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Abstract
In this paper, we propose a high-order nonlinear algorithm based on a finite
difference method modification to the regularized long wave equation and the
Benjamin–Bona–Mahony–Burgers equation subject to the homogeneous boundary.
The consequence system of nonlinear equations typically trades with high
computation burden. This dilemma can be overcome by establishing a fast numerical
algorithm procedure without a reduction of numerical accuracy. The proposed
algorithm forms a linear system with constant coefficient matrix at each time step
and produces numerical solutions, which remarkably gains many computational
advantages. In terms of analysis, a priori estimation for the numerical solution is
derived to obtain the convergence and stability analysis. Additionally, the algorithm is
globally mass preserving to avoid nonphysical behavior. Two benchmarks, including a
single solitary wave to both equations, are given to validate the applicability and
accuracy of the proposed method. Numerical results are obtained and compared to
other approaches available in the literature. From the comparisons it is clear that the
proposed approach produces accurate and precise results at low computational cost.
Besides, the proposed scheme is applied to study the effect of the viscous term on a
single solitary wave. It is shown that the viscous term results in the amplitude and
width of the initial condition but not in its velocities in the case of a single solitary
wave. As a consequence, theoretical and numerical findings provide a new area to
investigate and expand the high-order algorithm for the family of wave equations.

Keywords: Finite difference method; Compact difference operator; RLW equation;
BBM–Burgers equation; Convergence; Stability

1 Introduction
The Benjamin–Bona–Mahony (BBM) or regularized long-wave (RLW) equation

ut – μuxxt + ux + γ uux = 0 (1)

where μ is a positive constant and γ is a nonzero real constant, is one of the intensive
study mathematical models for the nonlinear dispersive wave, which was formulated by
Peregrine [1, 2]. The RLW equation is an improvement of the Korteweg-de Vries (KdV)
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equation [3, 4] for modeling long surface gravity waves of small amplitude to study nonlin-
ear dispersion. Based on large empirical applications on ion-acoustic and magnetohydro-
dynamics waves in plasma, longitudinal dispersive waves in elastic rods, pressure waves
in liquid–gas bubble mixtures, and rotating flow down a tube, many scholars have tech-
nically and numerically obtained the mathematical principle for the RLW equation. The
existence and uniqueness of a solution to the RLW equations were proved by Bona and
Bryant [5]. Undular bores are usually characterized as the transition between two separate
states when studying them. For example, the occurrence of internal undular bores in the
density-stratified waters of the coastal ocean was studied in [6, 7], and the waveforms in
the cloud formation in the atmospheric boundary were given by Rottman and Grimshaw
[8]. Further, many publications [9–20] have developed numerical solutions to the RLW
and related equations.

Over several years, there is a growing interest in nonlinear wave phenomena comput-
ing. The Tsunami wave, which has a huge amplitude and a long wavelength, is a study
example. Shallow-water and equatorial wave considerations are commonly studied in
oceanography and atmospheric science. Furthermore, equatorial waves are of particular
importance because they play an important role in the evolution of many weather and cli-
mate phenomena, e.g., tropical cyclone genesis and Walker circulations. Nonlinear par-
tial differential equations govern a variety of shallow water wave phenomena, which are
not only the KdV and RLW equations, but also the Burgers equation. To fully represent
real-world conditions, it is essential to consider dissipative processes when defining the
propagation of small-amplitude long waves in a nonlinear dispersive medium. The pro-
cesses that cause wave degradation are mostly complex and little known. The Benjamin–
Bona–Mahony–Burgers (BBM–Burgers) equation [21] has gained popularity because of
the need to add dissipation to nonlinearity and dispersion in modeling unidirectional
propagation of planar waves. The BBM–Burgers equation is

ut – μuxxt – αuxx + ux + γ uux = 0, (2)

where μ and α are positive constants, and γ is a nonzero real constant. Also, the BBM–
Burgers equation has been widely studied by many researchers. In [22] the traveling
wave solutions of the BBM–Burgers equation were obtained by using the ( G′

G )-expansion
method. The Lie classical symmetries and conservative laws for a family of the BBM–
Burgers equation were derived in [23]. Bell-shaped and kink-shaped solutions of the gen-
eralized BBM-Burgers were found by the improved system technique [24]. Much effort
has been devoted to the development of computational methods for the BBM–Burgers
equation, including the finite difference methods (FDMs) [25–30], Adomian’s decompo-
sition methods [31], meshfree methods [32, 33], collocation method [34], B-spline quasi-
interpolation [35], and Galerkin cubic B-spline finite element method [36].

Due to the number of publications on numerical studies on both RLW and BBM–
Burgers equations, much effort has been made to develop effective FDMs [17–19, 25–30].
Most of the previous experiments, however, have the second order of precision in time
and space. In the literature the development of high-order schemes is very scarce. To the
best of our knowledge, there is only on work providing a fourth-order FDM based on
the Richardson extrapolation technique [30]. In this paper, we aim to fill this gap by con-
structing a high-order FDM combining the compact difference operators and the Richard-
son extrapolation technique. Consider the following initial boundary value problem of the
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BBM–Burgers equation (2) under the physical boundary conditions

u(x, t) → 0 and ∂n
x u(x, t) → 0 as x → ±∞, t ∈ [0, T], n ∈N+, (3)

with the initial condition

u(x, 0) = u0(x), x ∈ [xL, xR], (4)

where u0 is a known smooth function. It is simple to demonstrate that problem (2)–(4)
obeys the mass-conservative rule

I1(t) =
∫ xR

xL

u(x, t) dx =
∫ xR

xL

u(x, 0) dx = I1(0) (5)

in asymptotic boundary conditions.
The remaining part of the paper is structured as follows: The novel complex implicit

finite difference scheme (FDS) for the BBM–Burgers equation (2) with initial and bound-
ary conditions (3)–(4) is described in the following section. Section 3 contains brief pre-
liminary results and the proof of the mass-preserving property of the new scheme. The
convergence and stability of the proposed scheme is also established. The iterative algo-
rithm for solving nonlinear implicit schemes is defined in this analysis by the constant
pentadiagonal matrix. Section 4 presents several numerical findings to help and verify the
theoretical study, as well as to demonstrate the success of the proposed scheme. Further,
the effect of a linear viscous term and long-time behavior are also investigated. Finally, in
the final segment, we conclude our paper with a brief discussion.

2 A novel finite difference scheme
In this part, we present a finite difference method for solving the initial boundary value
problem (2)–(4). We begin by introducing the solution domain and its grid to construct
our numerical scheme. Let [xL, xR] denote the computational domain discretized by the
sequence {xi}M

i=0 ⊂ [xL, xR], where xi = xL + ih with h = (xR – xL)/M a uniform step size for
a positive fixed integer M. For the time domain, we discretized it uniformly by tn = nτ .
We use the notation un

i to represent the approximate value of a function u at a grid point
(xL + ih, nτ ). Under hypothesis (3), it is logical to let u–1 = u0 = u1 = 0 and uM–1 = uM =
uM+1 = 0. Then we denote

Zh,0 =
{

u = (ui)|u–1 = u0 = u1 = uM–1 = uM = uM+1 = 0
}

.

For clarity, we introduce the following notations:

δt
(
un

i
)

=
un+1

i – un
i

τ
, δt̄

(
un

i
)

=
un

i – un–1
i

τ
, δ

(2)
tt̄

(
un

i
)

=
un+1

i – 2un
i + un–1

i
τ 2 ,

δx
(
un

i
)

=
un

i+1 – un
i

h
, δx̄

(
un

i
)

=
un

i – un
i–1

h
, δx̂

(
un

i
)

=
un

i+1 – un
i–1

2h
,

δẍ
(
un

i
)

=
un

i+2 – un
i–2

4h
, δ

(2)
xx̄

(
un

i
)

= δxδx̄
(
un

i
)
, δ

(2)
x̂x̂

(
un

i
)

= δx̂δx̂
(
un

i
)
,

δ
(4)
xxx̄x̄

(
un

i
)

= δxδxδx̄δx̄
(
un

i
)
,
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and

Ax
(
un

i
)

=
(

1 +
h2

6
δ

(2)
xx̄

)
un

i ,

At
(
un

i
)

=
(

1 +
τ 2

6
δ

(2)
tt̄

)
un

i ,

Lx
(
un

i
)

=
(

1 –
h2

12
δ

(2)
xx̄

)
un

i .

The discrete L2 inner product and corresponding discrete L2-norm for functions u, v ∈
Zh,0 can be specified by

〈u, v〉 = h
M–1∑
i=1

uivi and ‖u‖ = 〈u, u〉 1
2 ,

respectively, and the L∞-norm is specified by ‖u‖∞ = max1≤i≤M |ui|.
Now we are ready to design a higher-order FDM for the BBM–Burgers equation (2).

