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Abstract
We devise a numerical scheme for computing arc-length parameterized curves of low
bending energy that are confined to convex domains. We address the convergence
of the discrete formulations to a continuous model and the unconditional stability of
an iterative scheme. Numerical simulations confirm the theoretical results and lead to
a classification of observed optimal curves within spheres.
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1 Introduction
Equilibrium configurations of thin elastic rods have been of interest since the times of
Euler. The mathematical modeling of these deformable structures has been reduced from
three dimensions to a one-dimensional problem for the centerline of the rod u : I → R

3;
see [8, 22, 29, 32, 37]. In the bending regime the rod is inextensible so that |u′| = 1 on I .
Considering a circular cross section and omitting twist contributions, the elastic energy
reduces to the functional

Ebend[u] =
κ

2

∫
I

∣∣u′′(x)
∣∣2 dx

for a parameter κ > 0 that describes the bending rigidity. Elasticae, i.e., rods of minimal
bending energy, can be stated explicitly, e.g., for periodic boundary conditions [33, 34].
Applications of elastic thin rods include DNA modeling [1, 27, 43], the movement of actin
filaments in cells [36] or of thin microswimmers [41], the fabrication of textiles [30], and
investigating the reach of a rod injected into a cylinder [38].

To obtain minimally bent elastic rods, the bending energy can be reduced by a gradient-
flow approach. This method can be used for analytic considerations, cf. for instance
[19, 26, 34, 39, 42] and numerical computations [2–7, 13–15, 20, 21, 25, 45]. An efficient
finite-element approach with an accurate treatment of the inextensibility condition can
be used to find equilibria of free elastic rods [7] and self-avoiding rods [12, 13]. It can also
be generalized to include twist contributions defined via torsion quantities [11]. We fol-
low common conventions and refer to rods as elastic curves when twist contributions are
omitted.
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In this paper, we prpose a generalization of the existing scheme [7] to calculate elasticae
of confined elastic curves. Confinements of elastic structures arise on a variety of length
scales, such as DNA plasmids or biopolymers inside a cell or chamber [18, 40]. The bound-
ary of closely packed elastic sheets or a wire in a container can be modeled as confined
elastic rods in two dimensions [16, 23]. Planar settings have been addressed numerically
and analytically in [24, 46], and a numerical scheme for thick elastic curves in containers
is devised in [44].

We propose an approach that can be used for rods embedded in arbitrary dimensions
confined to convex domains. For the mathematical modelling, we use a gradient flow to
minimize the bending energy. The admissible rod configurations during the flow are re-
stricted to a domain D ⊂ R

3.
The task to unbend a rod inside D can be translated to minimizing Ebend among all

u ∈AD =
{

v ∈ H2(I;R3) : v ∈ D and
∣∣v′∣∣ = 1 a.e., Lbc(v) = �bc

}
.

Since the constraint v(x) ∈ D will be treated via a penalty approach, we also make use of
the set of unconstrained curves

A =
{

v ∈ H2(I;R3) :
∣∣v′∣∣ = 1 a.e., Lbc(v) = �bc

}
.

The bounded linear operator Lbc : H2(I;R3) → R
� realizes appropriate boundary condi-

tions, e.g., periodic boundary conditions are imposed via Lbc(v) = 0 with

Lbc(v) =
(
v(b) – v(a), v′(b) – v′(a)

)

if I = (a, b). Since we aim at the construction of an efficient numerical scheme, we restrict
our considerations to those subsets D that can be written as finite intersections of simple
quadratic confinements Dr , r = 1, 2, . . . , rD, i.e.,

D =
rD⋂
r=1

Dr , Dr =
{

y ∈R
3 : |y|2Dr = y · GDr y ≤ 1

}

for symmetric positive semidefinite matrices GDr ∈ R
3×3. We call the finite intersection

a composite quadratic confinement. Our scheme therefore excludes the sets defined by,
e.g., other vector norms, such as D = {y ∈ R

3 : |y|2p ≤ 1} with p �= 2. For ease of presenta-
tion, we often consider one set Dr and then omit the index r. Some basic simple quadratic
confinements are the ball with radius R and GD = I3/R2, the ellipsoid with radii R1, R2, R3

and (GD)ij = δij/R2
i , or the space between two parallel planes with distance 2R with normal

vector n and GD = nnt/R2. Infinite cylinders have (GD)ii = 0 for exactly one index i. Boxes
and finite cylinders can be constructed as composite quadratic confinements. In general,
any simple or composite quadratic confinement is a convex, closed, and connected set.
We remark that our convergence analysis also applies to nonquadratic confinements, but
the efficiency of the devised iterative scheme substantially depends on this feature.

