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Abstract
In this paper, we investigate the generalized fractional system (GFS) with order lying
in (1, 2). We present stability analysis of GFS by two methods. First, the stability analysis
of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L)
function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct
method, we study the M–L stability of our system with order lying in (1, 2). Using the
modified predictor–corrector method, the solutions of GFSs are calculated and they
are more complicated than the classical fractional one. Based on linear feedback
control, we investigate a theorem to control the chaotic GFSs with order lying in (1, 2).
We present an example to verify the validity of control theorem. We state and prove a
theorem to calculate the analytical formula of controllers that are used to achieve
synchronization between two different chaotic GFSs. An example to study the
synchronization for systems with orders lying in (1, 2) is given. We found an
agreement between analytical results and numerical simulations.
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1 Introduction
Fractional derivatives and fractional differential equations have been shown to be a bene-
ficial approach in physical phenomena modeling in different fields of engineering and sci-
ence [1]. It is worth mentioning that many practical systems display memory and genetic
characteristics, which can be better described by fractional calculus than by integer calcu-
lus, such as electromagnetic waves [2], hydroturbine-governing systems [3], viscoelastic
systems [4], financial systems [5], and wind-turbine generators [6]. Also, many different
definitions of fractional derivatives are introduced according to different kernels [7–9].
Theses definitions are used in Riesz-space fractional equations [10], time-fractional dif-
ferential equations [11–13], complex network [14, 15], materials constitutive equations
[16, 17], fractional diffusion modeling [18–20], fractional love models [21, 22], and con-
trol theories [23–25]. Furthermore, many types of synchronization such as complete, anti,
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projective, modified projective, and function synchronization have been introduced [26–
30].

The generalized fractional derivative has many features over the integer derivatives and
has potential in many applications. Since chaos in fractional-order models is more com-
plex than in the integer cases, it has been proposed in image encryption [31, 32]. Recently,
Anderson and Ulness used the generalized fractional derivative in quantum mechanics
[33]. Ren and Zhai investigated a generalized fractional memristor-based impulsive neu-
ral network [34]. Chaotic fractional-order models with two parameters can recover secure
communication and information transfer [31]. The GF derivative will be a novel direction
in the fractional calculus due to its important usage in many fields [31]. In [35], the authors
presented the chaotic GF Lorenz and Rössler systems. Odibat et al. introduced the GF
differential equation with time delay and solved it using a modified predictor–corrector
technique [36]. Ren and Zhai studied the stability analysis of GF neutral systems with time
delays [37].

Numerous physical problems have been mobilized based on the Caputo fractional
derivative as it is convenient for initial-value problems (IVPs) and has many criteria that
resemble integer-order derivatives. Jarad et al. [38] introduced the generalized properties
of the Caputo-type fractional derivative. They discussed the relation between the gener-
alized fractional derivative operator and the generalized fractional integral operator. The
Caputo version of the generalized derivative appears to be nearer to ordinary derivatives
than other generalized derivatives. Thus, the objective of this work is to introduce the gen-
eralized fractional-order nonlinear dynamical systems governed by the generalized frac-
tional derivative [38] as follows:

CDσ ,ρx(t) = Ax(t) + f
(
x(t)

)
, (1.1)

where CDσ ,ρ denotes the left generalized Caputo-type fractional derivative, 1 < σ < 2, ρ ≥
0, x ∈ Rn is a state variable, A is a (n × n) constant matrix, and f (x(t)) ∈ Rn is a vector of
continuous functions. The predictor–corrector (P–C) method is a numerical simulation
purposed for Caputo fractional-order systems [39]. Odibat and Baleanu [40] introduced
a modified P–C method for the numerical solution of generalized Caputo-type IVPs. We
use the same procedure as in [40] to solve system (1.1).

Chaos synchronization and control theory in fractional calculus have become important
topics in recent years. Several types of synchronization and different control techniques
are used in many applications such as neural networks [41–43], biology [44, 45], and se-
cure communications [46, 47]. The generalized fractional-order systems will be used in
potential applications as an extension of classical fractional- and integer-order ones.