The key idea is to implement an efficient high-order scheme for the RLW equation (1) and
apply the Richardson extrapolation technique for the viscous term. According to Taylor’s
expansion, we recall the following compact difference operators [37, 38]:

ux|(xi ,tn) = A–1
x δx̂

(
un

i
)

+ O
(
h4),

ut|(xi ,tn) = A–1
t δt̂

(
un

i
)

+ O
(
τ 4).

In addition, by the Richardson extrapolation we have

uxx|(xi ,tn) = δ
(2)
xx̄

(
un

i
)

–
h2

12
uxxxx|(xi ,tn) + O

(
h4)

= δ
(2)
xx̄

(
un

i
)

–
h2

12
δ

(4)
xxx̄x̄

(
un

i
)

+ O
(
h4)

= Lxδ
(2)
xx̄

(
un

i
)

+ O
(
h4). (6)

After discretizing equation (1) in time and space, we obtain the following definition of an
FDS and an algorithm for equation (1):

A–1
t δt̂

(
un

i
)

– μA–1
t Lxδ

(2)
xx̄ δt̂

(
un

i
)

+ A–1
x δx̂

(
un

i
)

+
γ

2
A–1

x δx̂
[(

un
i
)2] = 0.

Applying the above approximation with the operator AxAt and noticing that

AxLxδ
(2)
xx̄ δt̂

(
un

i
)

= Axδ
(2)
xx̄ δt̂

(
un

i
)

–
h2

12
δ

(4)
xxx̄x̄δt̂

(
un

i
)

+ O
(
τ 4 + h4),

we obtain the following detailed numerical scheme for the RLW equation:

Axδt̂
(
un

i
)

– μAxδ
(2)
xx̄ δt̂

(
un

i
)

+ μ
h2

12
δ

(4)
xxx̄x̄δt̂

(
un

i
)

+ Atδx̂
(
un

i
)

+
γ

2
Atδx̂

[(
un

i
)2] = 0. (7)
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Finally, we use the Crank–Nicolson/Adams–Bashforth technique to approximate the vis-
cous term –αuxx described in equation (6) as

uxx|(xi ,tn) = Lxδ
(2)
xx̄

(
ūn

i
)

+ O
(
τ 2 + h4).

Then, for the initial boundary value problem (2)–(4), we suggest the three-level difference
scheme

Axδt̂
(
un

i
)

– μAxδ
(2)
xx̄ δt̂

(
un

i
)

+ μ
h2

12
δ

(4)
xxx̄x̄δt̂

(
un

i
)

– αLxδ
(2)
xx̄ ūn

i + Atδx̂
(
un

i
)

+
γ

2
Atδx̂

[(
un

i
)2] = 0 (8)

with the initial condition

u0
i = u0(xi), 0 ≤ i ≤ M, (9)

and the boundary conditions

un
0 = un

M = 0, δx̂
(
un

0
)

= δx̂
(
un

M
)

= 0, δ
(2)
xx̄

(
un

0
)

= δ
(2)
xx̄

(
un

M
)

= 0, 1 ≤ n ≤ N . (10)

It is worth mentioning that by using the Taylor expansion we can see from the above re-
formulations that scheme (7) achieves the truncation error of order O(τ 2 + h4) if the es-
timated function is sufficiently smooth, whereas the truncation error becomes O(τ 4 + h4)
when α = 0. Because the algorithm employs a three-level estimation of time together with
the initial conditions u0, we need u1 as known conditions. As a result, we first choose a
two-level scheme with a second-order accuracy process. For this reason, we can determine
u1 based on the fourth-order two-level scheme [30].

3 Main results
In this section, we address the convergence and stability for our numerical scheme. We will
denote by C as a generic constant independent of step sizes h and τ . To demonstrate the
boundedness, convergence, and stability of our numerical solutions, we need the following
lemmas. Lemma 1 can be directly determined by summation by parts. So the proofs are
omitted.

Lemma 1 Let w, v ∈ Zh,0 be mesh functions. Then we have
1. 〈δx̂w, v〉 = –〈w, δx̂v〉;
2. 〈δ(2)

xx̄ w, v〉 = 〈w, δ(2)
xx̄ v〉 = –〈δxw, δxv〉;

3. 〈δ(4)
xxx̄x̄w, v〉 = 〈w, δ(4)

xxx̄x̄v〉 = –〈δ(2)
xx̄ w, δ(2)

xx̄ v〉.
Moreover, we have

〈δx̂w, w〉 = 0,
〈
δ

(2)
xx̄ w, w

〉
= –‖δxw‖2, and

〈
δ

(4)
xxx̄x̄w, w

〉
=

∥∥δ
(2)
xx̄ w

∥∥2.

Lemma 2 Let u ∈ Zh,0 be a mesh function. Then we have
(i) 〈Axu, u〉 = ‖u‖2 – h2

6 ‖δxu‖2;
(ii) 〈Axδ

(2)
xx̄ u, u〉 = –‖δxu‖2 + h2

6 ‖δ(2)
xx̄ u‖2;

(iii) 〈Lxδ
(2)
xx̄ u, u〉 = –‖δxu‖2 – h2

12 ‖δ(2)
xx̄ u‖2.
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Proof Let u ∈ Zh,0. By Lemma 1 we have

〈Axu, u〉 = ‖u‖2 +
h2

6
〈
δ

(2)
xx̄ u, u

〉
= –‖u‖2 –

h2

6
‖δxu‖2.

Similarly, the rest can be obtained applying Lemma 1. �

Lemma 3 Let u, v ∈ Zh,0 be mesh functions. Then, for any ε1, ε2 ∈ R
+, we have the following

estimates:
(i) 〈Axu, v〉 ≤ ε1

2 ‖u‖2 + 1
2ε1

‖v‖2 + ε2h2

12 ‖δxu‖2 + h2

12ε2
‖δxv‖2;

(ii) 〈Axδ
(2)
xx̄ u, v〉 ≤ ε1

2 ‖δxu‖2 + 1
2ε1

‖δxv‖2 + ε2h2

12 ‖δ(2)
xx̄ u‖2 + h2

12ε2
‖δ(2)

xx̄ v‖2;

(iii) 〈Lxδ
(2)
xx̄ u, v〉 ≤ ε1

2 ‖δxu‖2 + 1
2ε1

‖δxv‖2 + ε2h2

24 ‖δ(2)
xx̄ u‖2 + h2

24ε2
‖δ(2)

xx̄ v‖2.

Proof Let u ∈ Zh,0 and ε1, ε2 ∈R
+. By applying Lemma 1 and Young’s inequality we have

〈Axu, v〉 = 〈u, v〉 –
h2

6
〈δxu, δxv〉

≤ ‖u‖‖v‖ +
h2

6
‖δxu‖‖δxv‖

≤ ε1

2
‖u‖2 +

1
2ε1

‖v‖2 +
ε2h2

12
‖δxu‖2 +

h2

12ε2
‖δxv‖2.

Likewise, the rest can be obtained applying Lemma 1 and Young’s inequality. �

Lemma 4 (See [39]) Let u ∈ Zh,0 be a mesh function. Then we have

‖δxu‖ ≤ 4
h2 ‖u‖2 and

∥∥δ
(2)
xx̄ u

∥∥ ≤ 4
h2 ‖δxu‖2.

Lemma 5 (Discrete Sobolev’s inequality [40]) There exist two constants C1 and C2 such
that

∥∥un∥∥∞ ≤ C1
∥∥un∥∥ + C2

∥∥un
x
∥∥.

Lemma 6 (Discrete Gronwall inequality [40]) Suppose that ω(k) and ρ(k) are nonnegative
functions and ρ(k) is a nondecreasing function. If C > 0 and

ω(k) ≤ ρ(k) + Cτ

k–1∑
l=0

ω(l) ∀k,

then

ω(k) ≤ ρ(k)eCτk ∀k.

We first observe that our numerical algorithm preserves the mass quantity.

Theorem 7 Suppose that un ∈ Zh,0. Then scheme (8)–(10) is conservative in the sense that

In
1,1 =

h
2

M–1∑
i=1

(
un+1

i + un
i
)

= In–1
1,1 = · · · = I0

1,1. (11)
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Proof Multiplying equation (8) by h and summing up for i from 0 to M – 1, we get

h
M–1∑
i=1

Axδt̂
(
un

i
)

– μh
M–1∑
i=1

Axδ
(2)
xx̄ δt̂

(
un

i
)

+ μ
h2

12
h

M–1∑
i=1

δ
(4)
xxx̄x̄δt̂

(
un

i
)

– αh
M–1∑
i=1

Lxδ
(2)
xx̄

(
ūn

i
)

+ h
M–1∑
i=1

Atδx̂
(
un

i
)

+
γ

2
h

M–1∑
i=1

Atδx̂
[(

un
i
)2] = 0.