We enforce the confinement via a potential approach, so a nonnegative term is added
to the bending energy whenever the curve violates the confining restrictions. We define
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the potential VD : R3 →R for a simple quadratic confinement D that vanishes in D and is
strictly positive on R

3\D via

VD(y) =
1
2
(|y|D – 1

)2
+ =

1
2
|y|2D +

1
2

V cv
D (y),

where the concave part V cv
D is given by the continuous function

V cv
D (y) =

⎧⎨
⎩

–|y|2D if y ∈ D,

–2|y|D + 1 otherwise.

The potential is used to define the penalizing confinement energy functional

ED[u] =
∫

I

∣∣u(x)
∣∣2
D + V cv

D
(
u(x)

)
dx,

which is nonnegative by the definition of the potential and zero if and only if the curve en-
tirely lies within D. For a composite confinement defined via a family (Dr)r=1,...,rD of simple
quadratic confinements, we sum the corresponding confinement energies up, i.e.,

ED[u] =
rD∑
r=1

EDr [u], VD(y) =
rD∑
r=1

VDr (y). (1)

We remark that translated domains and half-spaces, e.g., D = {y ∈ R
3 : |y – yD|2D ≤ 1} and

D = {y ∈R
3 : aD · y ≤ 1}, can be similarly treated.

Given ε > 0, a curve uε ∈A is called an (approximately) confined elastica if it is stationary
for the functional

Eε[u] = Ebend[u] +
1

2ε
ED[u]

in the setA. If VD(uε) = 0 almost everywhere on I , then the rod is called an exactly confined
elastica. The parameter ε determines the steepness of the quadratic well potential and
defines a length-scale for the penetration depth of the curve into the space outside of D.

Considering a simple quadratic confinement D ⊂R
3, we let VD ∈ C1(R3;R) be the corre-

sponding quadratic-well potential and choose ε > 0. Trajectories u ∈ H1([0, T]; L2(I;R3))∩
L∞([0, T];A) are defined by gradient flow evolutions. In particular, for an inner product
(·, ·)� on L2(I;R3) and an initial configuration u(0, x) = u0(x), we define the temporal evo-
lution as the solution of the time-dependent nonlinear system of partial differential equa-
tions

(∂tu, v)� + κ
(
u′′, v′′) + ε–1(u, GDv)

= –(2ε)–1(∇V cv
D (u), v

)
–

(
λu′, v′) (2)

for test functions v ∈ V with a suitable set V and all t ∈ [0, T]. The function λ ∈ L1([0, T] ×
I) is a Lagrange multiplier associated with the arc-length condition. Confined elasticae are
stationary points for (2).
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For time discretization, we use backward differential quotients. Let τ > 0 be the fixed
time-step, and let k ≥ 0 be a nonnegative integer. We set u0 := u0 and define the time step

dtuk+1 =
uk+1 – uk

τ
.

