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Abstract
In this paper, we construct a new linear second-order finite difference scheme with
two parameters for space-fractional Allen–Cahn equations. We first prove that the
discrete maximum principle holds under reasonable constraints on time step size and
coefficient of stabilized term. Secondly, we analyze the maximum-norm error. Thirdly,
we can see that the proposed scheme is unconditionally energy-stable by defining
the modified energy and selecting the appropriate parameters. Finally, two numerical
examples are presented to verify the theoretical results.
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1 Introduction
In this paper, we study the finite difference approximations of the following space-
fractional Allen–Cahn equation

∂u
∂t

= –ε2(–�)
α
2 u – f (u), x ∈ �, t ∈ (0, T], (1.1)

u(x, 0) = u0(x), x ∈ �̄, (1.2)

u|∂� = 0, (1.3)

where � is a bounded regular domain in Rd (d = 1, 2, 3), α ∈ (1, 2), and f (u) = u3 – u. The
fractional Laplacian operator in 1D is defined as

–(–�)
α
2 u = –(–�)

α
2
x u :=

1
–2 cos πα

2

(
aDα

x u + xDα
b u

)
,

where the left and right Riemann–Liouville fractional derivatives are defined as

aDα
x u =

1
�(2 – α)

d2

dx2

∫ x

a

u(ξ )
(x – ξ )α–1 dξ ,
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xDα
b u =

1
�(2 – α)

d2

dx2

∫ b

x

u(ξ )
(ξ – x)α–1 dξ .

The fractional Laplacian operators in 2D and 3D can be defined similarly. For example,
the 3D operator is defined as

–(–�)
α
2 u(x, y, z) =

{[
–(–�)

α
2
x
]

+
[
–(–�)

α
2
y
]

+
[
–(–�)

α
2
z
]}

u(x, y, z).

Fractional models are an important tool to describe the various complex mechanical
and physical phenomena. They can also describe the subdiffusion and superdiffusion pro-
cesses. The analytical solutions for most of fractional differential equations are impossi-
ble to obtain. Therefore, the numerical solution techniques have attracted much atten-
tion; see, e.g., [8, 15, 27]. Recently, researchers pay more attention to the front propa-
gation of reaction-diffusion systems with an anomalous diffusion as super diffusion, i.e.,
the fractional Allen–Cahn equation. For space-fractional Allen–Cahn equations, Hou et
al. [16] considered second-order Crank–Nicolson finite difference scheme and discussed
the discrete maximum principle and the nonlinear energy stability. Based on the convex
splitting in time and the Fourier spectral method in space, Bu et al. [2] proposed stable
second-order numerical schemes for the fractional Cahn–Hilliard and Allen–Cahn equa-
tions. Meanwhile, the unique solvability and energy stability of the numerical schemes
were proved. The numerical methods for time-fractional Allen–Cahn equations were also
studied in [3, 18, 22]. The nonlocal Allen–Cahn equation is similar to the space-fractional
Allen–Cahn equation. A detailed convergence analysis for nonlocal Allen–Cahn and non-
local Cahn–Hilliard equations were provided in [12, 21]. Du et al. [5] proposed two energy-
stable linear semi-implicit methods for solving the nonlocal Cahn–Hilliard equation and
established the energy stabilities. Guan et al. [14] devised a convex splitting scheme for
periodic nonlocal Cahn–Hilliard and established the unconditional unique solvability, en-
ergy stability, and stability of the scheme. Guan et al. [13] devised a convex splitting scheme
for the nonlocal Cahn–Hilliard and nonlocal Allen–Cahn equations.

Most finite difference approximations in the above literature are based on the second-
order central difference. There also exist a lot of works on the fourth-order difference ap-
proximation of various nonlinear partial differential equations. For incompressible Boussi-
nesq equations, Liu et al. [23] presented a fourth-order finite difference method that is
especially suitable for moderate to large Reynolds number flows. Wang et al. [28] es-
tablished the convergence of a fourth-order finite difference method and provided the-
oretical results on the stability and accuracy of the method. Cheng et al. [4] proposed a
fourth-order finite difference scheme for the Cahn–Hilliard equation. They established
the unique solvability, energy stability, and an optimal a priori error estimates in the

∞(0, T ;
2)∩
2(0, T ; H2

h ) norm. Samelson et al. [24] proposed and analyzed a fourth-order
finite difference numerical method for the planetary geostrophic equations with inviscid
balance equation that are reformulated in an alternate form.