Considering the boundary conditions and un ∈ Zh,0, we observe that

h
M–1∑
i=1

Axδt̂
(
un

i
)

= h
M–1∑
i=1

δt̂
(
un

i
)

+
h3

6

M–1∑
i=1

δ
(2)
xx̄ δt̂

(
un

i
)

= h
M–1∑
i=1

δt̂
(
un

i
)
.

Similarly, the other terms vanish by applying the boundary conditions, which yield

h
M–1∑
i=1

δt̂
(
un

i
)

= h
M–1∑
i=1

un+1
i – un–1

i
2τ

= 0,

which gives equation (11), completing the proof. �

The next theorem shows that our numerical solution is bounded for any given initial
function u0.

Theorem 8 (Boundedness) Suppose un ∈ Zh,0 and u0 ∈ C2[xL, xR]. If τ and h are suffi-
ciently small, then the solution un satisfies

∥∥un∥∥ ≤ C,
∥∥δxun∥∥ ≤ C, and

∥∥un∥∥∞ ≤ C

for n = 1, 2, . . . , N .

Proof To prove the boundedness, we use the mathematical induction by assuming that

∥∥uk∥∥ ≤ C,
∥∥δxuk∥∥ ≤ C, and

∥∥uk∥∥∞ ≤ C (12)

for k = 1, 2, . . . , n. Taking the inner product in equation (8) with 2ūn (i.e., un+1 + un–1), we
get

〈
Axδt̂un, 2ūn〉 – μ

〈
Axδ

(2)
xx̄ δt̂un, 2ūn〉 +

μh2

12
〈
δ

(4)
xxx̄x̄δt̂un, 2ūn〉 – α

〈
Lxδ

(2)
xx̄ ūn, 2ūn〉

+
〈
Atδx̂un, 2ūn〉 +

γ

2
〈
Atδx̂

[(
un)2], 2ūn〉 = 0. (13)

According to Lemmas 1 and 2, we have

1
2τ

(∥∥un+1∥∥2 –
∥∥un–1∥∥2) +

s1

2τ

(∥∥δxun+1∥∥2 –
∥∥δxun–1∥∥2)
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–
μh2

24τ

(∥∥δ
(2)
xx̄ un+1∥∥2 –

∥∥δ
(2)
xx̄ un–1∥∥2)

+ α
∥∥δxūn∥∥2 +

αh2

12
∥∥δ

(2)
xx̄ ūn∥∥2 +

〈
Atδx̂un, 2ūn〉 +

γ

2
〈
Atδx̂

[(
un)2], 2ūn〉 = 0, (14)

where s1 = μ – h2

6 . By Lemma 1, the Cauchy–Schwarz inequality, and assumption (12) we
have

〈
Atδx̂un, 2ūn〉 =

〈
δx̂un, 2ūn〉 +

τ 2

6
〈
δ

(2)
tt̄ δx̂un, 2ūn〉

≤ ∥∥δx̂un∥∥2 +
∥∥ūn∥∥2 +

1
6
(∥∥δx̂un+1∥∥2 + 2

∥∥δx̂un∥∥2 +
∥∥δx̂un–1∥∥2 + 3

∥∥ūn∥∥2)

=
1
6
∥∥δx̂un+1∥∥2 +

4
3
∥∥δx̂un∥∥2 +

1
6
∥∥δx̂un–1∥∥2 +

3
2
∥∥ūn∥∥2 (15)

and

〈
Atδx̂

[(
un)2], 2ūn〉 =

〈
δx̂

[(
un)2], 2ūn〉 +

τ 2

6
〈
δ

(2)
tt̄ δx̂

[(
un)2], 2ūn〉

= –
〈[(

un)2], 2δx̂ūn〉 –
τ 2

6
〈
δ

(2)
tt̄

[(
un)2], 2δx̂ūn〉

= –2h
M–1∑
i=1

[(
un

i
)2]

δx̂
(
ūn

i
)

–
1
3

M–1∑
i=1

[(
un+1

i
)2 – 2

(
un

i
)2 +

(
un–1

i
)2]

δx̂
(
ūn

i
)

≤ C
(∥∥un–1∥∥2 +

∥∥un∥∥2 +
∥∥un+1∥∥2 +

∥∥δx̂ūn∥∥2). (16)

Since un ∈ Zh,0, applying the Cauchy–Schwarz inequality, we have

∥∥δx̂un∥∥2 =
1
4
∥∥δxun + δx̄un∥∥2 ≤ 1

2
(∥∥δxun∥∥2 +

∥∥δx̄un∥∥2) =
∥∥δxun∥∥2 (17)

and

∥∥ūn∥∥2 =
1
4
∥∥un+1 + un–1∥∥2 ≤ 1

2
(∥∥un+1∥∥2 +

∥∥un–1∥∥2). (18)

Substituting equations (15)–(18) into equation (14), we get

(∥∥un+1∥∥2 –
∥∥un–1∥∥2) + s1

(∥∥δxun+1∥∥2 –
∥∥δxun–1∥∥2) –

μh2

12
(∥∥δ

(2)
xx̄ un+1∥∥2 –

∥∥δ
(2)
xx̄ un–1∥∥2)

≤ Cτ
(∥∥un–1∥∥2 +

∥∥un∥∥2 +
∥∥un+1∥∥2 +

∥∥δxun–1∥∥2 +
∥∥δxun∥∥2 +

∥∥δxun+1∥∥2). (19)

If h is sufficiently small such that 4μ – h2 > 0, then by Lemma 4 then the above equation
can be estimated as

(∥∥un+1∥∥2 –
∥∥un–1∥∥2) +

(∥∥δxun+1∥∥2 –
∥∥δxun–1∥∥2)

≤ Cτ
(∥∥un–1∥∥2 +

∥∥un∥∥2 +
∥∥un+1∥∥2 +

∥∥δxun–1∥∥2 +
∥∥δxun∥∥2 +

∥∥δxun+1∥∥2).

Here we let

Bn ≡ (∥∥un∥∥2 +
∥∥un–1∥∥2) +

(∥∥δxun∥∥2 +
∥∥δxun–1∥∥2).
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Then equation (19) can be rewritten as

Bn+1 – Bn ≤ τC
(
Bn+1 + Bn).

If τ is sufficiently small, such that τ ≤ k–2
kC and k > 2, then

Bn+1 ≤ (1 + τC)
(1 – τC)

Bn ≤ (1 + τkC)Bn ≤ exp(kCT)B0.

Hence

∥∥un+1∥∥2 ≤ C and
∥∥δxun+1∥∥2 ≤ C.

We complete the proof by using Lemma 5 to obtain ‖un+1‖∞ ≤ C. �

In this section, we show that scheme (8)–(10) is solvable. This ensures that our numerical
solution exists and is unique. We use the Browder fixed point to demonstrate the existence
of a solution; the proof will be based on the theorem. Here we recall the Browder fixed
point theorem.

Lemma 9 (Browder fixed point theorem) Let H be a finite-dimensional inner product
space. Suppose that g : H → H is continuous and there exists ε > 0 such that 〈g(v), v〉 > 0
for all x ∈ H with ‖x‖ = ε. Then there exists x∗ ∈ H such that g(x∗) = 0 and ‖x∗‖ ≤ ε.

Theorem 10 If τ is sufficiently small, then scheme (8)–(10) is solvable.