The gradient flow system is evaluated implicitly except for the concave confinement en-
ergy, which is handled explicitly due to its nonlinearity and antimonotonicity, and the
Lagrange multiplier term, which is treated semiimplicitly. We hence have

(
dtuk+1, v

)
�

+ κ
([

uk+1]′′, v′′) + ε–1(uk+1, GDv
)

= –(2ε)–1(∇V cv
D

(
uk), v

)
–

(
λk+1[uk]′, v′) (3)

for suitable test curves v ∈ V . To ensure that the parameterization by arc-length is approx-
imately preserved throughout the gradient flow, the constraint |[uk]′|2 = 1 is linearized.
This yields the first-order orthogonality condition

[
uk]′ · [dtuk+1]′ = 0 on I. (4)

By imposing the same condition on test curves, i.e.,

[
uk]′ · v′ = 0 on I, (5)

the Lagrange multiplier term disappears in (4). Given u0, u1, . . . , uk ∈ H2(I;R3), there are
unique functions dtuk+1 ∈ H2(I;R3) that solve the gradient flow equation (3) with all v
satisfying (5) and Lbc[v] = 0. This is a direct consequence of the Lax–Milgram lemma,
provided that v �→ ‖v‖� + ‖v′′‖ defines an equivalent norm on the kernel of Lbc as a closed
subspace of H2(I;R3).

For numerical computations, we subdivide I into a partition Ph of maximal length h,
which can be represented by the nodes x0 < x1 < · · · < xN . We use the space of piece-
wise cubic, globally continuously differentiable splines on Ph as a conforming subspace
Vh ⊂ H2(I). On an interval [xi, xi+1], these functions are entirely defined by the values and
the derivatives at the endpoints. We also employ the space of piecewise linear, globally
continuous finite element functions determined by the nodal values and denote the set
by Wh. The corresponding interpolation operators are denoted as I3,h and I1,h, respec-
tively. We impose the orthogonality of dtuk+1

h and uk
h only at the nodes. The confinement

quantities are evaluated by mass lumping, so only the values

(v, w)h :=
∫

I
I1,h(v · w) dx

at the nodes are required. In the nodal points the concavity of V cv
D is used to prove an

energy monotonicity property.
We consider a controlled violation of the arclength constraint at the nodes of the parti-

tioning determined by a parameter δh ≥ 0 and define the discrete admissible set via

Ah :=
{

uh ∈ V 3
h :

∣∣∣∣u′
h(xi)

∣∣2 – 1
∣∣ ≤ δh, i = 0, 1, . . . , N , Lbc[uh] = �bc

}
.
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The set of test functions relative to uh is

Fh[uh] :=
{

vh ∈ V 3
h : u′

h(xi) · v′
h(xi) = 0, i = 0, 1, . . . , N , Lbc[vh] = 0

}
.

We thus obtain the following fully practical numerical scheme to compute confined elas-
ticae: Given u0

h ∈Ah, define u1
h, . . . , uk

h ∈ V 3
h by calculating dtuk+1

h ∈Fh[uk
h] such that

(
dtuk+1

h , vh
)
�

+ κ
([

uk
h
]′′ + τ

[
dtuk+1

h
]′′, v′′

h
)

+ ε–1(uk
h + τdtuk+1

h , GDvh
)

h

= –(2ε)–1(∇V cv
D

(
uk

h
)
, vh

)
h

(6)

for all vh ∈Fh[uk
h].

The key feature of our numerical method is that it detects stationary configurations of
low energy. It can in general not be guaranteed that these are global minimizers, but the
stable symmetries observed in the experiments for different starting values indicate that
this is often the case. Our convergence theory assumes almost global discrete minimizers.
Different approaches based on working with the Euler–Lagrange equations or using addi-
tional properties of the energy functional can lead to more general convergence theories
but are beyond the scope of our paper.

The remainder of the paper is structured into a first part proving the convergence of
the proposed numerical scheme and into a second part that presenting the results of nu-
merical experiments and describes confined elasticae for closed rods in balls. The numer-
ical simulations were done in the web application Knotevolve [9], which is accessible at
aam.uni-freiburg.de/knotevolve.

2 Convergence results
In this section, we provide convergence results following ideas from [10]. The first re-
sult establishes the unconditional variational convergence of the discrete minimization
problems to the continuous one defining confined elasticae. The following partial 
 con-
vergence result relies on a regularity condition and is a consequence of conformity prop-
erties of the discrete model. We assume the setting introduced above, in particular, that
Lbc : H2(I;R3) → R

� is a bounded linear operator depending on the boundary values of
a function and its derivatives and that D ⊂ R

3 is convex and closed.

