s, x) – �2(s, x)
∣
∣ + W1

(
μc

1(s),μc
2(s)

))
ds.

(8.46)
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Substep 3.2. Let us estimate the second term on the right-hand side of (8.41). By the
Lipschitz continuity of K cp, we observe that for x ∈ B̄R and s ∈ [0, T]

∣∣K cp ∗ μ
p
1(s)

(
�1(s, x)

)∣∣ ≤
∫

R2

∣∣K cp(�1(s, x) – y
)∣∣dμ

p
1(s)(y)

≤
∫

R2

(∣∣K cp(0)
∣
∣ + C

∣
∣�1(s, x)

∣
∣ + C|y|)dμ

p
1(s)(y)

≤ C
(
1 +

∣∣�1(s, x)
∣∣) ≤ C,

where we used (8.15) and (8.38). Then, as for (8.46), we have that

∫ t

0

∣
∣v

(
η ∗2 μc

1(s)
(
�1(s, x)

))
– v

(
η ∗2 μc

2(s)
(
�2(s, x)

))∣∣
∣
∣K cp ∗ μ

p
1(s)

(
�1(s, x)

)∣∣ds

≤ C
∫ t

0

(∣∣�1(s, x) – �2(s, x)
∣∣ + W1

(
μc

1(s),μc
2(s)

))
ds.

(8.47)

Substep 3.3. Let us estimate the third term on the right-hand side of (8.41). By the Lips-
chitz continuity of r, we get that

∫ t

0
‖v‖∞

∣
∣r

(
�1(s, x)

)
– r

(
�2(s, x)

)∣∣ds ≤ C
∫ t

0

∣
∣�1(s, x) – �2(s, x)

∣
∣ds. (8.48)

Substep 3.4. Let us estimate the fourth term on the right-hand side of (8.41). We exploit
the Lipschitz continuity of K cp to deduce that

∣∣K cp ∗ μ
p
1(s)

(
�1(s, x)

)
– K cp ∗ μ

p
1(s)

(
�2(s, x)

)∣∣

≤
∫

R2

∣
∣K cp(�1(s, x) – y

)
– K cp(�2(s, x) – y

)∣∣dμ
p
1(s) ≤ C

∣
∣�1(s, x) – �2(s, x)

∣
∣,

from which it follows that

∫ t

0
‖v‖∞

∣∣K cp ∗ μ
p
1(s)

(
�1(s, x)

)
– K cp ∗ μ

p
1(s)

(
�2(s, x)

)∣∣ds

≤ C
∫ t

0

∣
∣�1(s, x) – �2(s, x)

∣
∣ds.

(8.49)

Substep 3.5. Let us estimate the fifth term on the right-hand side of (8.41). By the Lips-
chitz continuity of y 
→ K cp(�2(s, x) – y), we have that

∣∣K cp ∗ μ
p
1(s)

(
�2(s, x)

)
– K cp ∗ μ

p
2(s)

(
�2(s, x)

)∣∣

=
∣
∣∣
∣

∫

R2
K cp(�2(s, x) – y

)
d
(
μ

p
1(s) – μ

p
2(s)

)
(y)

∣
∣∣
∣

≤ E
(∣∣K cp(�2(s, x) – Ȳ1(s)

)
– K cp(�2(s, x) – Ȳ2(s)

)∣∣)

≤ CE
(∣∣Ȳ1(s) – Ȳ2(s)

∣∣)

≤ CE
(‖Ȳ1 – Ȳ2‖∞

)
,
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from which we infer that

∫ t

0
‖v‖∞

∣
∣K cp ∗ μ

p
1(s)

(
�2(s, x)

)
– K cp ∗ μ

p
2(s)

(
�2(s, x)

)∣∣ds ≤ CE
(‖Ȳ1 – Ȳ2‖∞

)
, (8.50)

the constant C depending also on T .
Substep 3.6. Combining (8.41), (8.46), (8.47), (8.48), (8.49), and (8.50), we obtain that

∣∣�1(t, x) – �2(t, x)
∣∣ ≤ CE

(‖Ȳ1 – Ȳ2‖∞
)

+ C
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

+ C
∫ t

0

∣
∣�1(s, x) – �2(s, x)

∣
∣ds.

