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Abstract
Nonorthogonal polynomials have many useful properties like being used as a basis
for spectral methods, being generated in an easy way, having exponential rates of
convergence, having fewer terms and reducing computational errors in comparison
with some others, and producing most important basic polynomials. In this regard,
this paper deals with a new indirect numerical method to solve fractional optimal
control problems based on the generalized Lucas polynomials. Through the way, the
left and right Caputo fractional derivatives operational matrices for these polynomials
are derived. Based on the Pontryagin maximum principle, the necessary optimality
conditions for this problem reduce into a two-point boundary value problem. The
main and efficient characteristic behind the proposed method is to convert the
problem under consideration into a system of algebraic equations which reduces
many computational costs and CPU time. To demonstrate the efficiency, applicability,
and simplicity of the proposed method, several examples are solved, and the
obtained results are compared with those obtained with other methods.
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1 Introduction and background
Fractional optimal control problems (FOCPs) are indeed generalizations of classical opti-
mal control problems (OCPs) in which either the dynamic constraints or the performance
index or both include at least one fractional derivative term. In recent years, this kind of
problems has received much attention, since many real-world phenomena can be demon-
strated or modeled by fractional differential equations (FDEs) much better than by integer
order ones. There is a growing body of literature recognizing the importance of FOCPs,
like [1–4]. It should be also emphasized that obtaining exact analytical solutions for non-
linear FOCPs is difficult, and in most cases impossible. Therefore, there exists a critical
need to introduce numerical methods to solve these problems.

In spite of the fact that a number of numerical methods have been extensively used for
solving FOCPs, considerable attention is still directed to finding some alternative and new
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methods. It should be remarked that numerical methods for solving FOCPs may be classi-
fied into two main categories: indirect and direct methods. The indirect methods are gen-
erally based upon the generalization of Pontryagin maximum principle (PMP) for FOCPs
and usually need the numerical solution of two-point boundary value problem resulting
from the related necessary optimality conditions. Nevertheless, the direct methods are
based upon discretization-then-optimization of the main FOCPs. For indirect numerical
methods, Agrawal in [5, 6], with dependence on Riemann–Liouville and Caputo opera-
tors, introduced a general formulation and solution method for FOCPs. Sweilam et al.
in [7] studied two distinct numerical methods based on Chebyshev polynomials for solv-
ing FOCP in the sense of Caputo. Pooseh et al. in [8] achieved the necessary optimality
conditions for FOCPs with free terminal time. Moreover, one can refer to Legendre spec-
tral collocation method [9], Bessel collocation method [10], Jacobi spectral collocation
method [11], fractional Chebyshev pseudospectral method [12], Legendre wavelet collo-
cation method [13], variational iterative method [14], and predictor–corrector method
[15]. For direct numerical methods, one can address Legendre orthogonal polynomials
[16], Bernoulli polynomials [17], shifted Legendre orthogonal polynomials [18], wavelets
methods [19, 20], Boubaker polynomials [21], shifted Chebyshev schemes [22], Hermite
polynomials [23], Bernoulli wavelet basis [24], fractional-order Dickson functions [25],
generalized shifted Legendre polynomials [26], and generalized Bernoulli polynomials
[27].

The above literature review indicates that many researchers have widely used orthogonal
basis functions to obtain approximate solutions of FOCPs, but little attention has been
directed toward nonorthogonal polynomials such as Fibonacci and Lucas polynomials.
The main two advantages of Lucas polynomials in comparison with shifted Legendre and
shifted Chebyshev polynomials to approximate an arbitrary function defined in [0, 1] are
as follows:

• The Lucas polynomials have fewer terms than shifted Legendre and shifted
Chebyshev polynomials; for example, the sixth Lucas polynomial has four terms,
whereas the sixth shifted Legendre and shifted Chebyshev polynomials have seven
terms, and this difference will increase by increasing the degree of polynomials.
Therefore, Lucas polynomials take less CPU time as compared to shifted Legendre
and shifted Chebyshev polynomials to approximate an arbitrary function.

• The coefficients of the individual terms in Lucas polynomials are smaller than the
corresponding ones in shifted Legendre and shifted Chebyshev polynomials. Due to
the fact that computational errors in the product are related to the coefficients of
individual terms, using Lucas polynomials reduces computational errors.

Recently, by regarding the advantages of Lucas polynomials, attention to these polyno-
mials in the literature has grown. The authors in [28, 29] established numerical algo-
rithms based on Lucas polynomials and generalized Lucas polynomials (GLPs) to solve
multiterm fractional differential equations. In [30] the GLPs are utilized to obtain nu-
merical solution of fractional initial value problems. Oruç provided numerical solutions
for nonlinear sinh-Gordon and generalized Benjamin–Bona–Mahony–Burgers equations
based on a hybridization method of Fibonacci and Lucas polynomials [31, 32]. Dehes-
tani et al. solved variable-order fractional reaction-diffusion and sub-diffusion equations
using Lucas multiwavelet functions [33]. The authors in [34] applied Lucas wavelets for
solving fractional Fredholm–Volterra integro-differential equations. In [35], a numer-
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ical optimization method based on fractional Lucas functions is developed for eval-
uating the approximate solution of the multidimensional fractional differential equa-
tions. Kumar et al. used normalized Lucas wavelets to solve Lane–Emden and pan-
tograph equations [36]. Ali et al. [37] numerically solved multidimensional Burgers-
type equations using Lucas polynomials. Furthermore, the authors in [38] investigated
the GLPs to solve certain types of fractional pantograph differential equations numeri-
cally.

Up to now, great attention has been paid to numerical solutions of fractional differential
equations taking Lucas polynomials as basis functions. This gives us a strong motivation
to test their ability to solve FOCPs and introduce an efficient numerical method. The prin-
cipal aim of this research is to construct an indirect numerical method for solving FOCPs
using the GLPs in which high accuracy of the obtained approximate solution is one of the
remarkable features of the method. To this end, first, we establish the necessary optimal-
ity conditions for FOCPs and obtain the operational matrices. Then, we use the necessary
optimality conditions, the spectral collocation method, and operational matrices based
on the GLPs to reduce the given problem into a nonlinear (or linear) system of algebraic
equations that can be simply solved through the Newton iterative technique. Numeri-
cal test examples are also given to illustrate the accuracy and simplicity of the proposed
method.

This article is organized in the following way. Some preliminaries of fractional calculus
are presented in Sect. 2. The problem formulation and also the necessary optimality con-
ditions are introduced in Sect. 3. Section 4 is devoted to introducing the GLPs and some of
their properties. In Sect. 5, the GLPs operational matrices of the integer and Caputo frac-
tional derivatives are determined. The proposed scheme is described in Sect. 6 to solve
the given FOCP, and numerical examples are considered to show the efficiency of the new
approach in Sect. 7. Finally, the conclusions and remarks are given in Sect. 8.

2 Some basic preliminaries of fractional calculus
In this section, we remind some notations and definitions for Caputo fractional deriva-
tives, Riemann–Liouville fractional derivatives, and integrals. These concepts are com-
mon in fractional differential equations references and are used frequently (see for in-
stance [39, 40]).