Proposition 1 Define Eh : H2(I;R3) →R∪ {+∞} via

Eh,ε[uh] =
κ

2

∫
I

∣∣u′′
h
∣∣2 dx +

1
2ε

∫
I
I1,hVD(uh) dx

if uh ∈Ah and Eh[uh] = +∞ if uh ∈ H2(I;R3) \Ah. Analogously, let

Ebend[u] =
κ

2

∫
I

∣∣u′′∣∣2 dx

for u ∈AD and Ebend[u] = +∞ if u ∈ H2(I;R3) \AD.
(i) For every sequence (uh)h>0 ⊂ H2(I;R3) with weak limit u ∈ H2(I;R3), we have

Ebend[u] ≤ lim inf(h,ε)→0 Eh,ε[uh].

http://aam.uni-freiburg.de/knotevolve
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(ii) For every u ∈AD with u ∈ H3(I;R3), there exists a sequence (uh)h>0 ⊂ H2(I;R3) such
that lim(h,ε)→0 Eh,ε[uh] = Ebend[u].

Proof Throughout this proof, we write h → 0 for a sequence (h, ε) → 0.
(i) We consider a sequence (uh)h>0 ⊂ H2(I;R3) and a limit u ∈ H2(I;R3) with uh ⇀ u

in H2(I;R3) as h → 0. The compact embedding of H2 into L2 allows us to assume (af-
ter extraction of a subsequence) that uh → u strongly in L2(I;R3). To show that E[u] ≤
lim infh→0 Eh,ε[uh], it suffices to consider the case that the limit inferior is finite. Since
|I1,h|u′

h|2 – 1| ≤ δh, we find that

∥∥∣∣u′
h
∣∣2 – 1

∥∥
L2(I) ≤ ∥∥∣∣u′

h
∣∣2 – I1,h

∣∣u′
h
∣∣2∥∥

L2(I) +
∥∥I1,h

∣∣u′
h
∣∣2 – 1

∥∥
L2(I)

≤ ch
∥∥(∣∣u′

h
∣∣2)′∥∥

L2(I) + cδh

≤ ch
∥∥u′′

h
∥∥

L2(I)

∥∥u′
h
∥∥

L∞(I) + cδh,

which implies that |u′|2 = 1 in I . Similarly, since ‖I1,hVD(uh)‖L1(I) → 0, it follows that u ∈ D
in I . Since the bending energy is weakly lower semicontinuous and the potential term is
nonnegative, we deduce the stated inequality.

(ii) Given u ∈ AD such that u ∈ H3(I;R3), we define uh = I3,hu and note that uh → u in
H2(I;R3) and uh(xi) ∈ D as well as |u′

h(xi)| = 1 for all i = 0, 1, . . . , N , in particular, uh ∈ Ah.
This implies that limh→0 Eh,ε[uh] = Ebend[u]. �

Remark 2 The regularity condition can be avoided if a density result for inextensible con-
fined curves in the spirit of [31] is available. Alternatively, a standard regularization of a
given curve u ∈ AD can be considered following [11, 14], which requires an appropriate
scaling of the discretization and penalty parameters.

The proposition implies the convergence of discrete (almost) minimizers, provided that
the boundary conditions imply a coercivity property and exact minimizers are regular.
We say that uh ∈Ah is a discrete almost minimizer if Eh,ε[uh] ≤ minvh∈Ah Eh,ε[vh] + �h with
tolerance �h ≥ 0 satisfying �h → 0 as h → 0.

Corollary 3 Assume that minimizers u ∈ AD for Ebend satisfy u ∈ H3(I;R3) and that
there exists c > 0 such that ‖v‖H2(I) ≤ c‖v′′‖L2(I) for all v ∈ H2(I;R3) with Lbc[v] = 0 or D
is bounded. Then sequences of discrete almost minimizers for Eh,ε accumulate weakly in
H2(I;R3) at minimizers for Ebend.