The previous papers on studying the stability of GFSs investigated with fractional-order
lying in (0, 1), while this paper states the stability of GFSs with order lying in (1, 2). The
stability analysis of that system using the G–B Lemma, the M–L function, and the Laplace
transform is illustrated. The M–L stability of GFS with order lying in (1, 2) is investigated
by the Lyapunov direct method. We show that chaotic solutions for GF models are more
complicated than the classical fractional and integer cases [31]. We controlled the chaotic
GFSs using linear feedback control [48]. By this technique of control, we synchronized
two different chaotic GFSs. The paper is outlined as follows: In Sect. 2, we address some
important preliminaries. In Sect. 3, using the G–B Lemma, the M–L function, and the
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Laplace transform, we prove the solution of the generalized fractional dynamical system
on its approach to zero at infinity. By linear feedback control, a theorem to control chaotic
GFS is investigated in Sect. 4. We give an example to test the validity of this theorem.
In Sect. 5, the control functions that are used to achieve synchronization between two
different chaotic GFSs are illustrated. An example of synchronization between different
GFSs with orders lying in (1, 2) is presented. Finally, the conclusion of our work is given in
Sect. 6.

2 Preliminaries
We state the basic definitions of fractional derivatives and some lemmas in this section
[7, 49–53]. The left-sided and right-sided fractional derivatives of order σ , are written as

(RL
aDσ

x g
)
(x) =

1
�(1 – σ )

d
dx

∫ x

a

g(y) dy
(x – y)σ

, x > a, (2.1)

and

(RL
xDσ

b g
)
(x) =

1
�(1 – σ )

(
–d
dx

)∫ b

x

g(y) dy
(y – x)σ

, x < b. (2.2)

The left and right RL fractional derivatives for σ ∈ (n – 1, n), n ∈N take the forms:

(RL
aDσ

x g
)
(x) =

1
�(n – σ )

(
d

dx

)n ∫ x

a

g(y) dy
(x – y)–n+1+σ

, x > a, (2.3)

and

(RL
xDσ

b g
)
(x) =

1
�(n – σ )

(
–d
dx

)n ∫ b

x

g(y) dy
(y – x)–n+1+σ

, x < b. (2.4)

For σ ∈ (n – 1, n), the corresponding left-sided and right-sided Caputo derivatives are de-
fined as:

(C
a Dσ

x g
)
(x) =

1
�(n – σ )

∫ x

a

g(n)(y) dy
(x – y)–n+1+σ

, x > a, (2.5)

and

(C
x Dσ

b g
)
(x) =

1
�(n – σ )

∫ b

x

(–1)ng(n)(y) dy
(y – x)–n+1+σ

, x < b. (2.6)

Definition 2.1 (Katugampola [54]) The generalized left-sided RL integral of f RL
aI

σ ,ρ
x f (x)

order σ , when σ > 0, ρ ≥ 0, is

(RL
aIσ ,ρ

x f
)
(x) =

ρ1–σ

�(σ )

∫ x

a

sρ–1f (s) ds
(xρ – sρ)1–σ

, x > a. (2.7)
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For n – 1 < σ < n, n ∈ N, the generalized left-sided RL fractional derivatives of order σ is
written as

(RL
aDσ ,ρ

x g
)
(x) =

(
x1–ρ d

dx

)n(RL
aIn–σ ,ρ

x g
)
(x)

=
ρσ–n+1

�(n – σ )

(
x1–ρ d

dx

)n ∫ x

a

yρ–1g(y) dy
(xρ – yρ)–n+1+σ

, x > a.
(2.8)

We recover the RL fractional derivative in (2.3) when ρ = 1. Moreover, the generalized
left-sided Caputo derivatives of order σ (σ ∈ (n – 1, n)) are defined as

(C
a Dσ ,ρ

x g
)
(x) =

(
RL

aDσ ,ρ
x

[

g(t) –
n–1∑

i=0

g(i)(a)
i!