By Grönwall’s inequality this yields

∣
∣�1(t, x) – �2(t, x)

∣
∣ ≤ CeCt

(
E

(‖Ȳ1 – Ȳ2‖∞
)

+
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

)

for t ∈ [0, T] and, in particular,

∣∣�1(t, x) – �2(t, x)
∣∣ ≤ C

(
E

(‖Ȳ1 – Ȳ2‖∞
)

+
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

)
(8.51)

for t ∈ [0, T] with C depending also on T .
Step 4. (Estimate of |�2(t, x) – �2(t, x′)|) Let us estimate the second term on the right-

hand side of (8.40). By (8.37), we have that

∣∣�2(t, x) – �2
(
t, x′)∣∣ ≤ ∣∣x – x′∣∣

+
∣
∣∣
∣

∫ t

0
v
(
η ∗2 μc

2(t)
(
�2(s, x)

))(
r
(
�2(s, x)

)
+ K cp ∗ μ

p
2(s)

(
�2(s, x)

))
ds

–
∫ t

0
v
(
η ∗2 μc

2(t)
(
�2

(
s, x′)))(r

(
�2

(
s, x′)) + K cp ∗ μ

p
2(s)

(
�2

(
s, x′)))ds

∣∣
∣∣

≤ ∣∣x – x′∣∣ +
∫ t

0

∣∣v
(
η ∗2 μc

2(t)
(
�2(s, x)

))
– v

(
η ∗2 μc

2(t)
(
�2

(
s, x′)))∣∣∣∣r

(
�2(s, x)

)∣∣ds

+
∫ t

0

∣
∣v

(
η ∗2 μc

2(t)
(
�2(s, x)

))
– v

(
η ∗2 μc

2(t)
(
�2

(
s, x′)))∣∣∣∣K cp ∗ μ

p
2(s)

(
�2(s, x)

)∣∣ds

+
∫ t

0
‖v‖∞

∣∣r
(
�2(s, x)

)
– r

(
�2

(
s, x′))∣∣ds

+
∫ t

0
‖v‖∞

∣
∣K cp ∗ μ

p
2(s)

(
�2(s, x)

)
– K cp ∗ μ

p
2(s)

(
�2

(
s, x′))∣∣ds.

Reasoning similarly to Step 2 (i.e., exploiting the Lipschitz continuity of v, η, r, and K cp),
one shows that for x, x′ ∈ B̄R and t ∈ [0, T]

∣
∣�2(t, x) – �2

(
t, x′)∣∣ ≤ ∣

∣x – x′∣∣ + C
∫ t

0

∣
∣�2(s, x) – �2

(
s, x′)∣∣ds,
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which by Grönwall’s inequality yields |�2(t, x) – �2(t, x′)| ≤ |x – x′|eCt for x, x′ ∈ B̄R and
t ∈ [0, T] and, in particular,

∣∣�2(t, x) – �2
(
t, x′)∣∣ ≤ C

∣∣x – x′∣∣ (8.52)

for x, x′ ∈ B̄R, where the constant C depends also on T .
Putting together (8.40), (8.51), and (8.52), we conclude that (8.39) holds true.
Step 5. (Estimate of W1(μc

1(t),μc
2(t))) Let γ ∈ P(R2×R

2) be an optimal transport plan
satisfying π i

#γ = μc
i (0) and

W1
(
μc

1(0),μc
2(0)

)
=

∫

R2×R2

∣∣x – x′∣∣dγ
(
x, x′). (8.53)

We observe that since μc
1(0) and μc

2(0) have both supports contained in the closed ball B̄R,
the measure γ is also concentrated on a set contained in B̄R×B̄R, see [39, Theorem 5.10-
(ii)-(e)]. We consider the map (x, x′) 
→ (�1(t,π1(x, x′)),�2(t,π2(x, x′))) and the trans-
port plan (�1(t,π1),�2(t,π2))#γ , observing that it has marginals μc

1(t) and μc
2(t) since

we have that π i
#(�1(t,π1),�2(t,π2))#γ = �i(t, ·)#π

i
#γ = �i(t, ·)#μ

c
i (0) = μc

i (t). From (8.39)
and (8.53) it follows that

W1
(
μc

1(t),μc
2(t)

)

≤
∫

R2×R2

∣∣X – X ′∣∣d
((

�1
(
t,π1),�2

(
t,π2))

#γ
)(

X, X ′)

=
∫

B̄R×B̄R

∣∣�1(t, x) – �2
(
t, x′)∣∣dγ

(
x, x′)

≤ C
∫

B̄R×B̄R

∣∣x – x′∣∣dγ
(
x, x′) + CE

(‖Ȳ1 – Ȳ2‖∞
)

+ C
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds

= CW1
(
μc

1(0),μc
2(0)

)
+ CE

(‖Ȳ1 – Ȳ2‖∞
)

+ C
∫ t

0
W1

(
μc

1(s),μc
2(s)

)
ds.