Definition 2.1 Assume thatG : [0, T] →R is a function and α > 0 is the order of derivative
or integral. For τ ∈ [0, T], we define

• The left-side and right-side Caputo fractional derivatives by

C
0 Dα

τG(τ ) =
1

�(p – α)

∫ τ

0
(τ – s)p–α–1G(p)(s) ds (2.1)

and

C
τ Dα

TG(τ ) =
(–1)p

�(p – α)

(∫ T

τ

(s – τ )p–α–1G(p)(s) ds
)

, (2.2)

respectively;
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• The left-side and right-side Riemann–Liouville fractional derivatives by

0Dα
τG(τ ) =

1
�(p – α)

dp

dτ p

(∫ τ

0
(τ – s)p–α–1G(s) ds

)
(2.3)

and

τ Dα
TG(τ ) =

(–1)p

�(p – α)
dp

dτ p

(∫ T

τ

(s – τ )p–α–1G(s) ds
)

, (2.4)

respectively;
• The left-side and right-side Riemann–Liouville fractional integrals by

0Iα
τ G(τ ) =

1
�(α)

∫ τ

0
(τ – s)α–1G(s) ds (2.5)

and

τ Iα
TG(τ ) =

1
�(α)

∫ T

τ

(s – τ )α–1G(s) ds, (2.6)

respectively;
where �(.) denotes the gamma function and p = [α] + 1 ([α] is the integer part of α).

The Caputo and Riemann–Liouville fractional derivatives are linked with each other as
follows:

C
0 Dα

τG(τ ) = 0Dα
τG(τ ) –

p–1∑
i=0

G(i)(0)
�(i – α + 1)

τ i–α (2.7)

and

C
τ Dα

TG(τ ) = τ Dα
TG(τ ) –

p–1∑
i=0

G(i)(T)
�(i – α + 1)

(T – τ )i–α . (2.8)

As a consequence, if G and G(k), k = 1, 2, . . . p – 1, vanish at τ = 0, then

0Dα
τG(τ ) = C

0 Dα
τG(τ ), (2.9)

and if they vanish at τ = T , then

τ Dα
TG(τ ) = C

τ Dα
TG(τ ). (2.10)

Caputo fractional derivatives of the power functions are yielded in the following forms:

C
0 Dα

τ τ β =

⎧⎪⎪⎨
⎪⎪⎩

0, β ∈ N0 and β < �α�,
�(β+1)

�(β+1–α)τ
β–α , β ∈ N0 and β ≥ �α�,

or β /∈ N and β > �α�,

(2.11)
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and

C
τ Dα

T (T – τ )β =

⎧⎪⎪⎨
⎪⎪⎩

0, β ∈N0 and β < �α�,
�(β+1)

�(β+1–α) (T – τ )β–α , β ∈N0 and β ≥ �α�,

or β /∈N and β > �α�,

(2.12)

where �α� and �α� are the largest integer less than or equal to α and the smallest integer
greater than or equal to α, respectively. Also N0 = {0, 1, 2, . . .} and N = {1, 2, 3, . . .}.

Theorem 2.2 Let α ∈ (0, 1) and f , g : [0, T] → R be two functions of class C1. Then the
formula for fractional integration by parts is derived as follows [41]:

∫ T

0
f (τ )C

0 Dα
τ g(τ ) dτ =

∫ T

0
g(τ )τ Dα

T f (τ ) +
[
τ I1–α

T f (τ )g(τ )
]T

0 . (2.13)

3 Necessary optimality conditions for FOCPs
In this study, we consider a class of FOCPs in the sense of Caputo as follows:

MinJ(W) =
∫ T

0
F

(
τ ,V(τ ),W(τ )

)
dτ ,

subject to : C
0 D

α
τV(τ ) = G

(
τ ,V(τ ),W(τ )

)
, (3.1)

V(0) = V0,

where 0 < α ≤ 1, V ∈ Rn, W ∈ Rs, F : R × Rn × Rs → R, and G : R × Rn × Rs → Rn.
The scalar function F and the vector function G are generically nonlinear and supposed
to be differentiable functions; also V(τ ) and W(τ ) are the state and the control vari-
ables, respectively. Obviously, when α = 1, this problem is transformed to the standard
OCPs.

In 2014, a general formulation of FOCPs in the sense of Caputo was presented by Pooseh
et al. In order to obtain the necessary optimality conditions for problem (3.1), we follow
the method of [8]. First, the Hamiltonian scalar function is defined as

H
(
τ ,V(τ ),W(τ ),λ(τ )

)

= F
(
τ ,V(τ ),W(τ )

)
+ λT (τ )G

(
τ ,V(τ ),W(τ )

)
, (3.2)

where λ(τ ) is a Lagrange multiplier. Then the necessary optimality conditions for problem
(3.1) are determined by the following theorem [8].

Theorem 3.1 If (V(τ ),W(τ )) is a minimizer of (3.1), then there exists a co-state vector
λ(τ ) for which the triple (V(τ ),W(τ ),λ(τ )) satisfies the following relations:

C
0 D

α
τV(τ ) =

∂H
∂λ

(
τ ,V(τ ),W(τ ),λ(τ )

)
, (3.3)

τD
α
Tλ(τ ) =

∂H
∂V

(
τ ,V(τ ),U(τ ),λ(τ )

)
,

∂H
∂W

(
τ ,V(τ ),W(τ ),λ(τ )

)
= 0,
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[
λ(τ )

]
τ=T = 0

for all τ ∈ [0, T], where H is described by (3.2).

4 The generalized Lucas polynomials and their properties
Lucas polynomials Ln(τ ) of degree n defined over [0, 1], originally studied by Bicknell in
1970, can be generated through the following recurrence relation [42]:

Lj+2(τ ) = τLj+1(τ ) + Lj(τ ), j ≥ 0,

L0(τ ) = 2, L1(τ ) = τ . (4.1)

Also, the Binet form of the Lucas polynomials is given by [42]

Lj(τ ) =
(τ +

√
τ 2 + 4)j + (τ –

√
τ 2 + 4)j

2j , j ≥ 0.