The Allen–Cahn equation was first introduced in 1979 [1]. It can be used to describe the
interface evolving of the phase separation process of the crystalline solids. As the equation
is nonlinear, many research works were devoted to the numerical solution of the Allen-
Cahn equation; see, e.g., [10, 25, 29]. The intrinsic properties of the Allen–Cahn equa-
tion is the energy dissipation law and the maximum bound principle(MBP). Therefore,
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numerical schemes preserve the energy dissipation law and the maximum bound princi-
ple attracted the attention of many scholars. Hou et al. [17] constructed a new second-
order maximum-principle preserving finite difference scheme for Allen–Cahn equations
with periodic boundary conditions. Many classic schemes in the existing literature can be
given by this scheme. The proposed scheme is unconditionally energy-stable by choos-
ing proper parameters. Shen and Zhang [26] considered a high-order finite difference
scheme for a generalized Allen–Cahn equation coupled with a passive convection for
a given incompressible velocity field. They proved that the discrete maximum principle
holds under suitable mesh size and time step constraints. Feng et al. [9] constructed a lin-
ear second-order finite difference scheme based on the Leap-Frog scheme. The proposed
scheme is MBP-preserving and unconditionally energy-stable. Du et al. [6] analyzed first-
and second-order exponential time-differencing schemes for solving the nonlocal Allen–
Cahn equation, which preserve the discrete maximum principle unconditionally. Du et al.
[7] first provided a framework of the Allen–Cahn-type equations satisfying the MBP and
studied the MBP-preserving exponential time-differencing (ETD) schemes. Using the ex-
ponential integrator method, a fourth-order conditionally MBP-preserving scheme [19]
and a third-order unconditionally MBP-preserving scheme [20] for Allen–Cahn euqa-
tions were proposed. Feng et al. [11] presented linear second-order stabilized Crank–
Nicolson/Adams–Bashforth schemes for the Allen–Cahn and Cahn–Hilliard equations. It
is shown that the proposed time discretization schemes are either unconditionally energy
stable or conditionally energy stable under some reasonable stability conditions.

The goal of this paper is to construct a linear second-order three-level finite difference
scheme with two stabilized terms for the space-fractional Allen–Cahn equation. We first
discuss the discrete maximum principle and then analyze the maximum-norm error. We
find that our scheme is unconditionally energy-stable by defining the modified energy and
selecting the appropriate parameters.

The rest of the paper is introduced as follows. In Sect. 2, we present the finite difference
scheme for the problem (1.1)–(1.3). In Sects. 3–5, we analyze the discrete maximum prin-
ciple, the discrete energy stability, and the error estimate. In the last section, we give two
numerical examples to verify the theoretical results.

2 Fully discretized scheme
We will adopt the finite difference approach in [27] to discretize the fractional Laplacian
operator –(–�) α

2 . To begin with, we denote Dh as the discretization matrix of the frac-
tional Laplacian operator. In particular, the discretization matrix of aDα

x with homoge-
neous Dirichlet boundary conditions on interval [0, L] in 1D is given by

A =
1

hα

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

ω
(α)
1 ω

(α)
0

ω
(α)
2 ω

(α)
1 ω

(α)
0

... ω
(α)
2 ω

(α)
1

. . .