Proof To prove the theorem, we proceed by mathematical induction. We assume that
u0, u1, . . . , un satisfy scheme (8)–(10) for 1 ≤ n ≤ N – 1. Indeed, u1 can be computed by
an available fourth-order method as we mentioned before. Next, we prove that there ex-
ists un+1 satisfying equations (8)–(10). Define the operator g : Zh,0 → Zh,0 as follows:

g(v) = Ax
(
v – un–1) – μAxδ

(2)
xx̄

(
v – un–1) + μ

h2

12
δ

(4)
xxx̄x̄

(
v – un–1)

– ταLxδ
(2)
xx̄

(
v + un–1) + 2τδx̂

(
un) +

τ

3
(
v – 2un + un–1)

+ τγ δx̂
[(

un)2] + γ
τ

6
δx̂

[
(v)2 – 2

(
un)2 +

(
un–1)2]. (20)

To apply the Browder fixed point theorem, we need to show that there exists ε > 0 such
that 〈g(v), v〉 > 0 for all v ∈ Zh,0 with ‖v‖ = ε. Let us consider

〈
g(v), v

〉
= ‖v‖2 + s1‖δxv‖2 – μ

h2

12
∥∥δ

(2)
xx̄ v

∥∥2 + τα

(
‖δxv‖2 +

h2

12
∥∥δ

(2)
xx̄ v

∥∥2
)

+
τ

3
‖v‖2 + γ

τ

6
〈
δx̂[v]2, v

〉
–

〈
Axun–1, v

〉
– μ

〈
Axδ

(2)
xx̄ un–1, v

〉
+ μ

h2

12
〈
δ

(4)
xxx̄x̄un–1, v

〉

– τα
〈
Lxδ

(2)
xx̄ un–1, v

〉
+

τ

3
(
4
〈
δx̂un, v

〉
+

〈
δx̂un–1, v

〉)

+ γ
τ

6
(
4
〈
δx̂

[
un]2, v

〉
+

〈
δx̂

[
un–1]2, v

〉)
, (21)
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where we use Lemmas 1 and 2. We first estimate the term τ
6 〈δx̂[v]2, v〉:

τ

6
〈
δx̂[v]2, v

〉
= –

hτ

6

M∑
i=1

(vi)2δx̂(vi) ≤ τ

12
‖v‖4

4 +
τ

12
‖δxv‖2, (22)

where ‖ · ‖4 is the usual L4-norm. Applying Lemma 3, we have the following estimates:

〈
Axun–1, v

〉 ≤ C
(∥∥un–1∥∥2 +

∥∥δxun–1∥∥2) +
1
4
‖v‖2 +

h2

16
‖δxv‖2,

〈
Axδ

(2)
xx̄ un–1, v

〉 ≤ C
(∥∥δxun–1∥∥2 +

∥∥δ
(2)
xx̄ un–1∥∥2) +

1
3
‖δxv‖2 +

h2τα

36μ

∥∥δ
(2)
xx̄ v

∥∥2,

〈
Lxδ

(2)
xx̄ un–1, v

〉 ≤ C
(∥∥δxun–1∥∥2 +

∥∥δ
(2)
xx̄ un–1∥∥2) +

1
3
‖δxv‖2 +

h2

36
∥∥δ

(2)
xx̄ v

∥∥2.

Also, it is easy to obtain by the Cauchy–Schwarz and Young inequalities that

〈
δ

(4)
xxx̄x̄un–1, v

〉 ≤ 3μ

4τα

∥∥δ
(2)
xx̄ un–1∥∥2 +

τα

3μ

∥∥δ
(2)
xx̄ v

∥∥2,

〈
δx̂un–1, v

〉 ≤ ∥∥δxun–1∥∥2 +
1
4
‖v‖2,

〈
δx̂un, v

〉 ≤ 4
∥∥δxun∥∥2 +

1
16

‖v‖2.

In addition, applying the Cauchy–Schwarz inequality, Young’s inequality, Theorem 8, and
equation (17), we see that

〈
δx̂

[
un–1]2, v

〉
= –h

M∑
i=1

(
un–1

i
)2

δx̂(vi) ≤ C
∥∥un–1∥∥ · ‖δx̂v‖ ≤ C

∥∥un–1∥∥2 +
3α

2γ
‖δxv‖2.

Similarly, we have

〈
δx̂

[
un]2, v

〉 ≤ C
∥∥un∥∥2 +

3α

8γ
‖δxv‖2. (23)

Substituting equations (22)–(23) into equation (21) and applying Lemma 3, it follows that

〈
g(v), v

〉 ≥ 1
2

(
‖v‖2 +

(
μ –

h2

3

)
‖δxv‖2

)
–

τ

12
‖δxv‖2 – μ

h2

12
∥∥δ

(2)
xx̄ v

∥∥2 –
τ

12
‖v‖4

4

– C
(∥∥un–1∥∥2 +

∥∥δxun–1∥∥2 +
∥∥un∥∥2 +

∥∥δxun∥∥2 +
∥∥δ

(2)
xx̄ un–1∥∥2)

≥ 1
2

(
‖v‖2 +

(
μ

3
–

h2

3
–

τ

6

)
‖δxv‖2

)
–

τ

12
‖v‖4

4

– C
(∥∥un–1∥∥2 +

∥∥δxun–1∥∥2 +
∥∥un∥∥2 +

∥∥δxun∥∥2 +
∥∥δ

(2)
xx̄ un–1∥∥2).

Observe that if h and τ are sufficiently small such that 2μ ≥ h2 +τ , then the above estimate
turns into

〈
g(v), v

〉 ≥ 1
2
‖v‖2 –

τ

12
‖v‖4

4 – C
(∥∥un–1∥∥2 +

∥∥δxun–1∥∥2 +
∥∥un∥∥2 +

∥∥δxun∥∥2 +
∥∥δ

(2)
xx̄ un–1∥∥2)
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≥ 1
2
‖v‖2 –

τ

12
‖v‖4 – C

(∥∥un–1∥∥2 +
∥∥δxun–1∥∥2 +

∥∥un∥∥2 +
∥∥δxun∥∥2 +

∥∥δ
(2)
xx̄ un–1∥∥2),

where we used the fact that ‖v‖ ≥ ‖v‖4. Finally, if τ is sufficiently small such that

K := 1 –
4τ

3
C

(∥∥un–1∥∥2 +
∥∥δxun–1∥∥2 +

∥∥un∥∥2 +
∥∥δxun∥∥2 +

∥∥δ
(2)
xx̄ un–1∥∥2) > 0,

then 〈g(v), v〉 ≥ 0 for all v ∈ Zh,0 with ‖v‖ = 3
2 [ 1+

√
K

τ
]. It follows from the Browder fixed

point theorem that there exists v∗ ∈ Zh,0 satisfying g(v∗) = 0. This implies the existence of
scheme (8)–(10) and thus completes the proof. �

Theorem 11 If τ is sufficiently small, then scheme (8)–(10) is unique.

Proof Suppose that un+1 and wn+1 are two solutions of scheme (8)–(10). Taking ρn+1
i =

un+1
i – wn+1

i , we arrive at

Ax
(
ρn+1

i
)

– μAxδ
(2)
xx̄

(
ρn+1

i
)

+ μ
h2

12
δ

(4)
xxx̄x̄

(
ρn+1

i
)

– ταLxδ
(2)
xx̄

(
ρn+1

i
)

+
τ

3
δx̂

(
ρn+1

i
)

+
γ τ

3
δx̂

[(
un+1

i
)2 –

(
wn+1

i
)2] = 0. (24)

Taking the inner product of equation (24) with ρn+1, by Lemmas 1 and 2 we obtain

∥∥ρn+1∥∥2 + s2
∥∥δxρ

n+1∥∥2 + s3
∥∥δ

(2)
xx̄ ρn+1∥∥2 +

γ τ

3
(
δx̂

[(
un+1)2 –

(
wn+1)2],ρn+1) = 0, (25)

where s2 = μ – h2

6 + τα and s3 = –μ h2

12 + τα h2

12 . As for the nonlinear term (δx̂[(un+1)2 –
(wn+1)2],ρn+1), we see that

(
δx̂

[(
un+1)2 –

(
wn+1)2],ρn+1) = –

((
un+1)2 –

(
wn+1)2, δx̂ρ

n+1)

= –
(
ρn+1(un+1 + wn+1), δx̂ρ

n+1)

≤ C
(∥∥ρn+1∥∥2 +

∥∥δxρ
n+1∥∥2), (26)

where we used Lemma 1, Theorem 8, and equation (17). Using this inequality and Theo-
rem 4, we can estimate equation (25) as

∥∥ρn+1∥∥2 + s4
∥∥δxρ

n+1∥∥2 + τα
h2

12
∥∥δ

(2)
xx̄ ρn+1∥∥2 ≤ τC

(∥∥ρn+1∥∥2 +
∥∥δxρ

n+1∥∥2),

where s4 = ( 2μ

3 – h2

6 + τα). Hence, if τ is sufficiently small such that min{1, s4} – τC > 0,
then we have

(1 – τC)
∥∥ρn+1∥∥2 + (s4 – τC)

∥∥δxρ
n+1∥∥2 + τα

h2

12
∥∥δ

(2)
xx̄ ρn+1∥∥2 ≤ 0.