Moreover, these polynomials can be represented by the following explicit form as well
[29]:

Lj(τ ) = j
� j

2 �∑
i=0

1
j – i

(
j – i

i

)
τ j–2i, j ≥ 1. (4.2)

It has been shown that these polynomials satisfy the following properties:
• Ln(τ ) = Fn+1(τ ) + Fn–1(τ ),
• τLn(τ ) = Fn+2(τ ) – Fn–2(τ ),
• L–n(τ ) = (–1)nLn(τ ),
• dLn(τ )

dτ
= n

τ2+4 (τLn(τ ) + 2Ln–1(τ )),
• Ln(0) = 1 + (–1)n,
• Ln(1) = Ln,

where Fn(τ ) is the Fibonacci polynomials of order n and Ln is the Lucas number [42].
Besides, if a and b are nonzero real constants, the sequence of generalized Lucas poly-

nomials (GLPs) defined over [0, 1] is given by the following recurrence relation [29]:

μ
a,b
j+2(τ ) = aτμ

a,b
j+1(τ ) + bμ

a,b
j (τ ), j ≥ 0,

μ
a,b
0 (τ ) = 2, μ

a,b
1 (τ ) = aτ . (4.3)

In this regard, the first few GLPs μ
a,b
j (τ ) can be computed as follows:

μ
a,b
0 (τ ) = 2, μ

a,b
1 (τ ) = aτ ,

μ
a,b
2 (τ ) = a2τ 2 + 2b,

μ
a,b
3 (τ ) = a3τ 3 + 3abτ ,

μ
a,b
4 (τ ) = a4τ 4 + 4a2bτ 2 + 2b2,

μ
a,b
5 (τ ) = a5τ 5 + 5a3bτ 3 + 5ab2τ .
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It is also shown that the GLPs can be described with two equivalent forms [29]

μ
a,b
j (τ ) =

⎧⎨
⎩

2, j = 0,

j
∑� j

2 �
n=0

aj–2nbn(j–n
n )

j–n τ j–2n, j ≥ 1,
(4.4)

and

μ
a,b
j (τ ) =

⎧⎪⎪⎨
⎪⎪⎩

2, j = 0,

2j
∑j

m=0

amb
j–m

2 ξj+m(
j+m

2
j–m

2
)

j+m τm, j ≥ 1,
(4.5)

where

ξl =

⎧⎨
⎩

1, l even,

0, l odd.
(4.6)

The Binet form for these polynomials is [29]

μ
a,b
j (τ ) =

(aτ +
√

a2τ 2 + 4b)j + (aτ –
√

a2τ 2 + 4b)j

2j , j ≥ 0.

It is worthy to mention here that from the GLPs for special values of a and b, we can extract
some of the well-known polynomials; some specific cases of these values are shown in
Table 1 [29].

Any continuous function W (τ ) defined over [0, 1] can be expanded in terms of the GLPs
in the following form [29]:

W (τ ) =
∞∑
i=0

ciμ
a,b
i (τ ). (4.7)

By truncating the infinite series in equation (4.7), it can be written as follows:

W (τ ) ≈ WN (τ ) =
N∑

i=0

ciμ
a,b
i (τ ) = CT	(τ ), (4.8)

where

CT = [c0, c1, . . . , cN ] (4.9)

Table 1 The relation between the GLPs and some other polynomials

a b Polynomials

1 –β First kind Dickson Dn(τ ) =μ
1,–β
n (τ )

3 –2 Fermat–Lucas fn(τ ) =μ3,–2
n (τ )

2 –1 First-kind Chebyshev Tn(τ ) = 1
2μ

2,–1
n (τ )

2 1 Pell–Lucas Pn(τ ) =μ2,1
n (τ )

1 1 Lucas Ln(τ ) =μ1,1
n (τ )
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and

	(τ ) =
[
μ

a,b
0 (τ ),μa,b

1 (τ ), . . . ,μa,b
N (τ )

]T . (4.10)

Now, the following two theorems state the convergence and error estimate of the gen-
eralized Lucas expansion.

Theorem 4.1 Suppose that h(τ ) is defined over [0, 1] and |h(j)(0)| ≤ Kj, j ≥ 0, where K is
a positive constant. Also, suppose that h(τ ) has the expansion h(τ ) =

∑∞
j=0 cjμ

a,b
j (τ ); then it

holds that
1. |cj| ≤ |a|–jKj cosh(2|a|–1b

1
2 K )

j! ;
2. The series converges absolutely.

Proof The proof is given in [29]. �

Theorem 4.2 If h(τ ) satisfies the assumptions stated in Theorem 4.1 and eN (τ ) =∑∞
j=N+1 cjμ

a,b
j (τ ), then the global error estimate is given as follows:

∣∣eN (τ )
∣∣ <

2eK (1+
√

1+a–2b) cosh(2K(1 +
√

1 + a–2b))(1 +
√

1 + a–2b)N+1

(N + 1)!
.

Proof The proof is given in [29]. �

5 Operational matrices of the GLPs
This section is devoted to deriving operational matrices of derivatives for the GLPs. Based
on the GLPs vector 	(τ ) mentioned in equation (4.10), we can determine the operational
matrix of integer derivative as follows [29, 30]:

d	(τ )
dτ

= S (1)	(τ ), (5.1)

where S (1) = (S (1)
ij ) is the (N + 1) × (N + 1) operational matrix of the first derivative; then,

the elements of this matrix can be obtained explicitly in the following form:

S (1)
ij =

⎧⎨
⎩

(–1)
i–j+1

2 iab
i–j–1

2 δj, i > j and (i + j) odd,

0, otherwise,

where

δm =

⎧⎨
⎩

1
2 , m = 0,

1, otherwise.
(5.2)

Equation (5.1) enables one to obtain di	(τ )
dτ i for i ≥ 1 as

di	(τ )
dτ i = S (i)	(τ ) =

(
S (1))i

	(τ ). (5.3)
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Now, we elicit the left Caputo fractional derivative operational matrix of the GLPs of
order α, which generalizes the integer differentiation operator matrix. This matrix will be
derived in the next theorem [29, 30].

Theorem 5.1 Let 	(τ ) be the GLPs vector defined in equation (4.10); then, for any α > 0,
we have

C
0 Dα

τ 	(τ ) =
dα	(τ )

dτα
= τ–αS (α)	(τ ), (5.4)

where S (α) is the (N + 1) × (N + 1) lower triangular generalized Lucas operational matrix
of order α for the left Caputo fractional derivative. This matrix is obtained explicitly in the
form

S (α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

γα(�α�, 0) · · · γα(�α�, �α�) · · · 0 · · · 0
...

...
...

...
...

...
...

γα(i, 0) · · · γα(i, �α�) · · · γα(i, i) · · · 0
...

...
...

...
...

...
...

γα(N , 0) · · · γα(N , �α�) · · · γα(N , i) · · · γα(N , N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.5)

where

γα(i, j) =
i∑

n=�α�

(–1)
n–j
2 in!ξi+nξj+nδjb

i–j
2 ( i+n

2 – 1)!
( i–n

2 )!( n–j
2 )!( j+n

2 )!�(1 + n – α)
,

also, ξi and δj are given in equations (4.6) and (5.2).

Moreover, we can express the right Caputo fractional derivative operational matrix of
order α of the GLPs vector 	(τ ) in the following form:

C
τ Dα

l 	(τ ) = S(α)	(τ ), (5.6)

which is constructed with the help of the following lemmas.

Lemma 5.2 Let 	(τ ) and TN (τ ) = [1, τ , . . . , τN ]T be the vectors of generalized Lucas and
Taylor polynomials, respectively; then 	(τ ) = ATN (τ ), where A = (ai+1,j+1)N

i,j=0 is a lower
triangular (N + 1) × (N + 1) matrix, and

ai+1,j+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, i = j = 0,

2iajb
i–j
2 ξi+j+2(

i+j
2

i–j
2
)

(i+j) , i ≥ j, i = 0,

0, otherwise,

where ξi is mentioned in equation (4.6).
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Proof Regarding the definition expressed in (4.5), we have

	(τ ) = ATN (τ ), (5.7)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
0 a 0

2b 0 a2

0 3ab 0
...