ω
(α)
N–1 · · · . . . . . . ω

(α)
0

ω
(α)
N ω

(α)
N–1 · · · ω

(α)
2 ω

(α)
1

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

N×N

=:
1

hα
M,

where

ω
(α)
0 =

α

2
g(α)

0 , ω
(α)
k =

α

2
g(α)

k +
2 – α

2
g(α)

k–1, k ≥ 1, (2.1)
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with

g(α)
0 = 1, g(α)

k =
(

1 –
1 + α

k

)
g(α)

k–1, k = 1, 2, . . . . (2.2)

Note that the discretization matrix of xDα
b is AT . Defining

D = M + MT (2.3)

produces the discretization matrix of the fractional Laplacian operator in 1D

D(1)
h =

1
–2hα cos πα

2
D. (2.4)

Using the Kronecker tensor product notation, we can obtain the corresponding dis-
cretization matrix in 2D and 3D

D(2)
h =

1
–2hα cos πα

2
(I ⊗ D + D ⊗ I), (2.5)

D(3)
h =

1
–2hα cos πα

2
(I ⊗ I ⊗ D + I ⊗ D ⊗ I + D ⊗ I ⊗ I), (2.6)

where I is the N × N identity matrix.
Now, we present our numerical scheme for solving the problem (1.1)–(1.3). The second-

order three-level linear difference scheme with two stabilized terms is given as follow

Un+1 – Un–1

2τ
+

(
Un).3 –

Un+1 + Un–1

2
+ γ

(
Un).2(Un+1 + Un–1 – 2Un)

+ β
(
Un+1 + Un–1 – 2Un) =

ε2Dh(Un+1 + Un–1)
2

, (2.7)

where τ denotes the time stepsize, Un represents the vector of numerical solution, and

(
Un).3 :=

((
Un

1
)3,

(
Un

2
)3, . . . ,

(
Un

N
)3)T ,

(
Un).2V n :=

((
Un

1
)2V n

1 ,
(
Un

2
)2V n

2 , . . . ,
(
Un

N
)2V n

N
)T .

For the first step, we use the standard Crank–Nicolson scheme

U1 – U0

τ
+

(U1).3 – U1

2
+

(U0).3 – U0

2
=

ε2Dh(U1 + U0)
2

. (2.8)

From [16], we have the following lemma.

Lemma 1 If D(d)
h , d = 1, 2, 3, is the discrete matrix defined in (2.4)–(2.6). Then Dh = D(d)

h
satisfies the following properties:

• Dh is symmetric;
• Dh is negative definite, i.e., UT DhU < 0, for any U �= 0, U ∈ RN ;
• The elements of Dh = (bij) satisfy:

bii = –b < 0 and b ≥ max
i

∑

j �=i

|bij|. (2.9)
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3 Discrete maximum principle
In this section, we will show that the scheme (2.7) preserves the discrete maximum prin-
ciple.

Theorem 1 Assume the initial value satisfies maxx∈�̄ |u0(x)| ≤ 1. There exist δ > 0, the
fully discrete scheme (2.7) preserves the maximum principle in the sense that ‖Un‖∞ ≤ 1
for all n ≥ 1 provided that the time stepsize satisfies

0 < τ ≤ 1
(2 + δ)β – 1

, γ ≤ 0, β ≥ 3
2

– 3γ , δ ≥ 2dε2

βhα
,

0 < τ ≤ 1
(2 + δ)β + 2γ – 1

, 0 < γ ≤ 1
2

, β ≥ 3
2

– γ , δ ≥ 2dε2

βhα
,

0 < τ ≤ 1
(2 + δ)β + 2γ – 1

, γ >
1
2

, β ≥ 2γ , δ ≥ 2dε2

βhα
,

where d is the dimension number.

Proof First, it follows from the assumption on u0 that ‖U0‖∞ ≤ 1. Then, as in Theorem 1
in [16], when the time stepsize τ satisfies 0 < τ ≤ min{ 1

2 , hα

2dε2 }, we have ‖U1‖∞ ≤ 1. We
will prove our theorem by induction. We now assume that the result holds for n = m – 1
and n = m, i.e., ‖Um–1‖∞ ≤ 1 and ‖Um‖∞ ≤ 1. Below, we will check that this upper bound
is also true for n = m + 1. Next, we divide the proof into three cases:

Case I: γ ≤ 0

It follows from the scheme (2.7) that

(1 – τ )Um+1 + 2τβUm+1 + 2τγ
(
Um).2Um+1 – τε2DhUm+1

=
(
1 + τ – (2 + δ)τβ

)
Um–1 – 2τγ

(
Um).2Um–1 +

(
δτβI + τε2Dh

)
Um–1

+
(
4τβ + 3(4γ – 2)τ

)
Um + τ (4γ – 2)