By Grönwall’s inequality

W1
(
μc

1(t),μc
2(t)

)

≤ CeCt(W1
(
μc

1(0),μc
2(0)

)
+ E

(‖Ȳ1 – Ȳ2‖∞
))

≤ C
(
W1

(
μc

1(0),μc
2(0)

)
+ E

(‖Ȳ1 – Ȳ2‖∞
))

for t ∈ [0, T], where the constant C also depends on T . This concludes the proof of (8.32)
and of the theorem. �

Proposition 8.3 Under the assumptions of Theorem 8.1, the curve μc ∈ C0([0, T];P1(R2)),
the law μp ∈ P1(C0([0, T];R2)), and the curve Z = (Z1, . . . , ZL) from (8.4) are solutions to



Orlando Advances in Continuous and Discrete Models         (2023) 2023:24 Page 62 of 68

the ODE/PDE/ODE system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tμ
c + divx(v(η ∗2 μc)(r + K cp ∗ μp)μc) = 0,

∂tμ
p – κ�yμ

p + divy(( 1
L
∑L

�=1 Kpg(· – Z�(t)) – Kpc ∗ μc)μp) = 0,

dZ�(t) = ( 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t)) dt,

μc(0) = μc
0,

μp(0) = μ
p
0,

Z�(0) = Z0
� , � = 1, . . . , L,

(8.54)

where the PDEs are understood in the sense of distributions and μ
p
0 is the law of Ȳ 0.

Proof The proof consists in deriving the PDE solved by μp using Itô’s lemma and is ob-
tained as in the proof of Proposition 7.2 mutatis mutandis. �

Theorem 8.4 Under the assumptions of Theorem 8.1 and further assuming that:
• μ

p
0 ∈P2(R2);

• μ
p
0 has finite entropy, i.e., μp

0 = ρ
p
0 (x) dx for some function ρ

p
0 ∈ L1(R2) satisfying

∫
R2 ρ

p
0 (x) log(ρp

0 (x)) dx < +∞;
• μ

p
0 = Law(Ỹ 0);

the solution to (8.54) is unique.

Proof Step 1. Let us fix μc ∈ C0([0, T];P1(R2)) and Z = (Z1, . . . , ZL) ∈ C0([0, T];R2) solu-
tion to the ODE in (8.54) involving Z. We start by observing that the PDE

⎧
⎨

⎩
∂tμ

p – κ�yμ
p + divy(( 1

L
∑L

�=1 Kpg(· – Z�(t)) – Kpc ∗ μc)μp) = 0,

μp(0) = μ
p
0,

(8.55)

has at most one solution μp ∈P1(C0([0, T]; B̄R)), where B̄R is a closed ball of radius R > 0.
As done in [9, Theorem 3.7], we apply the result [10, Theorem 3.3]. To check all the
conditions, let us write the PDE using the same notation of [10]. Let A(t, y) = Id2 and
b(t, y) = 1

L
∑L

�=1 Kpg(y – Z�(t)) – Kpc ∗ μc(t)(y). Let us define the operator Lξ = ∂tξ +
tr(A∇2ξ ) + b · ∇ξ . If μp ∈P1(C0([0, T];R2)) solves (8.55), then it is a Radon measure22 on
(0, T)×R

2 solving L∗μp = 0, i.e.,
∫

(0,T)×R2 Lξ dμp = 0 for every ξ ∈ C∞
c ((0, T)×R

2). Triv-
ially, A is bounded and Lipschitz in the y variable. By the Lipschitz continuity of Kpg and
the boundedness of Z,

∣∣
∣∣
∣

1
L

L∑

�=1

Kpg(y – Z�(t)
)
∣∣
∣∣
∣
≤ C

1
L

L∑

�=1

∣
∣y – Z�(t)

∣
∣ ≤ C|y| + C‖Z‖∞ ≤ C

(
1 + |y|).