...
...

2b N
2 ξN+2

2Nab
N–1

2 ξN+3(
N+1

2
N–1

2
)

(N+1)

2Na2b
N–2

2 ξN+4(
N+2

2
N–2

2
)

(N+2)

0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
a3 0 · · · 0
. . .

...
2Na3b

N–3
2 ξN+5(

N+3
2

N–3
2

)

(N+3)

2Na4b
N–4

2 ξN+6(
N+4

2
N–4

2
)

(N+4) · · · aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So, the desired result is obtained. �

Lemma 5.3 Suppose that 	(τ ) and TN (τ ) are defined in Lemma 5.2. Then there is a lower
triangular matrix L such that TN (l – τ ) = LTN (τ ), where TN (l – τ ) = [1, l – τ , . . . , (l – τ )N ]T ,
and the entries of the matrix L are given in the form

Li+1,j+1 =

⎧⎨
⎩

(–1)jli–j(i
j
)
, i ≥ j,

0, otherwise.

Moreover, we can conclude that 	(τ ) = AL–1TN (l – τ ).

Proof Using the binomial expansion of (l – τ )i, we have

(l – τ )i =
i∑

j=0

(–1)j
(

i
j

)
li–jτ j.

So, we get the following relation:

TN (l – τ ) = LTN (τ ), (5.8)



Karami et al. Advances in Continuous and Discrete Models         (2022) 2022:64 Page 11 of 29

where

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
l –1 0 · · · 0
l2 –2l 1 · · · 0
...

...
...

. . .
...

lN –
(N

1
)
lN–1 (N

2
)
lN–2 · · · (–1)N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.9)

Now, using Lemma 5.2 and relation (5.8), we obtain 	(τ ) = AL–1TN (l – τ ), which com-
pletes the proof. �

Note: As a consequence of Lemma 5.3, we have

C
τ Dα

l 	(τ ) = AL–1C
τ Dα

l TN (l – τ ) = AL–1[C
τ Dα

l 1, C
τ Dα

l (l – τ ), . . . , C
τ Dα

l (l – τ )N]T . (5.10)

Now, by taking the right Caputo fractional derivative operator of the vector TN (l – τ ) and
using (2.12), we obtain

C
τ Dα

l TN (l – τ ) =

⎡
⎢⎢⎢⎢⎣

0
�(2)

�(2–α) (l – τ )1–α

...
�(N+1)

�(N+1–α) (l – τ )N–α

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0
0 �(2)

�(2–α) (l – τ )–α · · · 0
...

...
...

...
0 0 · · · �(N+1)

�(N+1–α) (l – τ )–α

⎤
⎥⎥⎥⎥⎦TN (l – τ )

= MTN (l – τ ).

Furthermore, it can be written as follows:

C
τ Dα

l TN (l – τ ) = MTN (l – τ ) = MLTN (τ ) = MLA–1	(τ ). (5.11)

Therefore, substituting (5.11) into (5.10) yields that

C
τ Dα

l 	(τ ) = AL–1MLA–1	(τ ) = S(α)	(τ ). (5.12)

Indeed equation (5.12) determines an easy way for calculating the right Caputo fractional
derivative operational matrix of the GLPs vector 	(τ ).

6 Description of the proposed method
Herein, we will concentrate on the numerical solution of the FOCP defined in (3.1) by
applying the operational matrices for the GLPs and the spectral collocation technique.
To do this, first, the necessary optimality conditions for the problem are attained from
Theorem 3.1 as

C
0 D

α
τV(τ ) =

∂H
∂λ

(
τ ,V(τ ),W(τ ),λ(τ )

)
, (6.1)
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τD
α
Tλ(τ ) =

∂H
∂V

(
τ ,V(τ ),W(τ ),λ(τ )

)
, (6.2)

∂H
∂U

(
τ ,V(τ ),W(τ ),λ(τ )

)
= 0, (6.3)

V(0) = V0, λ(T) = 0. (6.4)

It should be mentioned that, in practice, we compute an expression for W(τ ) in terms of
V(τ ) and λ(τ ) from the condition given in (6.3) in a very straightforward manner. Also,
we can replace τD

α
Tλ(τ ) with C

τ D
α
Tλ(τ ) by using (2.10). Thus, we can rewrite the above-

mentioned system in the following form:

C
0 D

α
τV(τ ) = M

(
τ ,V(τ ),λ(τ )

)
, (6.5)

C
τ D

α
Tλ(τ ) = W

(
τ ,V(τ ),λ(τ )

)
, (6.6)

V(0) = V0, λ(T) = 0,

where M(τ ,V(τ ),λ(τ )) and W(τ ,V(τ ),λ(τ )) are known functions. Now, we can approxi-
mate V(τ ) and λ(τ ) as

V(τ ) ≈VN (τ ) =
N∑

i=0

Viμ
a,b
i (τ ) = V T	(τ ),

λ(τ ) ≈ λN (τ ) =
N∑

i=0

λiμ
a,b
i (τ ) = �T	(τ ),

(6.7)

where

V T = [V0,V1, . . . ,VN ], �T = [λ0,λ1, . . . ,λN ]

are unknown vectors which should be determined. By virtue of Sect. 5, the functions
C
0 D

α
τV(τ ) and C

τ D
α
Tλ(τ ) can be approximated in the following manner:

C
0 D

α
τV(τ ) ≈ τ–αV TS (α)	(τ ), C

τ D
α
Tλ(τ ) ≈ �TS(α)	(τ ). (6.8)

In addition, the boundary conditions expressed in (6.4) yield

V(0) = V T	(0) = V0, λ(T) = �T	(T) = 0. (6.9)

Substituting (6.7) and (6.8) into (6.5) and (6.6), the residuals of these equations can be
computed as follows:

R(τ ) = τ–αV TS (α)	(τ ) – M
(
τ , V T	(τ ),�T	(τ )

)
, (6.10)

R̃(τ ) = �TS(α)	(τ ) – W
(
τ , V T	(τ ),�T	(τ )

)
.

The application of the spectral collocation technique is based on forcing the residuals to
vanish at selected collocation nodes. There are even some other selections for choosing
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these nodes; one can use the following collocation nodes as well:

tj =
T
2

–
T
2

cos

(
π

N
j
)

, j = 0, 1, . . . , N , (6.11)

where tj, j = 0, 1, . . . , N , are the shifted Chebyshev–Gauss–Lobatto points in the interval
[0, T]. We should construct the associated system of (2N + 2) algebraic equations since
(2N + 2) unknown coefficients Vj and λj (j = 0, 1, . . . , N ) exist. For this purpose, the first
equation of (6.10) is collocated at the nodes ti, i = 1, . . . , N , and the second equation of
(6.10) is collocated at the nodes tk , k = 0, 1, . . . , N – 1, as follows:

R(ti) = 0, i = 1, 2, . . . , N , (6.12)

R̃(tk) = 0, k = 0, 1, . . . , N – 1.