((
Um).3 – 3Um)

. (3.1)

Suppose ‖Um+1‖∞ = Um+1
p . The pth component of (3.1) is

(1 – τ + 2τβ)Um+1
p + 2γ τ

(
Um

p
)2Um+1

p – τε2

( N∑

j=1

bpjUm+1
j

)

=
(
1 + τ – (2 + δ)τβ

)
Um–1

p – 2τγ
(
Um

p
)2Um–1

p + δτβUm–1
p + τε2

( N∑

j=1

bpjUm–1
j

)

+
(
4τβ + 3(4γ – 2)τ

)
Um

p + τ (4γ – 2)
((

Um
p

)3 – 3Um
p

)
. (3.2)

If β ≥ 1
2 –γ , we deduce that (1–τ +2τβ)Um+1

p +2γ τ (Um
p )2Um+1

p and –τε2(
∑N

j=1 bpjUm+1
j )

are non-positive or non-negative simultaneously. Then, we notice that

∣
∣∣
∣∣
(1 – τ + 2τβ)Um+1

p + 2γ τ
(
Um

p
)2Um+1

p – τε2

( N∑

j=1

bpjUm+1
j

)∣
∣∣
∣∣

≥ (1 – τ + 2τβ)
∣∣Um+1

p
∣∣ + 2γ τ

(
Um

p
)2∣∣Um+1

p
∣∣. (3.3)
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Taking the absolute value of (3.2) and using (3.3), we see that

(1 – τ + 2τβ)
∣
∣Um+1

p
∣
∣ + 2γ τ

(
Um

p
)2∣∣Um+1

p
∣
∣

≤ ∣
∣(1 + τ – (2 + δ)τβ

)
Um–1

p – 2τγ
(
Um

p
)2Um–1

p
∣
∣ +

∣∣
∣∣
∣
δτβUm–1

p + τε2

( N∑

j=1

bpjUm–1
j

)∣∣
∣∣
∣

+
∣∣(4τβ + 3(4γ – 2)τ

)
Um

p
∣∣ +

∣∣τ (4γ – 2)
((

Um
p

)3 – 3Um
p

)∣∣. (3.4)

If τ ≤ 1
(2+δ)β–1 and β ≥ 1

2+δ
, using |Um–1

p | ≤ ‖Um–1‖∞ ≤ 1, we know that

∣∣(1 + τ – (2 + δ)τβ
)
Um–1

p – 2τγ
(
Um

p
)2Um–1

p
∣∣ ≤ 1 + τ – (2 + δ)τβ – 2τγ

(
Um

p
)2. (3.5)

Let H = δτβI + τε2Dh. If δ ≥ 2dε2

βhα , then we know from Theorem 1 in [16] that

‖H‖∞ ≤ δτβ . (3.6)

Consequently, using (3.6) and ‖Um–1‖∞ ≤ 1, we can obtain

∣
∣∣∣
∣
δτβUm–1

p + τε2

( N∑

j=1

bpjUm–1
j

)∣
∣∣∣
∣
≤ ‖H‖∞

∥
∥Um–1∥∥∞ ≤ δτβ . (3.7)

Then, using |Um
p | ≤ ‖Um‖∞ ≤ 1, if β ≥ 3

2 – 3γ , we know that

∣
∣(4τβ + 3(4γ – 2)τ

)
Um

p
∣
∣ ≤ 4τβ + 3(4γ – 2)τ . (3.8)

Let g(x) = x3 – 3x. It is easy to see that |g(x)| ≤ 2 for |x| ≤ 1. Since γ ≤ 0, we deduce that

∣∣τ (4γ – 2)
((

Um
p

)3 – 3Um
p

)∣∣ ≤ 4τ – 8τγ . (3.9)

It follows from (3.4)–(3.9) that

(
1 – τ + 2τβ + 2γ τ

(
Um

p
)2)∣∣Um+1

p
∣
∣ ≤ 1 – τ + 2τβ – 2τγ

(
Um

p
)2 + 4τγ , (3.10)

namely,

∣∣Um+1
p

∣∣ ≤ 1 +
4τγ (1 – (Um

p )2)
1 – τ + 2τβ + 2γ τ (Um

p )2 . (3.11)

Since γ ≤ 0 and |Um
p | ≤ ‖Um‖∞ ≤ 1, we can get |Um+1

p | = ‖Um+1‖∞ ≤ 1.