Moreover, by the Lipschitz continuity of Kpc,

∣
∣Kpc ∗ μc(t)(y)

∣
∣ ≤

∫

R2

∣
∣Kpc(y – x)

∣
∣dμc(t)(x) ≤

∫

R2
C

(|y| + |x|)dμc(t)(x) ≤ C
(
1 + |y|),

22Indeed, μp can be seen as a Radon measure on (0, T )×R
2 since the duality ξ ∈ C0

c ((0, T )×R
2) 
→ ∫ T

0

∫
R2 ξ (t, y)μp(t)(y)dt is

a linear and continuous operator, cf. [8, Corollary 1.55].
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where the constant C also depends on R. In conclusion,

∣∣b(t, y) · y
∣∣ ≤ C

(
1 + |y|2).

By the assumption μ
p
0 ∈P2(R2), we have that

∫
R2 |y|2 dμ

p
0(y) < +∞. Finally, the initial con-

dition is attained also in the sense

lim
t→0

∫

R2
ξ (y) dμp(t)(y) =

∫

R2
ξ (y) dμ

p
0(y)

since t ∈ [0, T] 
→ ∫
R2 ξ (y) dμp(t)(y) is a continuous function, cf. also Footnote 16.

By [10, Theorem 3.3] we conclude that there is at most one family (μp(t))t∈[0,T] that
solves (8.55).

Step 2. Let now μc
i ∈ C0([0, T];P1(R2)), μ

p
i ∈ P1(C0([0, T];R2)), i = 1, 2 (and Z =

(Z1, . . . , ZL) ∈ C0([0, T];R2)) be two solutions of (8.54), i.e., for i = 1, 2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tμ
c
i + divx(v(η ∗2 μc

i )(r + K cp ∗ μ
p
i )μc

i ) = 0,

∂tμ
p
i – κ�yμ

p
i + divy(( 1

L
∑L

�=1 Kpg(· – Z�(t)) – Kpc ∗ μc
i )μp

i ) = 0,

dZ�(t) = ( 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t)) dt,

μc
i (0) = μc

0,

μ
p
i (0) = μ

p
0,

Z�(0) = Z0
� , � = 1, . . . , L.

(8.56)

Let Ȳ 0 be an R
2-valued random variable with law μ

p
1(0) = μ

p
2(0) = μ

p
0, and let us consider

for i = 1, 2 the solutions to
⎧
⎨

⎩
dȲi(t) = ( 1

L
∑L

�=1 Kpg(Ȳi(t) – Z�(t)) – Kpc ∗ μc
i (t)(Ȳi(t))) dt +

√
2κ dW (t),

Ȳi(0) = Ȳ 0 a.s.,
(8.57)

which exist and are unique by Substep 4.1 in the proof of Theorem 8.1. Let us set μ̄
p
i =

Law(Ȳi). (Notice the temporary difference between μ̄
p
i and μ

p
i .) By deriving the PDE solved

by the law μ̄
p
i using Itô’s lemma (see the proof of Proposition 7.2), we obtain that for i = 1, 2

⎧
⎨

⎩
∂tμ̄

p
i – κ�yμ̄

p
i + divy(( 1

L
∑L

�=1 Kpg(· – Z�(t)) – Kpc ∗ μc
i )μ̄p

i ) = 0,

μ̄
p
i (0) = μ

p
0.

However, by (8.56) and by the uniqueness proven in Step 1, we deduce that μ̄
p
i = μ

p
i for

i = 1, 2. Combining (8.56) and (8.57), we obtain that, for i = 1, 2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tμ
c
i + divx(v(η ∗2 μc

i )(r + K cp ∗ μ
p
i )μc

i ) = 0,

dȲi(t) = ( 1
L
∑L

�=1 Kpg(Ȳi(t) – Z�(t)) – Kpc ∗ μc
i (t)(Ȳi(t))) dt +

√
2κ dW (t),

dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

μc
i (0) = μc

0,

Ȳi(0) = Ȳ 0 a.s., μ
p
i = Law(Ȳi),

Z�(0) = Z0
� , � = 1, . . . , L.
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By Theorem 8.2, the problem above has a unique solution, hence μc
1 = μc

2 and Ȳ1 = Ȳ2 a.s.,
yielding μ

p
1 = Law(Ȳ1) = Law(Ȳ2) = μ

p
2. This concludes the proof. �

Remark 8.5 Thanks to Theorem 8.2, if there exist absolutely continuous solutions
to (8.54), then μc and μp are a fortiori absolutely continuous by uniqueness. Under suitable
conditions, the solutions are, in fact, absolutely continuous.