So ‖ρn+1‖ = ‖δxρ
n+1‖ = ‖δ(2)

xx̄ ρn+1‖ = 0, that is, equation (24) has only a trivial solution.
Therefore scheme (8)–(10) uniquely determines un+1. This completes the proof. �
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To prove the convergence and stability of scheme (8)–(10), let vn
i = v(xi, tn) be the solu-

tion to equations (2)–(4). Then the truncation error of scheme (8)–(10) can be obtained
from

rn
i = Axδt̂

(
en

i
)

– μAxδ
(2)
xx̄ δt̂

(
en

i
)

+ μ
h2

12
δ

(4)
xxx̄x̄δt̂

(
en

i
)

– αLxδ
(2)
xx̄

(
ēn

i
)

+ Atδx̂
(
en

i
)

+
γ

2
Atδx̂

[(
vn

i
)2] –

γ

2
Atδx̂

[(
un

i
)2]. (27)

By the Taylor expansion we can easily demonstrate that |rn
i | = O(τ 2 + h4). Furthermore, by

the previous observation the truncation error becomes O(τ 4 + h4) in the case α = 0. Now
we present the convergence theorem of the present scheme.

Theorem 12 Assume that the solution of equations (2)–(4) is sufficiently smooth and
un ∈ Zh,0. If τ is sufficiently small, then the solution un of scheme (8)–(10) converges to the
solution of equations (2)–(4) in the sense of ‖ · ‖∞-norm with the convergence rate of order
O(τ 2 + h4). More precisely, the convergence rate turns into O(τ 4 + h4) in the case α = 0.

Proof Taking the inner product of equation (27) with 2ēn (i.e., en+1 + en–1) and using
Lemma 1, we obtain

1
2τ

(∥∥en+1∥∥2 –
∥∥en–1∥∥2) +

s1

2τ

(∥∥δxen+1∥∥2 –
∥∥δxen–1∥∥2) –

μh2

24τ

(∥∥δ
(2)
xx̄ en+1∥∥2 –

∥∥δ
(2)
xx̄ en–1∥∥2)

+
∥∥δxēn∥∥2 +

h2

12
∥∥δ

(2)
xx̄ ēn∥∥2 +

〈
Atδx̂en, 2ēn〉 +

γ

2
〈
Atδx̂

[(
vn)2 –

(
un)2], 2ēn〉

=
〈
rn, ēn〉, (28)

where s1 is defined in Theorem 8. By Lemma 1, the Cauchy–Schwarz inequality, and The-
orem 8, we see that

〈
Atδx̂en, 2ēn〉 =

〈
δx̂en, 2ūn〉 +

τ 2

6
〈
δ

(2)
tt̄ δx̂en, 2ēn〉

≤ ∥∥δx̂en∥∥2 +
∥∥ēn∥∥2 +

1
6
(∥∥δx̂en+1∥∥2 + 2

∥∥δx̂en∥∥2 +
∥∥δx̂en–1∥∥2 + 3

∥∥ēn∥∥2)

≤ 1
6
∥∥δxen+1∥∥2 +

4
3
∥∥δxen∥∥2 +

1
6
∥∥δxen–1∥∥2 +

3
4
∥∥en–1∥∥2 +

3
4
∥∥en+1∥∥2. (29)

Next, the nonlinear term can be estimated by applying Theorem 8, the Cauchy–Schwarz
inequality, and the boundary conditions:

〈
Atδx̂

[(
vn)2 –

(
un)2], 2ēn〉

=
〈
δx̂

[(
vn)2 –

(
un)2], 2ēn〉 +

τ 2

6
〈
δ

(2)
tt̄ δx̂

[(
vn)2 –

(
un)2], 2ēn〉

= –
〈[(

vn)2 –
(
un)2], 2δx̂ēn〉 –

τ 2

6
〈
δ

(2)
tt̄

[(
vn)2 –

(
un)2], 2δx̂ēn〉

= –
〈
en(vn + un), 2δx̂ēn〉 –

τ 2

6
〈
δ

(2)
tt̄

[
en(vn + un)], 2δx̂ēn〉

= –2h
M–1∑
i=1

en
i
(
vn

i + un
i
)
δx̂

(
ēn

i
)

–
1
3

M–1∑
i=1

en+1
i

(
vn+1

i + un+1
i

)
δx̂

(
ēn

i
)
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+
2
3

M–1∑
i=1

en
i
(
vn

i + un
i
)
δx̂

(
ēn

i
)

–
1
3

M–1∑
i=1

en–1
i

(
vn–1

i + un–1
i

)
δx̂

(
ēn

i
)

≤ C
(∥∥en–1∥∥2 +

∥∥en∥∥2 +
∥∥en+1∥∥2 +

∥∥δxen–1∥∥2 +
∥∥δxen+1∥∥2). (30)

Furthermore,

〈
rn, ēn〉 ≤ 1

2
∥∥rn∥∥2 +

1
4
(∥∥en–1∥∥2 +

∥∥en+1∥∥2). (31)

Applying equations (29)–(31) with equation (28), we have

(∥∥en+1∥∥2 –
∥∥en–1∥∥2) + s1

(∥∥δxen+1∥∥2 –
∥∥δxen–1∥∥2) –

μh2

12
(∥∥δ

(2)
xx̄ en+1∥∥2 –

∥∥δ
(2)
xx̄ en–1∥∥2)

≤ τ
∥∥rn∥∥2 + τC

(∥∥en–1∥∥2 +
∥∥en∥∥2 +

∥∥en+1∥∥2 +
∥∥δxen–1∥∥2 +

∥∥δxen∥∥2 +
∥∥δxen+1∥∥2). (32)

If h is sufficiently small such that 4μ – h2 > 0, by Lemma 4 and equation (32) can be esti-
mated as follows:

(∥∥en+1∥∥2 –
∥∥en–1∥∥2) +

(∥∥δxen+1∥∥2 –
∥∥δxen–1∥∥2)

≤ τ
∥∥rn∥∥2 + τC

(∥∥en–1∥∥2 +
∥∥en∥∥2 +

∥∥en+1∥∥2 +
∥∥δxen–1∥∥2 +

∥∥δxen∥∥2 +
∥∥δxen+1∥∥2). (33)

Let

Errorn =
(∥∥en∥∥2 +

∥∥en–1∥∥2) + s1
(∥∥δxen

x
∥∥2 +

∥∥δxen–1∥∥2) +
μh2

12
(∥∥δ

(2)
xx̄ en∥∥2 +

∥∥δ
(2)
xx̄ en–1

x
∥∥2).

Then equation (33) can be rewritten as

Errorn+1 – Errorn ≤ 2τ
∥∥rn∥∥2 + τC

(
Errorn+1 + Errorn), (34)

or, equivalently,

(1 – τC)
(
Errorn+1 – Errorn) ≤ 2τ

∥∥rn∥∥2 + 2τCErrorn.

If τ is sufficiently small such that 1 – Cτ > 0, then

Errorn+1 – Errorn ≤ 2τ
∥∥rn∥∥2 + 2τCErrorn. (35)

Summing equation (35) from 1 to n, we have

Errorn+1 – Error1 ≤ 2τ

n∑
k=2

∥∥rk∥∥2 + τC
n∑

k=1

Errork ≤ C
(
τ 2 + h4)2 + τC

n∑
k=1

Errork , (36)

where we used

2τ

n∑
k=2

∥∥rk∥∥2 ≤ 2(n – 1)τ max
2≤k≤n

∥∥rk∥∥2 ≤ C
(
τ 2 + h4)2.
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Since we can approximate u1 using any available fourth-order accuracy method, we have
Error1 = O(τ 2 + h4)2. Hence by Lemma 6 we obtain

Errorn+1 ≤O
(
τ 2 + h4)2,

that is,

∥∥en+1∥∥2 ≤O
(
τ 2 + h4)2 and

∥∥en+1
x

∥∥2 ≤O
(
τ 2 + h4)2.

Finally, by Lemma 5 we get

∥∥en+1∥∥2
∞ ≤O

(
τ 2 + h4)2.

To complete the proof when α = 0, note that ‖en+1‖2∞ ≤ O(τ 4 + h4)2 by applying a similar
technique. �

Theorem 13 Under the conditions of Theorem 12, the solution of scheme (8)–(10) is stable
in the sense of ‖ · ‖∞-norm.