Proof The assumed inequality implies that discrete almost minimizers uh = ubc,h + u0,h are
bounded in H2(I;R3), where (ubc,h)h>0 is a bounded sequence of discrete functions that
satisfies Lbc(ubc,h) = �bc. Given a weak accumulation point u ∈ H2(I;R3) of the sequence
(uh)h>0 with uh ∈Ah for all h > 0 and a minimizer ũ ∈ H3(I;R3) for E, we choose a sequence
ũh as in Proposition 1(ii). We then have that

E[u] ≤ lim inf
h→0

Eh,ε[uh] ≤ lim inf
h→0

Eh,ε [̃uh] + �h = E[̃u].

Hence u ∈AD is minimal for E. �

Our second convergence result concerns an estimate on the confinement violation.



Bartels and Weyer Advances in Continuous and Discrete Models         (2022) 2022:58 Page 7 of 16

Proposition 4 Let uh ∈Ah. Then

∥∥I1,h
(|uh|D – 1

)
+

∥∥
L∞(I) ≤ cε1/3(Eh,ε[uh]

)1/3.

Proof The Gagliardo–Nirenberg inequality bounds the norm in Lp(I) by the product of
norms in Lq(I) and W 1,r(I) with exponents 1 – α and α such that 1

p + 1
q = α(1 – 1

r + 1
q );

see [35]. With p = r = ∞, q = 2, and α = 1/3, we have

∥∥I1,h
(|uh|D – 1

)
+

∥∥
L∞(I) ≤ c

∥∥I1,h
(|uh|D – 1

)
+

∥∥2/3
L2(I)

∥∥I1,h
(|uh|D – 1

)
+

∥∥1/3
W 1,∞(I).

The W 1,∞ norm can be uniformly bounded due to the stability of the nodal interpola-
tion operator in W 1,∞ and the nodal constraints |u′

h(xi)|2 = 1, i = 0, 1, . . . , N . The term
(ε–1‖I1,h(|uh|D – 1)+‖2

L2 )1/3 is bounded by the third root of the potential part of the dis-
crete energy. �

Remark 5 A stronger estimate on the constraint violation can be derived if the solution
u and the Lagrange multiplier λ are sufficiently regular, so that the Euler–Lagrange equa-
tions hold in strong form, i.e., κu(4) + ε–1∇VD(u) = (λu′)′, which implies ‖∇VD(u)‖L∞(I) =
O(ε), where |∇VD(y)| is proportional to the distance of a point y ∈R

3 to the set D.

Our third convergence result follows from the unconditional energy stability of the nu-
merical scheme and states that the sequence of corrections (dtuk

h)k=1,2,... converges to zero
as k → ∞. Moreover, it provides a bound on the violation of the arclength constraint due
to its linearized treatment.

Proposition 6 Given an inner product (·, ·)� on H2(I;R3), the iterates (uk
h)k=0,1,... of

scheme (6) satisfy

Eh,ε
[
uK

h
]

+ τ

K∑
k=1

∥∥dtuk+1
h

∥∥2
�
≤ Eh,ε

[
u0

h
]

for all K ≥ 0, and, provided that ‖v‖L∞(I) ≤ c�‖v‖� for all v ∈ H2(I;R3) with Lbc(v) = 0,

∥∥I1,h
∣∣u′

h
∣∣2 – 1

∥∥
L∞(I) ≤ c2

�τEh,ε
[
u0

h
]
.

Proof By the concavity of V cv
D we have that

V cv
D

(
uk

h
)

+ ∇V cv
D

(
uk

h
) · (uk+1

h – uk
h
) ≥ V cv

D
(
uk+1

h
)
.

This implies that by choosing vh = dtuk+1
h in (6) we have

∥∥dtuk+1
h

∥∥2
�

+ dt

{
1
2
∥∥[

uk+1
h

]′′∥∥2 +
1

2ε

∫
I
IhVD

(
uk+1

h
)

dx
}

≤ 0.