If μc(0) = ρc
0 dx, then by [36, Theorem 2] the measure μc(t) is absolutely continuous for

all t ∈ [0, T], hence there exists a density ρc(t) ∈ L1(R2) such that μc(t) = ρc(t) dx. This is
a consequence of the Lagrangian representation of the solution to the nonlocal transport
equation.

By [10, Theorem 2.5] (see also [11, Corollary 3.9]) there exists a function ρp locally
Hölder continuous on (0, T)×R

2 such that μp = ρp(t, y) dt dy.
In conclusion,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
c + divx(v(η ∗2 ρc)(r + K cp ∗ ρp)ρc) = 0,

∂tρ
p – κ�yρ

p + divy(( 1
L
∑L

�=1 Kpg(· – Z�(t)) – Kpc ∗ ρc)ρp) = 0,
dZ�

dt (t) = 1
L
∑L

�′=1 Kgg(Z�(t) – Z�′ (t)) + u�(t),

ρc(0) = ρc
0,

ρp(t) dy ⇀ μ
p
0 as t → 0,

Z�(0) = Z0
� , � = 1, . . . , L.

8.2 Limit of optimal control problems as N → +∞
Let us consider the following cost functional for the limit problem obtained in (8.4). Let
J : L∞([0, T];U ) →R be defined for every u ∈ L∞([0, T];U ) by

J (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt, (8.58)

where μc ∈ C0([0, T];P1(R2)), (Ȳ (t))t∈[0,T] are obtained by Theorem 8.1 as the unique so-
lution to (8.4) and μp is the law of (Ȳ (t))t∈[0,T].

Theorem 8.6 Under the assumptions of Theorem 8.1, the sequence of functionals (JN )N≥1

�-converges to J as N → +∞ with respect to the weak* topology in L∞([0, T];U ).23

Proof Step 1. (Asymptotic lower bound). Let us fix a sequence of controls (uN )N≥1, uN ∈
L∞([0, T];U ) such that uN ∗

⇀ u weakly* in L∞([0, T];U ) as N → +∞. Let us show that

J (u) ≤ lim inf
N→+∞ JN

(
uN)

. (8.59)

On the one hand, by Definition (7.16), we have that

JN
(
uN)

:=
1
2

∫ T

0

∣∣uN (t)
∣∣2 dt +

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄N

n (t) – y
)

dμ̄
p
N (t)(y) dt,

23cf. Footnote 17.
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where X̄N = (X̄N
1 , . . . , X̄N

N ), (Ȳ N (t))t∈[0,T], and ZN = (ZN
1 , . . . , ZN

L ) are the unique strong solu-
tion to (8.2) and μ̄

p
N is the law of (Ȳ N (t))t∈[0,T]. On the other hand,

J (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt,

where μc ∈ C0([0, T];P1(R2)), (Ȳ (t))t∈[0,T] are obtained by the unique solution to (8.4) and
μp is the law of (Ȳ (t))t∈[0,T].

By the weak sequential lower semicontinuity of the L2-norm, we have that

∫ T

0

∣∣u(t)
∣∣2 dt ≤ lim inf

N→+∞

∫ T

0

∣∣uN (t)
∣∣2 dt.

Let us prove the convergence

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄N

n (t) – y
)

dμ̄
p
N (t)(y) dt

→
∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt,

(8.60)

as N → +∞. This will conclude the proof of (8.59).
Setting Ȟd(w) = Hd(–w) and considering the empirical measures in (8.3), we get that

1
N

N∑

n=1

Hd(X̄N
n (t) – y

)
= Ȟd ∗ νc

N (t)(y).

Moreover, by Fubini’s theorem

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) =

∫

R2
Ȟd ∗ μc(t)(y) dμp(t)(y).