Since the proposed scheme is a nonlinear implicit FDS, to solve the scheme, we provide
an iterative algorithm. The strategy is not uncommon in solving this kind of nonlinear
schemes. Applying the techniques of Sun and Zhu [41] (see also [42]), we then obtain an
iterative algorithm to solve the nonlinear term for s = 0, 1, 2, . . . . We observe that scheme
(8)–(10) can be solved as follows:

Ax
(
u(n+1)(s+1)

i – un–1
i

)
– μAxδ

(2)
xx̄

(
u(n+1)(s+1)

i – un–1
i

)
+ μ

h2

12
δ

(4)
xxx̄x̄

(
u(n+1)(s+1)

i – un–1
i

)

– ταLxδ
(2)
xx̄

(
u(n+1)(s+1)

i + un–1
i

)
+ 2τδx̂

(
un) +

τ

3
(
u(n+1)(s+1)

i – 2un
i + un–1

i
)

+ τγ δx̂
[(

un
i
)2] + γ

τ

6
δx̂

[(
u(n+1)(s)

i
)2 – 2

(
un

i
)2 +

(
un–1

i
)2], (37)

where u(n+1)(0)
i = 2un

i – un–1
i with the initial condition

u0
i = u0(xi), 0 ≤ i ≤ M, (38)

and the boundary conditions

un
0 = un

M = 0, δx̂
(
un

0
)

= δx̂
(
un

M
)

= 0, δ
(2)
xx̄

(
un

0
)

= δ
(2)
xx̄

(
un

M
)

= 0, 1 ≤ n ≤ N . (39)

Algorithm (37) can be written as

Ax
(
u(n+1)(s+1)

i
)

– μAxδ
(2)
xx̄

(
u(n+1)(s+1)

i
)

+ μ
h2

12
δ

(4)
xxx̄x̄

(
u(n+1)(s+1)

i
)

– ταLxδ
(2)
xx̄

(
u(n+1)(s+1)

i
)

+
τ

3
(
u(n+1)(s+1)

i
)

= b(n)(s)
i ,

where

b(n)(s)
i = Ax

(
un–1

i
)

+ μAxδ
(2)
xx̄

(
un–1

i
)

+ μ
h2

12
δ

(4)
xxx̄x̄

(
un–1

i
)

+ ταLxδ
(2)
xx̄

(
un–1

i
)

– 2τδx̂
(
un)
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+
τ

3
(
2un

i – un–1
i

)
– τγ δx̂

[(
un

i
)2]

– τγ δx̂
[(

un
i
)2] + γ

τ

6
δx̂

[(
u(n+1)(s)

i
)2 – 2

(
un

i
)2 +

(
un–1

i
)2]. (40)

Here we provide an algorithm for solving scheme (8)–(10):

Algorithm
step 1 Let u(n+1)(0)

i = 2un
i – un–1

i .
step 2 Compute u(n+1)(s+1)

i iteratively solving the equation

Pu(n+1)(s+1) = b(n)(s), s = 0, 1, 2, . . . ,

where

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k3 k2 k1 0 · · · 0 0

k2 k3 k2 k1
. . .

... 0

k1 k2 k3 k2 k1
...

...
...

. . . . . . . . . . . . . . . 0
...

. . . k1 k2 k3 k2 k1

0 0 · · · k1 k2 k3 k2

0 0 · · · 0 k1 k2 k3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

u(n+1)(s+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(n+1)(s+1)
1

u(n+1)(s+1)
2

...

...
u(n+1)(s+1)

M–1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and b(n)(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(n)(s)
1

b(n)(s)
2
...
...

b(n)(s)
M–1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

k1 = –
μ + τα

12h2 , k2 =
1
6

–
2(μ + 2τα)

3h2 , and k3 =
2
3

+
τ

3
+

3μ + 5τα

2h2 .

The iterations will be done when the approximate solution satisfies the criterion

∥∥u(n+1)(s+1) – u(n+1)(s)∥∥∞ ≤ 10–10.

The additional advantage of using this algorithm is that it results in iteratively solving
the constant coefficient pentadiagonal system at each time step, which expectedly saves
the computation time. Before proving the convergence of the iterative algorithm, we let

ε
(s)
i = u(n+1)(s)

i – un+1
i .

Note that

ε
(0)
i = un+1

i – 2un
i + un–1

i

≤ (
un+1

i – vn+1
i

)
– 2

(
un

i – vn
i
)

+
(
un–1

i – vn–1
i

)
+ vn+1

i – 2vn
i + vn–1

i
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≤ O
(
τ 2 + h4).

Similarly, we also have

(
ε

(0)
i

)
x ≤ O

(
τ 2 + h4),

(
ε

(0)
i

)
xx ≤ O

(
τ 2 + h4).

Theorem 14 Let τ and h be sufficiently small. Then the iterative algorithm (37)–(39) con-
verges to the solution of scheme (8)–(10).

Proof Letting τ and h be sufficiently small, we have

∥∥ε(0)∥∥∞ ≤ 1
2

.

Suppose

∥∥ε(s)∥∥∞ ≤ 1
2

. (41)

By Theorem 8 and assumption (41) we see that

∥∥u(n+1)(s)∥∥∞ ≤ ∥∥un+1∥∥∞ +
∥∥ε(s)∥∥∞ ≤ C.

Subtracting equation (37) from equation (8), we have

Ax
(
ε

(s+1)
i

)
– μAxδ

(2)
xx̄

(
ε

(s+1)
i

)
+ μ

h2

12
δ

(4)
xxx̄x̄

(
ε

(s+1)
i

)

– ταLxδ
(2)
xx̄

(
ε

(s+1)
i

)
+

τ

3
(
ε

(s+1)
i

)
+ γ

τ

6
δx̂

[(
u(n+1)(s)

i
)2 –

(
un+1

i
)2] = 0. (42)

Taking the inner product of (42) with ε(s+1), by Lemmas 1 and 2 we have

∥∥ε(s+1)∥∥2 + s4
∥∥δxε

(s+1)∥∥2 + τα
h2

12
∥∥δ

(2)
xx̄ ε(s+1)∥∥2

+
γ τ

3
〈
δx̂

[(
u(n+1)(s))2 –

(
un+1)2], ε(s+1)〉 = 0, (43)

where s4 is as defined in Theorem 11. Similarly to the technique used in equation (26), we
have

〈
δx̂

[(
u(n+1)(s))2 –

(
un+1)2], ε(s+1)〉 ≤ C

(∥∥ε(s)∥∥2 +
∥∥δxε

(s+1)∥∥2),

which yields

∥∥ε(s+1)∥∥2 + s4
∥∥δxε

(s+1)∥∥2 + τα
h2

12
∥∥δ

(2)
xx̄ ε(s+1)∥∥2 ≤ τC

(∥∥ε(s)∥∥2 +
∥∥δxε

(s+1)∥∥2).

By Lemma 4 we can estimate this equation as follows:

∥∥ε(s+1)∥∥2 + (s4 – τC)
∥∥δxε

(s+1)∥∥2 + τα
h2

12
∥∥δ

(2)
xx̄ ε(s+1)∥∥2 ≤ τC

∥∥ε(s)∥∥2.
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Let τ be sufficiently small such that s4 –τC > 0. By the positivity of the term τα‖δ(2)
xx̄ ε(s+1)‖2

we get

∥∥ε(s+1)∥∥2 +
∥∥δxε

(s+1)∥∥2 ≤ τC
∥∥ε(s)∥∥2 ≤ τC

∥∥ε(s)∥∥2
∞. (44)

Again, let τ be sufficiently small such that τC ≤ 1
2 . By Lemma 5 we have

∥∥ε(s+1)∥∥∞ ≤ 1
2
∥∥ε(s)∥∥∞ ≤ 1

2s+1

∥∥ε(0)∥∥∞.

This completes the proof. �

The following theorem guarantees the mass-preserving property, which can be derived
by using the same technique as in Theorem 7. So we omit the proof.

Theorem 15 Suppose u(n+1)(s+1) ∈ Zh,0. Then algorithm (37) is conservative in the sense
that

In,(s+1)
1,1 =

h
2

M–1∑
i=1

(
u(n+1)(s+1)

i + un
i
)

=
h
2

M–1∑
i=1

(
un+1

i + un
i
)

for all s = 0, 1, 2, . . . .

4 Numerical experiments
We will perform a few numerical experiments in this section to verify the effectiveness and
correctness of our theoretical analysis from the preceding part using the evolution of the
single solitary wave. The proposed scheme is referred to as Scheme I for convenience. Here
we compare the accuracy of the proposed scheme to the error of the previous schemes to
demonstrate its precision.

Scheme II: Fourth-order linear implicit FDS [30]

δt̂
(
un

i
)

– μ

[
4
3
δt̂δ

(2)
xx̄

(
un

i
)

+
1
3
δt̂δ

(2)
x̂x̂

(
un

i
)]

+
4
3
δx̂

(
ūn

i
)

–
1
3
δẍ

(
ūn

i
)

– α

[
4
3
δ

(2)
xx̄

(
ūn

i
)

+
1
3
δ

(2)
x̂x̂

(
ūn

i
)]

+
γ

3

[
4
3

un
i δx̂

(
ūn

i
)

–
1
3

un
i δẍ

(
ūn

i
)]

+
γ

3

[
4
3
δx̂

(
un

i ūn
i
)

–
1
3
δẍ

(
un

i ūn
i
)]

= 0, (45)

and a modified linear three-level FDS from the recently published paper [18]. We substi-
tute the approximation of a dispersive term uxxx in [18] by an average approximation of the
viscous term ∂2

x u(xi, tn) = (ūn
i )xx̄ +O(τ 2 + h2). The scheme turns into the following scheme.