Multiplication by τ and summation over k = 0, 1, . . . , K – 1 yield the stability estimate. The
orthogonality [uk–1

h ]′ · [dtuk
h]′ for k = 1, 2, . . . , K at the nodes leads to the relation

∣∣[uk
h
]′∣∣2 =

∣∣[uk–1
h

]′∣∣2 + τ 2∣∣[dtuk
h
]′∣∣2.
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Summing this identity over k = 1, 2, . . . , K , noting that |[u0
h]′|2 = 1 at the nodes, and includ-

ing the energy stability prove the estimate. �

3 Elasticae in balls and cylinders
Our numerical calculations are performed in Matlab and with the Knotevolve web
application [9]. We consider closed elastic rods confined to balls and cylinders. The highly
symmetric stationary configurations found for balls give rise to the following definition,
which provides a concise classification via two integer numbers. For the scalar product
(dtuk+1

h , vh)�, we use the L2 inner product. In this case the factor c� is h-dependent with
c� ≤ ch–1/2 so that the step-size condition τh–1/2 → 0 needs to be imposed to guarantee the
results of the previous section. The parameter values κ = 10 and ε = 1/(10κ) are employed
if not stated otherwise.

Definition 7 An arclength parameterized curve is called a μ-circle if it is a μ-fold covered
planar circle. It is called a μ-ν-clew if it shows a ν-fold symmetry around one axis running
through the center of the ball. The integer μ is then defined as the winding number of u
around the rotational axis.

3.1 Confined trefoil knot
As an illustrative example of the gradient flow, we use a trefoil knot of length 31.9 that
is confined to a ball of radius 4.6 with h ≈ 0.3 and τ = 0.1h.1 Snapshots of the evolu-
tion are depicted in Fig. 1. Also, the bending energy κ‖[uk

h]′′‖2/2, the confinement energy
(2ε)–1ED[uk

h], and the violation of arc-length parameterization ‖I1,h{|[uk
h]′|2 – 1}‖L∞ are

visualized as functions of k.
First, the trefoil knot evolves into a double-covered circle. At some point, it unfolds into

a bent lemniscate whose outermost points reach the surface of the ball. This configuration
then moves to the left and starts to unfold into a buckled circle that runs close to the ball’s
surface. The final elastica is a 1-2-clew. The symmetry axis of the elastica, which is also
depicted in Fig. 1, is different from the symmetry axis of the initial curve. The local curva-
ture of the 1-2-clew is periodic along the curve with periodicity 4. We generally observe
that the curvature of a μ-ν-clew is 2ν-periodic.

A similar shape was previously also obtained for modeling semiflexible biopolymers in
spherical domains that are slightly smaller than the flat circle of the same length; see [40].
The shape that we call 1-2-clew also arises when packing a thick rope of maximal length
without self-penetration on the sphere [28].

3.2 Closed curves in spheres
When confining a rod of length L to balls of varying radii, we observe a multitude of equi-
librium configurations. Examples are illustrated in Fig. 2, where we used C4 and C5 sym-
metric initial configurations. Both the symmetry number ν and the winding number μ

depend on the symmetry of the initial configuration and on the ratio L/R. All elasticae run
close to the surface of the ball and slightly exceed the confining domain. With decreasing

1The example can be run via aam.uni-freiburg.de/knotevolve/torus-2-3-97?Rho=0&CnfmType=ellipsoid&CnfmRadius=
4.6,4.6,4.6&tmax=30000&StepW=0.1

http://aam.uni-freiburg.de/knotevolve/torus-2-3-97?Rho=0&CnfmType=ellipsoid&CnfmRadius=4.6,4.6,4.6&tmax=30000&StepW=0.1
http://aam.uni-freiburg.de/knotevolve/torus-2-3-97?Rho=0&CnfmType=ellipsoid&CnfmRadius=4.6,4.6,4.6&tmax=30000&StepW=0.1
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Figure 1 Evolution of a closed elastic curve in a ball of radius R = 4.6 to a 1-2-clew. The number k indicates
the time steps, the color scheme represents the local curvature. Confinement energy and violation of
arc-length parameterization are shown in the lower right panel