These equations allow us to estimate

∣
∣∣
∣∣

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄N

n (t) – y
)

dμ̄
p
N (t)(y) dt

–
∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt

∣∣
∣∣
∣

=
∣∣
∣∣

∫ T

0

(∫

R2
Ȟd ∗ νc

N (t)(y) dμ̄
p
N (t)(y) –

∫

R2
Ȟd ∗ μc(t)(y) dμp(t)(y)

)
dt

∣∣
∣∣

≤
∫ T

0

∫

R2

∣∣Ȟd ∗ νc
N (t)(y) – Ȟd ∗ μc(t)(y)

∣∣dμ̄
p
N (t)(y) dt

+
∫ T

0

∣∣
∣∣

∫

R2
Ȟd ∗ μc(t)(y) dμ̄

p
N (t)(y) –

∫

R2
Ȟd ∗ μc(t)

(
y′)dμp(t)

(
y′)

∣∣
∣∣dt.

(8.61)
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We estimate the first term on the right-hand side of (8.61) using the Lipschitz continuity
of Ȟd(y – ·) and Kantorovich’s duality by

∣∣Ȟd ∗ νc
N (t)(y) – Ȟd ∗ μc(t)(y)

∣∣ =
∣
∣∣
∣

∫

R2
Ȟd(y – x) d

(
νc

N (t) – μc(t)
)
(x)

∣
∣∣
∣

≤ CW1
(
νc

N (t),μc(t)
) ≤ sup

s∈[0,T]
CW1

(
νc

N (s),μc(s)
)
.

For the second term on the right-hand side of (8.61), we observe that Ȟd ∗μc(t) is Lipschitz
continuous as

∣
∣Ȟd ∗ μc(t)(y) – Ȟd ∗ μc(t)

(
y′)∣∣ ≤

∫

R2

∣
∣Ȟd(y – x) – Ȟd(y′ – x

)∣∣dμc(t)(x) ≤ C
∣
∣y – y′∣∣.

Hence, since μ̄
p
N (t) is the law of Ȳ N (t) and μp(t) is the law of Ȳ (t),

∣∣
∣∣

∫

R2
Ȟd ∗ μc(t)(y) dμ̄

p
N (t)(y) –

∫

R2
Ȟd ∗ μc(t)

(
y′)dμp(t)

(
y′)

∣∣
∣∣

≤ E
(∣∣Ȟd ∗ μc(t)

(
Ȳ N (t)

)
– Ȟd ∗ μc(t)

(
Ȳ (t)

)∣∣)

≤ E
(∣∣Ȳ N (t) – Ȳ (t)

∣
∣) ≤ E

(∥∥Ȳ N – Ȳ
∥
∥∞

)
.

Combining the previous inequalities, (8.61) reads

∣∣
∣∣
∣

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄N

n (t) – y
)

dμ̄
p
N (t)(y) dt

–
∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt

∣∣∣
∣∣

≤ CT
(

sup
s∈[0,T]

CW1
(
νc

N (s),μc(s)
)

+ E
(∥∥Ȳ N – Ȳ

∥∥∞
)) → 0 as N → +∞,

where the convergence follows from Theorem 8.1. This proves (8.60).
Step 2. (Asymptotic upper bound). Let us fix u ∈ L∞([0, T];U ). For every N ≥ 1, let us

set uN = u. As in Step 1, we have that

JN
(
uN)

:=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

1
N

N∑

n=1

∫ T

0

∫

R2
Hd(X̄N

n (t) – y
)

dμ̄
p
N (t)(y) dt,

where X̄N = (X̄N
1 , . . . , X̄N

N ), (Ȳ N (t))t∈[0,T], and ZN = (ZN
1 , . . . , ZN

L ) are the unique strong so-
lution to (8.2) corresponding to the control uN = u and μ̄

p
N is the law of (Ȳ N (t))t∈[0,T].

Moreover,

J (u) :=
1
2

∫ T

0

∣∣u(t)
∣∣2 dt +

∫ T

0

∫

R2×R2
Hd(x – y) dμc(t)×μp(t)(x, y) dt,

where μc ∈ C0([0, T];P1(R2)), (Ȳ (t))t∈[0,T] are obtained by the unique solution to (8.4) and
μp is the law of (Ȳ (t))t∈[0,T]. Trivially, we have uN ∗

⇀ u, hence we deduce (8.60) once again
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and, in particular, the asymptotic upper bound

lim
N→+∞JN (u) = J (u),

concluding the proof. �

Proposition 8.7 Under the assumptions of Theorem 8.1, there exists an optimal control
u∗ ∈ L∞([0, T];U ), i.e.,

J
(
u∗) = min

u∈L∞([0,T];U )
J (u).

Proof The proof is completely analogous to the proof of Proposition 7.4, as it is a general
result about �-convergence. �
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