Case II: 0 < γ ≤ 1
2

The scheme is the same as (3.1). If τ ≤ 1
(2+δ)β+2γ –1 and β ≥ 1

2 , we know that

∣∣(1 + τ – (2 + δ)τβ
)
Um–1

p – 2τγ
(
Um

p
)2Um–1

p
∣∣ ≤ 1 + τ – (2 + δ)τβ – 2τγ

(
Um

p
)2. (3.12)

Then, we reestimate (3.8) as

∣∣(4τβ + 3(4γ – 2)τ
)
Um

p
∣∣ ≤ (4τβ + 12τγ – 6τ )

∣∣Um
p

∣∣, β ≥ 3
2

– 3γ . (3.13)
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Combining (3.4), (3.7), (3.9), (3.12) with (3.13) yields

(1 – τ + 2τβ)
∣∣Um+1

p
∣∣ + 2γ τ

(
Um

p
)2∣∣Um+1

p
∣∣ ≤ 1 + 5τ – 2τβ – 2τγ

(
Um

p
)2 – 8τγ

+ (4τβ + 12τγ – 6τ )
∣
∣Um

p
∣
∣.

Assume that ‖Um+1‖∞ > 1, then we have

4τγ
∣
∣Um

p
∣
∣2 – (4τβ + 12τγ – 6τ )

∣
∣Um

p
∣
∣ – 6τ + 4τβ + 8τγ < 0.

Let

h(x) = 4τγ x2 – (4τβ + 12τγ – 6τ )x – 6τ + 4τβ + 8τγ .

It is easy to see that h(1) = 0. And if β ≥ 3
2 –γ , we can get 4τβ+12τγ –6τ

8τγ
≥ 1, which contradicts

‖Um‖∞ ≤ 1. Thus, we have ‖Um+1‖∞ ≤ 1.

Case III: γ > 1
2

We rewrite (3.1) as

(1 – τ )Um+1 + 2τβUm+1 + 2τγ
(
Um).2Um+1 – τε2DhUm+1

=
(
1 + τ – (2 + δ)τβ

)
Um–1 – 2τγ

(
Um).2Um–1 +

(
δτβI + τε2Dh

)
Um–1

+ 4τβUm + τ (4γ – 2)
(
Um).3.

Using the same technique as in Case I, if β ≥ 1
2 , δ ≥ 2dε2

βhα and τ ≤ 1
(2+δ)β+2γ –1 , we have

(1 – τ + 2τβ)
∣∣Um+1

p
∣∣ + 2γ τ

(
Um

p
)2∣∣Um+1

p
∣∣

≤ 1 + τ – 2τβ – 2τγ
(
Um

p
)2 +

∣∣4τβUm
p + τ (4γ – 2)

(
Um

p
)3∣∣. (3.14)

Since β ≥ 1
2 and γ > 1

2 , using |Um
p | ≤ ‖Um‖∞ ≤ 1, it is easy to obtain that

∣
∣4τβUm

p + τ (4γ – 2)
(
Um

p
)3∣∣ ≤ 4τβ

∣
∣Um

p
∣
∣ + τ (4γ – 2). (3.15)

Following (3.14) and (3.15) immediately yields

(1 – τ + 2τβ)
∣
∣Um+1

p
∣
∣ + 2γ τ

(
Um

p
)2∣∣Um+1

p
∣
∣

≤ 1 – τ – 2τβ + 4τγ – 2τγ
(
Um

p
)2 + 4τβ

∣
∣Um

p
∣
∣. (3.16)

Assume that ‖Um+1‖∞ > 1, then (3.16) becomes

γ
∣
∣Um

p
∣
∣2 – β

∣
∣Um

p
∣
∣ + β – γ < 0.