Hence, the above-mentioned system contains 2N algebraic equations. Now, equations
given in (6.12) together with the boundary conditions (6.9) form a nonlinear (or linear)
system of algebraic equations in the unknown coefficients Vj and λj (j = 0, 1, . . . , N ) that
has (2N + 2) equations and (2N + 2) unknowns. We can utilize the Newton iterative tech-
nique for solving this system; then, by determining Vj and λj (j = 0, 1, . . . , N ), the desired
approximate solutions can be calculated from (6.7).

7 Numerical experiments
In this section, we introduce some examples to test the performance and efficiency of the
proposed method. These examples are selected from the literature for their importance
and repetition. They also cover a variety of FOCPs. In Examples 1, 2, 3, and 5, we consider
a linear time-invariant system with a quadratic performance index. Example 5 is a prac-
tical example with engineering applications. Moreover, a nonlinear time-varying system
with a quadratic performance index is presented in Example 4. For these examples, the
exact solutions when α = 1 are known, and we can compare them with the approximate
solutions obtained by the proposed method. The numerical simulations are implemented
by MAPLE 18 with Digits = 20. All computations are performed on a Core i5 PC Laptop
with 6 GB of RAM and 1.80 GHz of CPU to show no limitation on memory usage. In the
following examples, the parameter N denotes the number of the GLPs.

Example 1 ([14, 15, 18, 23, 43]) Consider the following FOCP:

MinJ(W) =
1
2

∫ 1

0

(
V

2(τ ) + W
2(τ )

)
dτ

subject to

C
0 D

α
τV(τ ) = –V(τ ) + W(τ ),

V(0) = 1.

The exact solution to this problem when α = 1 is as follows:

V
∗(τ ) = cosh(

√
2τ ) + θ sinh(

√
2τ ),
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Figure 1 Graphs of the approximate values and the absolute errors of J when α = 1 for some values of N in
Example 1

Figure 2 Graphs of the exact and numerical solutions ofV(τ ) for various values of α in Example 1

W
∗(τ ) = (1 +

√
2θ ) cosh(

√
2τ ) + (

√
2 + θ ) sinh(

√
2τ ),

where θ = – cosh(
√

2)+
√

2 sinh(
√

2)√
2 cosh(

√
2)+sinh(

√
2) . The minimum value of the performance index J when α = 1

is J∗ = 0.1929092980932. In Fig. 1, the approximate values and the absolute errors of J for
some values of N when α = 1 are plotted. Figures 2 and 3 compare the exact solutions and
the approximate solutions of V(τ ) and W(τ ) for various values of α and N = 8, respec-
tively. Tables 2 and 3 show a comparison between the approximate solutions obtained by
our method for various values of α at some values of τ and the exact solutions. In addition,
the CPU time for various values of α is included in Table 2. From these results, it is clear
that the approximate solutions at α = 1 are in very good agreement with the corresponding
exact solutions. Furthermore, as α approaches 1, the approximate solutions of V(τ ) and
W(τ ) converge to the exact solutions. The approximate values of J at α = 0.8, 0.9, and 1
for the proposed and several numerical methods are included in Table 4. We compare the
approximate values of J and the CPU time obtained using the methods in [44, 45] and the
proposed method in Table 5. From this table, it is clear that our method requires signifi-
cantly less CPU time. In Table 5, M1, M2, and N1 are the order of Bernoulli polynomials,
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Figure 3 Graphs of the exact and numerical solutions ofW(τ ) for α = 1 in Example 1

Taylor polynomials, and block-pulse functions, respectively. The absolute errors of V(τ )
and W(τ ) when α = 1 and N = 4, 6, 8, and 10 are shown in Figs. 4 and 5. These figures also
illustrate the fast convergence rate of the proposed method since the errors decay rapidly
by increasing the number of the GLPs. Moreover, Table 6 reports the maximum absolute
errors of V(τ ) and W(τ ) and the absolute errors of J given by the proposed method in
comparison to the methods in [18, 23] at α = 1 and N = 4, 6, 8, and 10. The obtained re-
sults show that the errors, specially to control variable W(τ ), are better for the proposed
method than those obtained in [18, 23]. From these tables and figures, it can be seen that
the state and the control variables are accurately approximated by our method.

Example 2 Consider the following FOCP:

MinJ(W) =
1
2

∫ 1

0

[(
V(τ ) – τα+1)2 +

(
W(τ ) – τα+1 – τ�(α + 2)

)2]dτ ,

subject to

C
0 D

α
τV(τ ) = –V(τ ) + W(τ ),

V(0) = 0.

For any value of α > 0, the exact solution to this problem is

V
∗(τ ) = τα+1, W

∗(τ ) = τα+1 + τ�(α + 2).

The minimum value of the performance index J when α = 1 is J∗ = 0. Figure 6 compares
the exact solutions and the approximate solutions of V(τ ) and W(τ ) for N = 8 and α = 0.5,
0.7, 0.9, and 1, respectively. In Fig. 7, we plot the state variableV(τ ) and the control variable
W(τ ) for α = 0.5 and some values of N along with the exact solutions. The absolute errors
of V(τ ) and W(τ ) for various values of α are listed in Tables 7 and 8. In addition, the
CPU time and the absolute errors of J for various values of α are included in these tables,
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Table 4 The results obtained for J with α = 0.8, 0.9, and 1 via several numerical schemes for
Example 1

Method J

α = 0.8 α = 0.9 α = 1

Legendre wavelets [20] 0.16707 0.17952 0.19290
Homotopy perturbation method [46] 0.16729 0.17952 0.19290
Laguerre polynomials [47] 0.16982 0.18155 0.19291
Hermite polynomials [23] 0.17999 0.18624 0.19290
Variational iteration method [14] 0.16711 0.17953 0.19290
Predictor-corrector method [15] 0.16711 0.17954 0.19290
Exact solution [43] Not reported Not reported 0.19290
The proposed method 0.16777 0.17994 0.19290

Table 5 The results obtained for J and CPU time with α = 1 via several numerical schemes for
Example 1

Method J CPU Time

Hybrid of block-pulse and Bernoulli polynomials [44]
M1 = 3 and N1 = 1 0.1929094450245 4.79688
M1 = 5 and N1 = 1 0.1929092980929 6.25000

Hybrid of block-pulse functions and Taylor polynomials [45]
M2 = 3 and N1 = 1 0.1929094450240 2.42188
M2 = 5 and N1 = 1 0.1929092980930 3.73225

The proposed method
N = 3 0.1929250524756 0.469
N = 5 0.1929092986997 0.484
N = 7 0.1929092980932 0.500

Exact 0.1929092980932

respectively. From these results, it is worthwhile to note that the approximate solutions
obtained by the proposed method completely coincide with the exact solutions.