radius, either the winding number or the symmetry number is gradually increased by 2.
This follows from an increasing number of self-intersections of the rod that always af-
fect two of its segments. The gradient flow used to minimize the energy preserves certain
symmetries. When starting with an even symmetry, the elastica is an odd-even-clew or an
odd-circle as illustrated in Fig. 2. An initially odd rotational symmetry in turn generally
leads to even-odd-clews or even-circles. An exception is the transition from the 2-1-clew
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Figure 2 Elastica shapes obtained for two different initial configurations (left and right columns) and varying
radii R. The color of the rod indicates the local curvature. The symmetry axis of the left column is indicated for
the top configuration. In the right column, symmetry and view axes coincide

to the 1-2-clew as illustrated in the introductory example. This transition involves large
deformations. When the radius of the ball is too small, the confinement is too restrictive
for the curve to undergo such large transitions.

The parameter ε can be understood as a length scale of maximal penetration into the
complement of D. Numerical experiments for an initial C4 symmetric closed rod of length
28.38 confined to a sphere of radius 3.1 and for an initially C5 symmetric closed rod of
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Figure 3 Maximal nodal penetration outside the confinement domain depending on ε

length 34.08 confined to a sphere of radius 2.5 were carried out for multiple values of ε.2

The numerical results shown in Fig. 3 indicate that

max
j=0,...,N

(∣∣uk
h(xj)

∣∣
D – 1

)
+ = O(ε).

Thus the maximal penetration decreases linearly with ε whilst not depending on whether
the initial rod configuration lies inside D. This indicates that the estimate as sketched in
Remark 5 is valid in the case of spherical confinements.

We can observe that when varying ε for the same initial configuration, the final shape is
not unique; see Fig. 3. In the first example (dots), mainly 1-2-clews were obtained as final
shapes, but for one value of ε, also a 2-1-clew could be observed. The second example
(crosses), which relaxed to a 2-3-clew for sufficiently small ε, turned into a twofold cov-
ered circle whenever the confinement was too weak. This observation underlines that the
energy landscape is nontrivially dependent on all parameters. A priori, it is in general diffi-
cult to specify which stationary configuration will be selected or if a given state is globally
optimal.

The unconfined elastica of a closed rod of length L is the circle of radius rL = L/(2π ).
The bending energy of this elastica is given by EL = κL/(2r2

L) = 2κπ2/L. To categorize the
equilibrium configurations of closed rods that are confined to balls of radius R, we eval-
uate (Ebend/EL)1/2 as a function of rL/R. The first quantity measures the excess bending
induced by the confinement, whereas the second quantity determines how many times
too small the confining ball is compared to the unconfined elastica. We remark that for
μ-fold covered circles, both quantities equal μ.

2In Knotevolve, these configurations can be loaded as torus knots with 101 nodes, p = 1, and either q = 4 or q = 5,
respectively.
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Figure 4 Normalized square root of the bending energy depending on the ratio rL/R for the two observed
elastica families

When starting with the four- and five-fold symmetric initial configurations, we observe
two distinct families of the bending energy dependency on the ratio rL/R. The result is
shown in Fig. 4. The elasticae in the five-fold symmetric case follow the pattern 1-circle, 1-
2-clew, 3-2-clew, 3-circle, 3-4-clew, 5-4-clew, etc. for increasing rL/R. In the four-fold sym-
metric case, we find (1-circle, 1-2-clew), 2-1-clew, 2-circle, 2-3-clew, 4-3-clew, 4-circle, 4-
5-clew, and so on. The first two are special as they involve a large deformation of the rod
when transiting from the even-odd to odd-even. Both patterns are very regular and are
expected to continue for larger rL/R.

During the unfolding process, intermediate nearly stationary configurations are ob-
served. These include a shape that could be called a 1-3-clew or multiply covered circles
that are completely inside the ball. This can be seen in Fig. 1: The initial rod evolves into
a two-fold covered circle in the first place; later, the circle opens up. These configura-
tions seem to be saddle-point structures as they are attractive with respect to the previous
configuration, whereas there are adjacent configurations with smaller total energy. As the
numerical representation of the rod cannot match those saddle-points perfectly, the rod
exits those configurations after a certain number of steps.