Let z(x) = γ x2 – βx + β – γ . If β ≥ 2γ , we have z(x) ≥ 0, which contradicts ‖Um‖∞ ≤ 1.
Thus, we have ‖Um+1‖∞ ≤ 1.

This completes the proof of Theorem 1. �



Wang et al. Advances in Continuous and Discrete Models         (2022) 2022:53 Page 8 of 14

4 Discrete energy stability
In this section, we will discuss the discrete energy stability. We define the modified discrete
energy:

Eh
(
Un) =

1
4

N∑

i=1

(
1 –

(
Un

i
)2)(1 –

(
Un–1

i
)2) –

ε2

4
((

Un)T DhUn +
(
Un–1)T DhUn–1)

+
β

2

N∑

i=1

(
Un

i – Un–1
i

)2,

where Dh is given by (2.4)–(2.6) for one to three space dimensions, respectively.

Theorem 2 The scheme (2.7) with γ = 1
2 is unconditionally energy stable, namely,

Eh
(
Un+1) ≤ Eh

(
Un), n = 1, 2, . . . .

Proof Choosing γ = 1
2 in (2.7), then the scheme becomes

Un+1 – Un–1

2τ
+

(Un).2Un+1 + (Un).2Un–1 – Un+1 – Un–1

2

+ β
(
Un+1 + Un–1 – 2Un) =

ε2Dh(Un+1 + Un–1)
2

. (4.1)

Taking L2 inner product of (4.1) with (Un+1 – Un–1)T , we have

1
2

N∑

i=1

([(
Un

i
)2 – 1

][(
Un+1

i
)2 –

(
Un–1

i
)2] +

1
τ

(
Un+1

i – Un–1
i

)2
)

+ β

N∑

i=1

(
Un+1

i + Un–1
i – 2Un

i
)(

Un+1
i – Un–1

i
)

–
ε2

2
(
Un+1 – Un–1)TDh

(
Un+1 + Un–1)

= 0. (4.2)

From Lemma 1, we know that

(
Un+1 – Un–1)T Dh

(
Un+1 + Un–1) =

(
Un+1)T DhUn+1 –

(
Un–1)T DhUn–1. (4.3)

Thus, it follows from (4.2)–(4.3) that

Eh
(
Un+1) – Eh

(
Un)

=
1
4

N∑

i=1

[
1 –

(
Un

i
)2][(Un–1

i
)2 –

(
Un+1

i
)2] –

ε2

4
[(

Un+1)T DhUn+1 –
(
Un–1)T DhUn–1]

+
β

2

N∑

i=1

[(
Un+1

i – Un
i
)2 –

(
Un

i – Un–1
i

)2]

= –
1

4τ

N∑

i=1

(
Un+1

i – Un–1
i

)2,

this completes the proof of the theorem. �
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5 Maximum-norm error estimate
In this section, we analyze the maximum-norm error estimate for the fully discrete scheme
(2.7) based on Theorem 1. Let C(ε,γ ,β , T) be a constant, which depends on ε, γ , β , T and
regularity of exact solution but is independent of h and τ . Similarly, we can define the C(ε),
C(ε, T) and C(ε,γ ,β).

Theorem 3 Let u be the exact solution of (1.1) and Un be the solution of (2.7), respectively.
Assume that all the conditions in Theorem 1 are valid, then we have

∥∥un – Un∥∥∞ ≤ C(ε,γ ,β , T)
(
τ 2 + h2), n = 2, 3, . . . , T/τ , (5.1)

where un = (un
1, un

2, . . . , un
N )T .

Proof We discretize (1.1) in space and time, respectively, to get

un+1 – un–1

2τ
+

(
un).3 –

un+1 + un–1

2
=

ε2Dh(un+1 + un–1)
2

+ ρn, (5.2)

where

∥∥ρρρn∥∥∞ ≤ C(ε)
(
τ 2 + h2).