Example 3 ([14, 21, 25]) Consider the following FOCP:

MinJ(W) =
1
2

∫ 1

0

(
V

2
1(τ ) + V

2
2(τ ) + W

2(τ )
)

dτ

subject to

C
0 D

α
τV1(τ ) = –V1(τ ) + V2(τ ) + W(τ ),

C
0 D

α
τV2(τ ) = –2V2(τ ),

V1(0) = 1, V2(0) = 1.

We obtain the exact solution to this problem when α = 1 as follows:

V
∗
1(τ ) = –

3
2

e–2τ + (
√

2 + 1)θ1e–
√

2τ + (–
√

2 + 1)θ2e
√

2τ ,

V
∗
2(τ ) = e–2τ ,

W
∗(τ ) =

1
2

e–2τ – θ1e–
√

2τ – θ2e
√

2τ ,
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Figure 4 Graphs of the absolute errors ofV(τ ) when α = 1 for some values of N in Example 1

where θ1 = e–2√
2+5e

√
2–e–2

2(e–
√

2√
2+e

√
2√

2–e–
√

2+e
√

2)
and θ2 = e–2√

2–5e–
√

2+e–2

2(e–
√

2√
2+e

√
2√

2–e–
√

2+e
√

2)
. The minimum value

of the performance index J when α = 1 is J∗ = 0.4319872403. Figure 8 compares the exact
solutions and the approximate solutions of V1(τ ), V2(τ ), and W(τ ) for various values of
α and N = 8, respectively. From this figure, it is clear that the approximate solutions when
α = 1 are in very good agreement with the corresponding exact solutions. Furthermore,
as α approaches 1, the approximate solutions of V1(τ ), V2(τ ), and W(τ ) converge to the
exact solutions. Table 9 reports the absolute errors of V1(τ ), V2(τ ), and W(τ ) obtained by
the proposed method in comparison to the method in [25] at α = 1 and N = 5 and 8. The
yielded results show that the approximate solutions are more accurate for the proposed
method than the method in [25]. Moreover, the absolute errors of V1(τ ), V2(τ ), and W(τ )
for N = 11 and α = 1 are shown in Fig. 9. These results also illustrate the fast convergence
rate of the proposed method since the errors decay rapidly by increasing the number of
the GLPs. The approximate values of J at α = 0.5, 0.8, 0.9, 0.99, and 1 for the proposed
method and the methods in [25] are included in Table 10. In addition, the CPU time for
various values of α is included in Table 10. From these tables and figures, it can be seen that
the state and the control variables are accurately approximated by the proposed method.
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Figure 5 Graphs of the absolute errors ofW(τ ) when α = 1 for some values of N in Example 1

Example 4 ([48, 49]) Consider the following FOCP:

MinJ(W) =
∫ 1

0

[(
V(τ ) – τ 2)2 +

(
W(τ ) – τe–τ +

1
2

eτ2–τ

)2]
dτ

subject to

C
0 D

α
τV(τ ) = eV(τ ) + 2eτ

W(τ ),

V(0) = 0.

The exact solution to this problem when α = 1 is as follows:

V
∗(τ ) = τ 2, W

∗(τ ) = τe–τ –
1
2

eτ2–τ .

The minimum value of the performance index J when α = 1 is J∗ = 0. Figure 10 compares
the exact solutions and the approximate solutions of V(τ ) and W(τ ) for various values
of α and N = 6, respectively. From this figure, it is clear that the approximate solutions
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Table 6 A comparison between the results obtained by our method with those obtained in [18, 23]
with various values of N for Example 1

N |J – J∗| |V –V∗| |W –W∗|
The results obtained in [18]
4 1.024× 10–6 1.782× 10–4 5.325× 10–3

6 6.795× 10–11 1.015× 10–6 4.923× 10–5

8 1.554× 10–15 3.433× 10–9 2.405× 10–7

10 6.661× 10–16 7.636× 10–12 7.215× 10–10

The results obtained in [23]
4 1.469× 10–7 4.225× 10–5 5.404× 10–4

6 2.539× 10–12 1.232× 10–7 2.250× 10–6

8 4.670× 10–18 2.097× 10–10 5.021× 10–9

10 7.951× 10–18 2.354× 10–13 6.973× 10–12

The results obtained by our method
4 6.879× 10–8 6.783× 10–5 3.567× 10–5

6 1.181× 10–12 1.949× 10–7 1.038× 10–7

8 5.820× 10–18 3.300× 10–10 1.771× 10–10

10 8.000× 10–20 3.725× 10–13 1.999× 10–13

Figure 6 Graphs of the exact and numerical solutions for various values of α in Example 2

Figure 7 Graphs of the exact and numerical solutions when α = 0.5 for some values of N in Example 2
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Table 7 The results obtained for the absolute errors ofV(τ ) with various values of α along with CPU
time where N = 8 for Example 2

τ α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 0.95 α = 1

0.1 1.470× 10–4 1.116× 10–4 7.083× 10–5 3.469× 10–5 9.941× 10–6 3.019× 10–6 4.564× 10–20

0.2 1.706× 10–4 1.055× 10–4 5.868× 10–5 2.929× 10–5 1.217× 10–5 5.946× 10–6 1.072× 10–19

0.3 8.719× 10–5 3.705× 10–5 9.747× 10–6 2.331× 10–6 4.867× 10–6 3.366× 10–6 5.396× 10–20

0.4 1.057× 10–4 7.278× 10–5 4.266× 10–5 1.946× 10–5 4.847× 10–6 1.098× 10–6 4.341× 10–20

0.5 1.086× 10–4 5.281× 10–5 2.186× 10–5 8.012× 10–6 3.183× 10–6 1.826× 10–6 1.950× 10–19

0.6 6.059× 10–5 4.533× 10–5 2.886× 10–5 1.591× 10–5 7.140× 10–6 3.630× 10–6 2.778× 10–19

0.7 1.228× 10–4 6.372× 10–5 2.814× 10–5 9.236× 10–6 8.868× 10–7 4.396× 10–7 1.091× 10–19

0.8 1.366× 10–5 5.103× 10–6 8.351× 10–6 5.165× 10–6 1.169× 10–6 2.235× 10–8 1.541× 10–19

0.9 7.047× 10–5 4.508× 10–5 2.470× 10–5 1.177× 10–5 4.707× 10–6 2.331× 10–6 4.786× 10–21

1.0 1.350× 10–4 4.863× 10–5 1.479× 10–5 4.073× 10–6 1.542× 10–6 9.608× 10–7 3.491× 10–19

CPU Time 0.594 s 0.578 s 0.593 s 0.578 s 0.593 s 0.562 s 0.547 s

Table 8 The results obtained for the absolute errors ofW(τ ) and J with various values of α where
N = 8 for Example 2

τ α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 0.95 α = 1

0.1 9.131× 10–6 4.345× 10–6 1.058× 10–6 9.630× 10–7 1.591× 10–6 1.157× 10–6 6.879× 10–20

0.2 2.088× 10–5 1.105× 10–5 5.484× 10–6 3.003× 10–6 1.845× 10–6 1.144× 10–6 8.012× 10–20