Scheme III: Standard second-order linear implicit FDS

δt̂
(
un

i
)

– μδt̂δ
(2)
xx̄

(
un

i
)

+ δx̂
(
ūn

i
)

– αδ
(2)
xx̄

(
ūn

i
)

+
γ

3
[
un

i δx̂
(
ūn

i
)

+ δx̂
(
un

i ūn
i
)]

= 0. (46)
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We can easily see that the boundedness, stability, and convergence of scheme (46) can be
studied by changing the arguments in [18] (see also [19]). We would like to notice that
Scheme III is reliable due to the existing publications, that is, we obtain the FDS obtained
by Zhang [19] for RLW equation (in the case p = 2 and θ = 0), where θ is a parameter
appearing in the mentioned schemes.

Remark 16 In Schemes II and III the difference approximation of the nonlinear term uux

is widely used to ensure the energy conservation, stability, and convergence of the numer-
ical solutions. For further information, the reader should consult references [43–47] for
various types of equations with the same treatments of the nonlinear term uux.

The precision of the method is determined by comparing numerical solutions to exact
solutions using the ‖·‖- and ‖·‖∞-norms represented by

∥∥en∥∥ =
∥∥uexact – un∥∥ =

(
h

M–1∑
i=1

∣∣u(
xi, tn) – un

i
∣∣2

) 1
2

,

∥∥en∥∥∞ =
∥∥uexact – un∥∥∞ = max

i

∣∣u(
xi, tn) – un

i
∣∣,

respectively. We design the numerical comparisons in two aspects. In the first example,
we provide the numerical simulations for the solution of the RLW equation in the case of
α = 0. From the theoretical expectation the fourth-order convergence rate is monitored via
the exact solitary waveform when τ = h. Another example is the BBM–Burgers equation.
The nonhomogeneous case is used to test the convergence rate to ensure Theorem 12,
where the time and space discretization are chosen to be τ = h2. The long-time simula-
tions and computational time in both examples are also observed. We anticipate that its
computational cost scales should be less than the others.

Example 1 The RLW equation: The single solitary wave.

In the first example, we consider the following RLW equation (μ = 1, α = 0, γ = 1)

ut – uxxt + ux + uux = 0, (47)

which has an analytic solution of the form

u(x, t) = 3c sech2(m
(
x – (c + 1)t – x0

))
, (48)

where m = 1
2

√
c

1+c . The solution stands for a single solitary wave having the amplitude
3c centered at x0 with the velocity v = 1 + c. Thus the initial and boundary conditions
corresponding to the exact solution are given for equation (47) as follows:

u(x, 0) = 3c sech2[m(x – x0)
]
, (49)

and

un
0 = un

M = 0, δx̂
(
un

0
)

= δx̂
(
un

M
)

= 0, δ
(2)
xx̄

(
un

0
)

= δ
(2)
xx̄

(
un

M
)

= 0, 1 ≤ n ≤ N . (50)
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Table 1 The errors of numerical solutions and rate of convergence at T = 20 using h = τ

τ = h ‖ · ‖ Rate ‖ · ‖∞ Rate CPU time (s)

Scheme I 0.5 5.4875× 10–6 – 2.2094× 10–6 – 0.0857
0.25 3.3976× 10–7 4.0136 1.3672× 10–7 4.0144 0.3099
0.125 2.1207× 10–8 4.0019 8.5434× 10–9 4.0003 1.0363
0.0625 1.3250× 10–9 4.0004 5.3515× 10–10 3.9968 8.8850

Scheme II [30] 0.5 1.8618× 10–2 – 7.0602× 10–3 – 0.0813
0.25 4.7664× 10–3 1.9657 1.8134× 10–3 1.9610 0.4885
0.125 1.1996× 10–3 1.9903 4.5739× 10–4 1.9872 5.5283
0.0625 3.0053× 10–4 1.9970 1.1465× 10–4 1.9962 47.0629

Scheme III [18, 19] 0.5 1.4946× 10–3 – 5.2670× 10–4 – 0.0591
0.25 1.3373× 10–4 1.9808 5.1894× 10–4 1.9777 0.3434
0.125 9.5127× 10–5 1.9930 3.3644× 10–5 1.9909 2.4583
0.0625 2.3828× 10–5 1.9972 8.4277× 10–6 1.9971 22.0431

Scheme II is exactly the same scheme with those in [18, 19] in the case of RLW equation when the parameter θ in [19] is
chosen to be 0.

In the simulation the present scheme is tested numerically for the cases c = 0.1 with
x0 = 0 over the space interval [–80, 100] and time interval [0, 20]. The average and maxi-
mal errors under different step sizes τ and h at the final time T = 20 are reported in Table 1.
We see that the proposed scheme outperforms comparable Schemes II and III. The error
obtained over a wide step size h = τ = 0.5 by Scheme I is still more accurate than that ob-
tained by Scheme II over a narrower step size h = τ = 0.0625. In addition, as we intended,
the computational efficiency of the present scheme is outstanding compared to Schemes
II and III in terms of CPU time due to the requirement of solving the system of equation in
each time step. Besides, as shown in the table, the rate of convergence is close to the the-
oretical expectations for each scheme. The fourth-order convergence can be achieved by
Scheme I as we expected, whereas the accuracy of Schemes II and III is found to be of sec-
ond order. Here we note that the second-order convergence of Scheme II is commonplace
because the accuracy in space is absorbed by the error in time (τ = h).

Next, we provide a numerical solution at long-time behavior and make simulations at
T = 500 over the computational domain [–100, 700] with c = 0.1 under setting the rough
space and time step sizes h = τ = 0.5. Figure 1 shows the profiles of the numerical solu-
tions of Schemes I, II, and III. Figure 1 (top) shows the accuracy of Schemes I and II while
lagging of the numerical solution of Scheme III is clearly observed. Moreover, in Fig. 1
(bottom), the small wave trains and visible oscillations of the numerical solutions occur
when Schemes III and III are applied, respectively, whereas the presented scheme provides
almost an identical solution on the left tail. Figure 2 indicates that the presented scheme
successfully provides approximate solutions in computation and is obviously more accu-
rate than the schemes in [18, 19] and [30] with the same step sizes during the time from
T = 0 to T = 500. Observe that the error slightly increases almost linearly as time increases
in both error norms. The ‖ · ‖- and ‖ · ‖∞-norms of te errors of the proposed scheme stay
less than 8.7×10–4 over time up to T = 500, which produces very good satisfactory results
compared to Schemes II and III.

The process is reproduced in 10-fold simulations to gather the computational costs.
The results are shown in Fig. 3. The expense of computational cost of Schemes II and III
are approximately two and four orders of magnitude greater. Accordingly, it is clear that
the trade-off between solving the nonlinear scheme and computational cost is apparently
relieved.
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Figure 1 The long-time behavior of numerical solutions at T = 500 using h = τ = 0.5

Figure 2 Evolution of ‖ · ‖-error (left) and ‖ · ‖∞-error (right) until T = 500 using h = τ = 0.5

As an indication of the efficiency of the numerical method, there is not only the order
of accuracy, but also other essential factors, especially the invariant-preserving property.
To examine the conservation properties of our scheme, we provide the absolute error of
these invariants for the RLW equation as the following discretization:

In
1 =

∫ b

a
u
(
x, tn)dx ≈ h

M–1∑
i=1

un
i , (51)

In
2 =

∫ b

a

(
u2(x, tn) + u2

x
(
x, tn))dx ≈ h

M–1∑
i=1

((
un

i
)2 +

[(
un

i
)

x̂

]2), (52)

In
3 =

∫ b

a

(
u3(x, tn) + 3u2(x, tn))dx ≈ h

M–1∑
i=1

((
un

i
)3 + 3

(
un

i
)2). (53)
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Figure 3 Computational time (s) in each fold

Figure 4 Error of invariant properties

For Scheme I, the formula of the quality In
1 follows from Theorem 7 (see also Theo-

rem 15), whereas the invariants In
2 and In

3 can be approximately achieved by equations
(52) and (53), respectively. Likewise, we evaluate the qualities In

1 , In
2 , and In

3 for Schemes
II and III by equations (51)–(53). The changing of invariants is shown in Fig. 4. We are
able to detect that the quantities In

1 , In
2 , and In

3 are considerably preserved during T = 0 to
T = 500. The conservative property of the presented scheme is perfectly preserved at least
7 digits and more accurate compared with Schemes II and III.
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Table 2 A comparison of accuracy between the present scheme and the other methods when
h = 0.125 and τ = 0.1 at T = 20