Letting en = un – Un and subtracting (2.7) from (5.2), we obtain that

(1 – τ )en+1 + 2τβen+1 + 2τγ
(
Un).2en+1 – τε2Dhen+1

=
(

1
2

+ τ

)
en–1 –

(
2τβen–1 + 2τγ

(
Un).2en–1) +

(
1
2

I + τε2Dh

)
en–1

+
(
4τβen + 4τγ

(
Un).2en) – 2τ

((
un).3 –

(
Un).3) + 2τβ

(
un+1 + un–1 – 2un)

+ 2τγ
((

Un).2(un+1 + un–1 – 2un)) – 2τρn =:
8∑

i=1

Qi. (5.3)

If τ ≤ 1 and β > max{0, –γ }, similar to (3.3), we estimate the left-hand of (5.3) as

∥∥(1 – τ )en+1 + 2τβen+1 + 2τγ
(
Un).2en+1 – τε2Dhen+1∥∥∞ ≥ (1 – τ )

∥∥en+1∥∥∞. (5.4)

Now, let us estimate the right-hand side terms of (5.3). Under the conditions in Theo-
rem 1, we can estimate Q1–Q8 as

‖Q1‖∞ + ‖Q2‖∞ ≤
(

1
2

+ τ

)∥∥en–1∥∥∞ + 2τ
(
β + |γ |)∥∥en–1∥∥∞, (5.5)

‖Q3‖∞ ≤
∥∥
∥∥

1
2

I + τε2Dh

∥∥
∥∥∞

∥
∥en–1∥∥∞ ≤ 1

2
∥
∥en–1∥∥∞, (5.6)

‖Q4‖∞ ≤ 4τ
(
β + |γ |)∥∥en∥∥∞, (5.7)

‖Q5‖∞ = 2τ
∥∥en((un).2 + unUn +

(
Un).2)∥∥∞ ≤ 6τ

∥∥en∥∥∞, (5.8)

‖Q6‖∞ + ‖Q7‖∞ + ‖Q8‖∞ ≤ C(ε,γ ,β)τ
(
τ 2 + h2). (5.9)
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It follows from (5.4)–(5.9) that

(1 – τ )
∥
∥en+1∥∥∞ ≤ (

1 + τ + 2τβ + 2τ |γ |)∥∥en–1∥∥∞ +
(
6τ + 4τ

(
β + |γ |))∥∥en∥∥∞

+ C(ε,γ ,β)τ
(
τ 2 + h2),

namely,

∥∥en+1∥∥∞ ≤
(

1 +
2τ + 2τβ + 2τ |γ |

1 – τ

)∥∥en–1∥∥∞ +
6τ + 4τ (β + |γ |)

1 – τ

∥∥en∥∥∞

+ C(ε,γ ,β)τ
(
τ 2 + h2).

Then, we have

(∥∥en+1∥∥∞ +
∥∥en∥∥∞

)
–

(∥∥en∥∥∞ +
∥∥en–1∥∥∞

) ≤ (
12τ + 8τ

(
β + |γ |))(∥∥en∥∥∞ +

∥∥en–1∥∥∞
)

+ C(ε,γ ,β)τ
(
τ 2 + h2). (5.10)

Summing over n from 1 to l – 1 (2 ≤ l ≤ T/τ ) at both sides of (5.10), we conclude that

∥
∥el∥∥∞ +

∥
∥el–1∥∥∞ ≤ (

12τ + 8τ
(
β + |γ |))

l–1∑

n=1

(∥∥en∥∥∞ +
∥
∥en–1∥∥∞

)

+
∥∥e1∥∥∞ +

∥∥e0∥∥∞ + C(ε,γ ,β , T)
(
τ 2 + h2). (5.11)

Notice that ‖e0‖∞ = 0, and ‖e1‖∞ ≤ C(ε, T)(τ 2 + h2). Thus, apply the discrete Gronwall
inequality to (5.11) to get estimate (5.1). �

6 Numerical results
In this section, we present two numerical examples to verify the theoretical results ob-
tained in the previous sections. We consider 1D problem in the first example and 2D
problem in the second example.