0.3 1.636× 10–5 9.146× 10–6 4.195× 10–6 1.027× 10–6 5.267× 10–7 5.820× 10–7 9.709× 10–20

0.4 1.353× 10–5 7.694× 10–6 3.480× 10–6 7.930× 10–7 4.785× 10–7 5.038× 10–7 1.156× 10–19

0.5 1.374× 10–5 7.210× 10–6 3.602× 10–6 1.932× 10–6 1.118× 10–6 6.768× 10–7 1.064× 10–19

0.6 8.078× 10–6 4.724× 10–6 2.528× 10–6 1.404× 10–6 8.307× 10–7 5.069× 10–7 6.959× 10–20

0.7 1.468× 10–5 7.651× 10–6 3.406× 10–6 1.061× 10–6 1.579× 10–8 1.510× 10–7 4.455× 10–20

0.8 2.270× 10–6 1.870× 10–6 9.835× 10–7 2.235× 10–7 1.541× 10–7 1.544× 10–7 5.468× 10–20

0.9 9.783× 10–6 5.434× 10–6 2.728× 10–6 1.234× 10–6 4.675× 10–7 2.197× 10–7 5.632× 10–20

1.0 3.57× 10–18 1.160× 10–18 8.20× 10–19 1.09× 10–19 6.5× 10–20 4.89× 10–20 5.769× 10–20

|J – J∗| 6.119× 10–9 2.198× 10–9 6.730× 10–10 1.643× 10–10 2.661× 10–11 6.432× 10–12 1.233× 10–38

Figure 8 Graphs of the exact and numerical solutions for various values of α in Example 3

for the case of α = 1 are in very good agreement with the corresponding exact solutions.
Furthermore, as α approaches 1, the approximate solutions of V(τ ) and W(τ ) converge to
the exact solutions. The absolute errors of V(τ ) and W(τ ) at α = 1 and N = 5 are shown
in Fig. 11. Moreover, Table 11 reports the absolute errors of V(τ ) and W(τ ) obtained by
our method in comparison to the method in [48] at α = 1 and N = 5. Table 12 lists the
maximum absolute errors of V(τ ) and W(τ ) and the absolute errors of J given by the
proposed method in comparison to the method in [49] at α = 1 and N = 6. The obtained
results show that the errors, specially to W(τ ), are better for the proposed method than
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Table 9 The comparison of absolute errors with the method in [25] for N = 5 and 8 in Example 3

τ N = 5 N = 8

V1(τ ) V2(τ ) W(τ ) V1(τ ) V2(τ ) W(τ )

The results obtained in [25]
0.0 5.0873× 10–3 1.1759× 10–4 3.7671× 10–2 6.4701× 10–4 9.2045× 10–8 2.7317× 10–3

0.2 1.3401× 10–3 9.6759× 10–6 6.1908× 10–3 2.4746× 10–5 7.0205× 10–10 5.9560× 10–4

0.4 4.8751× 10–4 1.7241× 10–6 1.1315× 10–2 5.0303× 10–5 1.1698× 10–9 1.2007× 10–4

0.6 4.3069× 10–4 4.3754× 10–7 1.0657× 10–2 3.4906× 10–5 9.3245× 10–10 7.3763× 10–5

0.8 1.2658× 10–3 7.6358× 10–6 4.7850× 10–3 3.8725× 10–5 1.6391× 10–9 5.4601× 10–4

1.0 4.8997× 10–3 1.1139× 10–4 3.4480× 10–2 6.4545× 10–4 8.9541× 10–8 2.5760× 10–3

The results obtained by our method
0.0 0.0 2× 10–20 3.6908× 10–9 0.0 8.0× 10–20 5.6978× 10–16

0.2 2.3436× 10–5 2.1666× 10–5 7.8041× 10–6 5.8730× 10–9 4.3139× 10–9 1.8615× 10–9

0.4 1.6825× 10–5 1.5141× 10–5 5.4356× 10–6 8.0689× 10–9 5.9364× 10–9 2.5491× 10–9

0.6 7.0832× 10–6 7.1373× 10–6 2.5745× 10–6 7.8782× 10–9 5.7997× 10–9 2.4855× 10–9

0.8 2.1970× 10–5 2.0483× 10–5 7.3610× 10–6 5.0522× 10–9 3.7254× 10–9 1.5878× 10–9

1.0 4.7942× 10–8 3.0254× 10–8 2.0× 10–20 6.9046× 10–15 4.0177× 10–15 6.0× 10–21

Figure 9 Graphs of the absolute errors when α = 1 and N = 12 in Example 3

Table 10 A comparison between the results obtained by our method with those obtained in [14, 21]
for J and the CPU time with some values of α for Example 3

α Method in [14] Method in [21] Our method CPU Time

1.0 0.4319089 0.43198 0.43198724 0.656 s
0.99 0.4290055 0.42900 0.42909532 0.734 s
0.9 0.4030897 0.40308 0.40385286 0.750 s
0.8 0.3760124 0.37627 0.37758212 0.766 s
0.5 – 0.32909 0.31047699 0.797 s

those obtained in [48, 49]. From these tables and figures, it can be seen that the state and
the control variables are accurately approximated by the proposed method.

Example 5 Consider the vibration of a mass-spring-damper system subjected to an ex-
ternal force. In particular, we aim to examine the step forcing functions, impulses, and
response to harmonic excitations. Mostly, motors, rotating machinery, and so on lead to
periodic motions of structures to induce vibrations into other mechanical devices and
structures nearby [50]. Here, the action of an actuator force caused the control force
F(τ ) = bW(τ ), where b is a constant. On summing the forces, the equation for the forced



Karami et al. Advances in Continuous and Discrete Models         (2022) 2022:64 Page 24 of 29

Figure 10 Graphs of exact and numerical solutions for various values of α in Example 4

Figure 11 Graphs of the absolute errors when α = 1 and N = 5 in Example 4

Table 11 A comparison between the absolute errors obtained by our method with those obtained
in [48] with N = 5 for Example 4

τ Our method Method in [48]

V(τ ) W(τ ) V(τ ) W(τ )

0.0 0.0 4.7460× 10–20 5.1454× 10–27 2.7547× 10–4

0.1 2.2357× 10–20 5.5117× 10–20 5.9358× 10–5 3.3361× 10–5

0.2 2.4210× 10–20 4.4821× 10–20 4.9622× 10–5 4.2236× 10–5

0.3 1.9896× 10–20 2.8470× 10–20 2.3649× 10–5 9.7096× 10–5

0.4 1.7317× 10–20 1.4329× 10–20 7.1658× 10–6 5.7043× 10–5

0.5 1.9448× 10–20 6.4627× 10–21 6.1834× 10–6 1.3750× 10–5

0.6 2.5851× 10–20 4.7187× 10–21 1.4421× 10–5 3.8228× 10–5

0.7 3.4182× 10–20 5.6070× 10–21 2.0724× 10–5 3.7231× 10–6

0.8 4.1702× 10–20 4.5163× 10–21 1.6485× 10–5 5.7195× 10–5

0.9 4.6790× 10–20 1.2947× 10–22 3.0606× 10–6 2.9022× 10–5

1.0 5.0449× 10–20 2.1746× 10–36 8.0434× 10–7 1.0987× 10–4
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Table 12 A comparison between the absolute errors obtained by our method with those obtained
in [49] with N = 6 for Example 4