‖ · ‖ × 104 ‖ · ‖∞ × 104

Scheme I 2.99× 10–4 1.20× 10–4

Scheme II [18, 19, 29] 12.973 4.9672
Scheme III [30] 7.6865 2.9312
Splitting method and cubic spline [10] 1961 67.4
Least-squares FES [11] 46.9 17.6
Bubnov–Galerkin method [12] 5.15 1.81
Linear Galerkin method [13] 5.11 1.98
Collocation method [14] 5.32 2.27
Lumped Galerkin method [15] 2.19 0.86
Galerkin method with extrapolation [16] 2.67 0.91
Local conservative schemes [17]
ILMP-I 0.15 0.05
ILMP-II 7.45 2.87
ELMP-I 6.66 2.58
ELMP-II 0.86 0.28
Galerkin method with cubic B-splines (h = 0.1) [36] 2.16 0.84

To clarify the efficiency of our scheme, we make numerical comparisons with existing
methods, not limited to FDM [10–19, 36]. To set up the comparison, the velocity is set
to be v = 1.1, that is, c = 0.1. The step sizes are chosen as h = 0.125 and τ = 0.1, and the
final time T = 20. The simulations are computed for the region [–80, 100] to make sure
the pulse is sufficiently small, corresponding to the boundary conditions. Table 2 shows
the errors of the presented method and some recorded results obtained by the mentioned
methods. As shown in the table, the error obtained by the proposed scheme is excellently
better than those of the others. This significantly confirms that the results obtained by our
scheme show an improvement over the other methods with a simplified FDM.

Example 2 The BBM–Burgers equation and the effect of viscous term to the RLW equa-
tion.

In this example, we consider the following BBM–Burgers equation (μ = 1 and γ = 1):

ut – uxxt + ux – αuxx + uux = f (x, t) (54)

with the initial condition (49) and boundary conditions (50). Firstly, we set the nonho-
mogeneous function f in compliance with the exact solution (48) when c = 0.1 to verify
the order of accuracy and the rate of convergence. The simulations are also computed by
the mentioned schemes in the case α = 1 at the final time T = 20 over the computational
domain [–80, 100]. The spatial and temporal step sizes are selected by τ = h2 to show the
precision in time and space so that the dominant error is not based on only one aspect. The
comparisons are made and listed in Table 3. The results show that the accuracy of Scheme
I is slightly better than that of Scheme II at least by 59.06% improvement. However, the
errors obtained by Schemes I and II show the advancement in accuracy compared with
Scheme III. The convergence rates are close to theoretical expectations of each scheme;
that is, the fourth-order rate of convergence is observed by Schemes I and II, whereas the
second-order rate of convergence is observed for Scheme III as anticipated.

Suggested by the numerical experiments, it is evident that the proposed scheme is ef-
fective and robust in solving both the RLW and BBM-Burgers equations in terms of ac-
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Table 3 The errors of numerical solutions and rate of convergence for the BBM–Burgers equation
(54) at T = 20 using τ = h2

h ‖ · ‖ Rate ‖ · ‖∞ Rate CPU time (s)

Scheme I 0.5 9.4642× 10–4 – 4.0490× 10–4 – 0.1944
0.25 5.8886× 10–5 4.0065 2.5164× 10–5 4.0081 1.1024
0.125 3.6789× 10–6 4.0006 1.5740× 10–6 3.9989 8.2897
0.0625 2.2991× 10–7 4.0001 9.8361× 10–8 4.0002 103.6436

Scheme II [30] 0.5 2.3023× 10–3 – 8.1853× 10–4 – 0.1838
0.25 1.4378× 10–4 4.0012 5.1110× 10–5 4.0013 2.0441
0.125 8.9858× 10–6 4.0000 3.1958× 10–6 3.9994 41.0603
0.0625 5.6162× 10–7 4.0000 1.9970× 10–7 4.0003 837.0102

Scheme III 0.5 5.8714× 10–3 – 2.0247× 10–3 – 0.1222
0.25 1.0506× 10–3 2.4825 3.6048× 10–4 2.4897 1.4217
0.125 2.3683× 10–4 2.1493 8.1093× 10–5 2.1523 20.3022
0.0625 5.7601× 10–5 2.0397 1.9710× 10–5 2.0407 360.4731

Figure 5 Numerical solutions with h = τ = 0.5 with different α = 0.1, 0.5, and 1 at selected times T = 0, 250,
and 500

curacy, computational cost, and conservation of fundamental qualities. Based on this ap-
proach, we further explore the effect of the linear viscous term on the RLW model re-
lated to a classical initial condition (49) with various velocity c. In the simulations the
step sizes are chosen as h = 0.5 and τ = 0.25, and the computational region is extended
to [–100, 700]. Firstly, we let c = 0.03 and study the effect of the parameter α on the be-
havior of numerical solutions at time up to T = 500. Figure 5 shows the snapshots of the
numerical solutions with different values of α = 0.1, 0.5, and 1. The numerical simula-
tions show that the parameter α affects the amplitudes of the numerical solutions but not
the speed. It indicates that the numerical solution moves to the right in the same way as
the analytic solution (48). Additionally, by observation the maximum of numerical solu-
tions decreases as α increases. Evidently, the amplitude of u(x, t) also decrease as time
decreases.

Next, we study the relations between the parameter α and the initial velocity by setting
the different parameters c. Let c = 0.03, 0.1, and 0.2 with different α = 0.1, 0.5, and 1. The
different values of c and α provide similar propagations and disintegrations of the numer-
ical solution as presented in Fig. 6. As time passes, the amplitude of the wave decreases,
whereas the wave width grows. It should be pointed out by this observation that the ob-
tained numerical solutions converge to 0 as time increases in the case of α �= 0. Actually,
the behavior is supported by the theoretical results of the large-time behavior of the solu-
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Figure 6 Profile of numerical solutions with different c and α at selected times T = 0, 250, and 500

Figure 7 The ratio rate corresponding to the initial condition (49)

tion for the Cauchy problem (54) in [48, 49]. The discussion results in [50] give

∥∥u(x, t)
∥∥

L2
≤ C(1 + t)–1/4,

∥∥u(x, t)
∥∥

L∞ ≤ C(1 + t)–1/2 (55)
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for all t ≥ 0, corresponding to the restriction on the small initial data
∫ ∞

–∞ u0(x) dx �= 0. To
confirm the numerical results, we verify that u(x, t) approaches zero in the same decay
rates. For instance, we use the same initial condition as equation (49) with c = 0.03, x0 = 0,
and α = 1 with the space and time step sizes h = 0.8 and τ = h2. The simulations are run up
to time T = 5000 over the region [–100, 6500]. The ratios ‖un‖/(1 + t)–1/4 and ‖un‖∞/(1 +
t)–1/2 are presented as functions of time t in Fig. 7, which are in agreement with equation
(55).

5 Discussion
As we know, nonlinear schemes commonly trade with heavy computations. To break down
the drawback, we introduce a fast numerical algorithm that requires only solving a con-
stant matrix with a regular five-point stencil at a higher-time level, which is similar to
the fourth-order schemes [30]. The important point is that our scheme can be iteratively
solved and automatically saves a lot of computational costs, as shown in Tables 1 and 3 in
the cases of the RLW and BBM–Burgers equations, respectively. According to Examples
1 and 2, the results suggest that the proposed scheme (Scheme I) is extraordinarily more
accurate than Schemes II and III, which are constructed by classical approaches.

Additionally, the presented scheme is applied on the single solitary wave initial condi-
tion to study the effects of the viscous term –αuxx. The findings indicate that as the viscous
coefficient increases, the wave amplitude decreases. Based on the numerical examples, it
is inferred that the current scheme produces numerical results that correspond to phys-
ical phenomena by the RLW and BBM–Burgers equations. This has made a number of
significant contributions to the field of numerical analysis to construct high-order FDMs
for solving nonlinear PDEs.

6 Conclusion
In this study, we have successfully constructed and analyzed a three-level nonlinear im-
plicit FDS for solving the RLW and BBM–Burgers equations, which were validated by
numerical experiments and detailed theoretical analysis. The mass-conservative law is
preserved by presented schemes in the different discrete sense. Utilizing boundedness
analysis and a small temporal step size, the existence and uniqueness of the numerical so-
lution can be directly estimated. The theoretical supports for the proposed scheme are
also provided in terms of the stability and convergence of the numerical solution of order
O(τ 2 + h4). More precisely, the convergence rate turns into O(τ 4 + h4) when α = 0. These
results have manifested that the present method is more productive and introduces a sig-
nificant improvement for solving the BBM–Burgers equation. We expect that the results
of this paper are useful for the understanding and numerical study of the shallow water
equations, which will gain a lot of potentials to study real-world scenarios.
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