For irregularly shaped initial rod configurations, the previously described elastica shapes
are found as well.3 Hence the symmetry of the final shape can solely be attributed to the
ratio rL/R and to the question whether the initial configuration prefers the odd-even or
even-odd elasticae family.

3See, for instance, a knot with crossing number 10 relaxing into a 3-2-clew: aam.uni-freiburg.de/knotevolve/
10_053?Rho=0&StepW=0.1&CnfmType=ellipsoid&CnfmRadius=3,3,3

http://aam.uni-freiburg.de/knotevolve/10_053?Rho=0&StepW=0.1&CnfmType=ellipsoid&CnfmRadius=3,3,3
http://aam.uni-freiburg.de/knotevolve/10_053?Rho=0&StepW=0.1&CnfmType=ellipsoid&CnfmRadius=3,3,3
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Conjecture 8 Consider a rod of length L confined to a ball of radius R. Let rL = L/(2π ) be
the radius of the unconfined elastica, and let j ∈ N be a positive integer with j < rL/R < j + 1.
Then there is a number ξ (j) ∈ (0, 1) such that the globally least bent confined elastica is a
j-(j + 1)-clew if rL/R < j + ξ . Otherwise, the global optimizer is the (j + 1)-j-clew. If rL/R < 1,
then the flat 1-circle is an exactly confined elastica. In the cases where rL/R = j, the j-fold
covered circle is the global elastica.

Interestingly, all elasticae for rL/R ≥ 1 lie on the surface of the ball up to the penetration
due to the finite potential. Brunnett and Crouch [17] derived a differential equation for the
geodesic curvature κg of the rod on the sphere, i.e., the projection of the total curvature
on the tangent plane at each point:

κ ′′
g +

1
2
κ3

g + Cκg = 0.

Here C is a constant consisting of the tension energy of the rod and the sphere square
curvature. This differential equation can be solved by the Jacobi elliptic cosine function.
The parameters of these functions must be adjusted so that the curvature is periodic.
When using the solution to calculate the actual rod position, a nine-component ODE is
solved, again imposing periodicity. This raises the question whether the resulting config-
urations coincide with our experimentally observed μ-ν-clews and μ-circles, thus lead-
ing to an analytic definition of our clews. For the μ-ν-clew, ν and μ should arise when
taking the periodic boundary conditions into account for the geodesic curvature and the
rod position, respectively. It is also of analytic interest if all elasticae confined to balls are
in fact elasticae on the sphere. A proof would however go beyond the scope of this pa-
per.

3.3 Closed curves in cylinders
We close our discussion by experimentally investigating closed curves confined to cylin-
ders of different heights and radii.4 As shown in Fig. 5, large cylinder heights apparently
lead to flat configurations that resemble semicircles connected by straight lines. If the
cylinder is long enough, then we assume that the true global elastica consists of two semi-
circles connected by two straight lines. If the height and diameter are equal, then we ob-
serve a shape similar to a 4-3-clew (for height and diameter 6) or a 3-2-clew (for height
and diameter 8). Other combinations of height and diameter reveal a large variety of op-
timal shapes. A concise classification as in the case of spherical confinement however is
not obvious.

4 Conclusions
We have devised a stable and convergent numerical scheme for approximation of con-
fined inextensible curves with low bending energy. The scheme leads to an experimental
classification of stationary configurations. Numerical studies confirm the theoretical re-
sults.

4See, for instance, aam.uni-freiburg.de/knotevolve/torus-1-13-100?Rho=0&StepW=0.2&CnfmType=cylinder-z&
CnfmRadius=3,3,3&tmax=200000

http://aam.uni-freiburg.de/knotevolve/torus-1-13-100?Rho=0&StepW=0.2&CnfmType=cylinder-z&CnfmRadius=3,3,3&tmax=200000
http://aam.uni-freiburg.de/knotevolve/torus-1-13-100?Rho=0&StepW=0.2&CnfmType=cylinder-z&CnfmRadius=3,3,3&tmax=200000
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Figure 5 Stationary closed curves in cylindrical domains with radii R = 3 (left) and R = 4 (right) and different
heights (increasing from top to bottom)
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