Method |V –V∗| |W –W∗| |J – J∗|
Method in [49] 1.00× 10–30 1.68× 10–5 2.10× 10–31

Our method 5.46× 10–30 2.01× 10–29 1.64× 10–58

Figure 12 (a) Schematic of the forced mass-damper system assuming no friction on the surface and (b) free
body diagram of the system of part (a) [50] in Example 5

vibration of the system in Fig. 12 becomes

mV̈(τ ) + cV̇(τ ) + kV(τ ) = bW(τ ),

where m, c, and k are constants. We remind that the mass-spring-damper system can
be used to model the response of most dynamic systems as well as study the elastic-
ity and mechanical behavior of nonlinear and viscoelastic material. Based on the num-
ber and arrangement (parallel or series combination) of the elements of this system (i.e.
mass, spring, or damper), the mass-spring-damper systems have various practical appli-
cations, including but not limited to suspension systems of vehicles, vibrations of building
on viscoelastic-like foundations, simulation of the motion of tendons and muscle defor-
mations, and computer animations. With the specific application of the linear regulator
problem in vibration suppression, extracted from [23], we find the following FOCP:

MinJ(W) =
1
2

∫ 1

0

(
V

2
1(τ ) + aW2(τ )

)
dτ

subject to

C
0 D

α
τV1(τ ) = V2(τ ),

C
0 D

α
τV2(τ ) = –

k
m
V1(τ ) –

c
m
V2(τ ) +

b
m
U(τ ),

V1(0) = 1, V2(0) = 1.

Choosing c = 2 and a = b = m = k = 1, we obtain the exact solution when α = 1 as follows:

V
∗
1(τ ) =

(
2,448,542,446,934
574,274,351,289

e– 1
2
√

2+2
√

2τ ) –
1,056,415,030,945

26,501,017,876,847
e

1
2
√

2+2
√

2τ )
)
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× sin

(
1
2

√
–2 + 2

√
2τ

)

+
(

182,130,319,402
2,268,083,818,399

e
1
2
√

2+2
√

2τ ) +
717,441,983,179
780,083,809,860

e– 1
2
√

2+2
√

2τ )
)

× cos

(
1
2

√
–2 + 2

√
2τ

)
,

V
∗
2(τ ) =

(
–

4,619,908,248,187
905,327,915,158

e– 1
2
√

2+2
√

2τ ) –
247,515,980,953

3,080,802,211,846
e

1
2
√

2+2
√

2τ )
)

× sin

(
1
2

√
–2 + 2

√
2τ

)

+
(

107,822,929,289
1,538,469,380,682

e
1
2
√

2+2
√

2τ ) +
1,430,646,451,393
1,538,469,380,682

e– 1
2
√

2+2
√

2τ )
)

× cos

(
1
2

√
–2 + 2

√
2τ

)
,

W
∗(τ ) =

(
–

1,038,973,168,371
1,369,025,535,412

e– 1
2
√

2+2
√

2τ ) –
476,880,084,019

1,486,948,346,550
e

1
2
√

2+2
√

2τ )
)

× sin

(
1
2

√
–2 + 2

√
2τ

)

+
(

4,059,677,169,262
15,559,760,490,977

e
1
2
√

2+2
√

2τ ) –
584,626,462,642

1,035,676,735,491
e– 1

2
√

2+2
√

2τ )
)

× cos

(
1
2

√
–2 + 2

√
2τ

)
.

The minimum value of the performance index J when α = 1 is J∗ = 0.6631296243. In
Fig. 13, the approximate values and the absolute errors of J for some values of N when
α = 1 are plotted. Figure 14 compares the exact solutions and the approximate solutions
of V1(τ ), V2(τ ), and W(τ ) for various values of α at N = 8, respectively. In Table 13, the
absolute errors of V1(τ ), V2(τ ), and W(τ ) for N = 4 and 10 at α = 1 along with the CPU
time are listed. Moreover, the absolute errors of V1(τ ), V2(τ ), and W(τ ) when α = 1 and

Figure 13 Graphs of the approximate values and absolute errors of J when α = 1 for some values of N in
Example 5
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Figure 14 Graphs of the exact and numerical solutions for various values of α in Example 5

Table 13 The absolute errors obtained by our method with N = 4, 10 and α = 1 along with the CPU
time for Example 5

τ V1(τ ) V2(τ ) W(τ )

N = 4 N = 10 N = 4 N = 10 N = 4 N = 10

0.1 8.155× 10–5 3.247× 10–14 1.067× 10–4 5.942× 10–14 4.695× 10–5 1.659× 10–14

0.2 5.210× 10–5 6.518× 10–14 5.954× 10–5 1.171× 10–13 1.849× 10–5 3.106× 10–14

0.3 1.353× 10–4 1.663× 10–13 1.695× 10–4 2.877× 10–13 6.724× 10–5 6.810× 10–14

0.4 9.583× 10–5 1.746× 10–13 1.272× 10–4 2.946× 10–13 5.656× 10–5 6.411× 10–14

0.5 2.195× 10–5 1.625× 10–14 1.779× 10–5 1.930× 10–14 1.211× 10–6 1.975× 10–15

0.6 1.248× 10–4 1.593× 10–13 1.508× 10–4 2.764× 10–13 5.491× 10–5 6.597× 10–14

0.7 1.311× 10–4 1.792× 10–13 1.663× 10–4 3.030× 10–13 6.734× 10–5 6.653× 10–14

0.8 2.411× 10–5 8.725× 10–14 3.714× 10–5 1.433× 10–13 1.984× 10–5 2.837× 10–14

0.9 1.017× 10–4 4.781× 10–14 1.229× 10–4 7.761× 10–14 4.597× 10–5 1.473× 10–14

1.0 6.838× 10–8 6.470× 10–18 6.756× 10–8 4.836× 10–17 0.0 2× 10–20

CPU Time 0.641 s 0.765 s – – – –

Figure 15 Graphs of the absolute errors when α = 1 and N = 11 in Example 5

N = 11 are shown in Fig. 15. These results also illustrate the fast convergence rate of the
proposed method since the errors decay rapidly by increasing the number of the GLPs.

8 Conclusions and remarks
In this paper, we established an accurate and efficient new scheme to solve a class of
FOCPs. By applying the GLPs, determining the operational matrices of fractional deriva-
tives and the necessary optimality conditions, we reduced the main problem to the simple
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problem of solving a system of algebraic equations. The proposed scheme is illustrated in
some test examples, and the results demonstrate that our scheme is perfectly valid. It is
also shown that the new scheme is quite reliable, simple, and reasonably accurate to solve
FOCPs. As further research works, we will use the proposed scheme for delay FOCPs.
Moreover, the new method has the ability to be applied for solving variable order FOCPs
in new research.
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