Example 1 We consider the 1D space-fractional Allen–Cahn equation with a force term.
We add a force term on the equation to guarantee the exact solution have enough regu-
larity. With the help of the following force term

f (x, t) = e–3tx12(1 – x)12 – 2e–tx4(1 – x)4

+
ε2

2 cos(0.5α × π )
e–t

[
�(5)

�(5 – α)
(
x4–α + (1 – x)4–α

)

–
4�(6)

�(6 – α)
(
x5–α + (1 – x)5–α

)
+

6�(7)
�(7 – α)

(
x6–α + (1 – x)6–α

)

–
4�(8)

�(8 – α)
(
x7–α + (1 – x)7–α

)
+

�(9)
�(9 – α)

(
x8–α + (1 – x)8–α

)]
,

we set exact solution as

u(x, t) = e–tx4(1 – x)4, x ∈ [0, 1], t ∈ [0, T].



Wang et al. Advances in Continuous and Discrete Models         (2022) 2022:53 Page 11 of 14

Table 1 The error of ‖ur – Ur‖ and ‖ur – Ur‖∞ with r = 500

h ‖ur – Ur‖ Rate ‖ur – Ur‖∞ Rate

1/30 3.3505e–06 – 6.7561e–06 –
1/60 8.3413e–07 2.0060 1.6918e–06 1.9976
1/120 1.8260e–07 2.1916 3.6293e–07 2.2208
1/240 4.7483e–08 1.9432 7.6760e–08 2.2413

Table 2 The error of ‖ur – Ur‖ and ‖ur – Ur‖∞ with r = 0.8
τ

τ ‖ur – Ur‖ Rate ‖ur – Ur‖∞ Rate

1/50 2.3890e–06 – 4.3654e–06 –
1/100 6.1717e–07 1.9527 1.1288e–06 1.9513
1/200 1.5818e–07 1.9641 2.9042e–07 1.9586
1/400 4.1494e–08 1.9306 7.7267e–08 1.9102

Figure 1 The discrete energy with hx = hy = 0.02 and different τ

Using scheme (2.7), we solve the problem with extra force term model. For the first step,
we use the Newton method to solve the nonlinear Crank–Nicolson scheme (2.8). We set
α = 1.4, β = 2, γ = 0.2, ε = 0.5, T = 4 and τ = 0.004. Then, we test the convergence rate for
spatial discretization in Table 1. Next, we set α = 1.6, β = 3, γ = 0.4, h = 0.002, ε = 0.01 and
T = 1. We test the convergence rate for temporal discretization in Table 2.

Example 2 We consider the 2D space-fractional Allen–Cahn equation with initial value

u0(x, y) = 0.1 × rand(x, y) – 0.05, (x, y) ∈ (0, 1)2.

We set the boundary value of u0(x, y) to zero.

Let α = 1.8, β = 4, T = 20, γ = 0.5 and ε = 0.05. We check the maximum values of the nu-
merical solutions and the discrete energy with different τ in Fig. 1 and Fig. 2, respectively.
These results validate Theorems 1 and 2.

Next, we observe the influence of fractional diffusion on the phase separation and coars-
ening process. We choose β = 3.5, γ = 0.1, ε = 0.02, hx = hy = 0.01, T = 50 and τ = 0.125.
The snapshots of the numerical solutions at t = 5, 20, 45 with different α are shown in Fig. 3
that start from random initial values. We can see from the figure that reducing the frac-
tional power results in a thinner interface, allowing for smaller bulk regions and a more
heterogeneous phase structure. At the same time, a smaller fractional diffusion power has
a slower phase coarsening process.
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Figure 2 The maximum values of the numerical solution with hx = hy = 0.05 and different τ

Figure 3 Numerical dynamics with different fractional derivatives α = 1.1, 1.5, 1.9

7 Conclusions
In this paper, a new linear second-order finite difference scheme with two stabilized terms
for space-fractional Allen–Cahn equations is presented. The discrete maximum principle,
the maximum-norm error, and the discrete energy stability are discussed. A similar nu-
merical design can be applied to the space-fractional Cahn–Hilliard equation; the energy
stability analysis could be theoretically justified. However, the optimal maximum-norm
error estimate cannot be established because the discrete maximal principle does not hold
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at this time. In the next work, we will discuss a higher-order finite difference scheme in
space or time for space-fractional Allen–Cahn equations.
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