(t – a)i

])

(x), x > a, (2.9)

where n = �Re(σ )�.

Definition 2.2 (Jarad et al. [38]) The generalized left-sided Caputo derivative of order σ

(n – 1 < σ < n), n ∈N is written by

(C
a Dσ ,ρ

x g
)
(x) =

ρσ–n+1

�(n – σ )

∫ x

a

(
xρ – yρ

)–n+1+σ

(
y1–ρ d

dy

)n

g(y)
dy

y1–ρ
, x > a, (2.10)

further analysis includes

RL
aIσ ,ρ

x
C
a Dσ ,ρ

x g(x) = g(x) –
n–1∑

i=0

(y1–ρ d
dy )ig(y)|y=a

i!

(
(tρ – aρ

ρ

)i

. (2.11)

We recover the Caputo fractional derivative (2.5) when ρ = 1 in (2.10). The ρ-Laplace
transform of the Caputo generalized fractional derivative is presented as [49]:

Lρ

{(CDσ ,ρg
)
(t)

}
= sσLρ

{
g(t)

}
–

n–1∑

j=0

sn–j–1
((

t1–ρ d
dt

)j

g
)

(0), (2.12)

where CDσ ,ρ = C
0 D

σ ,ρ
x (i.e., the left generalized Caputo-type fractional derivative of or-

der σ ).
The ρ-Laplace transform of a function g is given as:

Lρ

{
g(t)

}
(s) =

∫ ∞

0
e–s tρ

ρ g(t)
dt

t1–ρ
. (2.13)

Definition 2.3 ([50]) The two-parameter Mittag–Leffler function is described as:

Eσ ,β (w) =
∞∑

j=0

wj

�(σ j + β)
, σ ,β > 0, w ∈ C. (2.14)

Lemma 2.1 ([51]) Let G(s) = L{g(t)}. If all poles of sG(s) are in the open left-half complex
plane, then limt→∞ g(t) = lims→0 sG(s).
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The Laplace transform of the function wσ l+β–1E(l)
σ ,β(–awσ ) is:

L
{

wσ l+β–1E(l)
σ ,β

(
–awσ

)}
=

l!sσ–β

(sσ ∓ a)l+1

(
R(s) ≥ |a| 1

σ
)
, (2.15)

where E(l)
σ ,β (w) is

E(l)
σ ,β (w) =

dl

dwl

∞∑

k=0

wk

�(σk + β)
=

∞∑

k=0

(k + l)!wk

k!�(σk + σ l + β)
. (2.16)

From Definition 2.3, one obtains:

dEσ ,β (w)
dw

=
Eσ ,β–1(w) – (β – 1)Eσ ,β (w)

σw
. (2.17)

Using (2.17), we have:

E(m)
σ ,β (w) = (σw)–m

m∑

k=0

dkEσ ,β–k(w), (2.18)

where dk (k = 0, 1, . . . , m) are real constants depend on β .

Lemma 2.2 ([7]) The function g(z(t)) satisfies the Lipschitz condition, if

∥∥g(z) – g(w)
∥∥ ≤ M‖z – w‖, M ∈ R+. (2.19)

Lemma 2.3 ([55])

Eσ ,β (D) ≤ C
1 + ‖D‖ , 0 < σ < 2, D ∈ Rn×n, C ∈ R+, (2.20)

where μ satisfies (i) πσ /2 ≤ μ ≤ min{π ,πσ } and (ii) μ ≤ | arg(eig(D))| ≤ π .

Lemma 2.4 (Gronwall–Bellman Lemma [53]) If

h(x) ≤ g(x) +
∫ x

0
m(w)h(w) dw, (2.21)

where m(x) ≥ 0, g(x), h(x) are continuous functions, 0 ≤ x ≤ T , then h(x) satisfies

h(x) ≤ g(x) +
∫ x

0
m(w)g(w) exp

[∫ x

w
m(y) dy

]
dw. (2.22)

3 Stability analysis
In this section, we introduce two methods to study the stability of system (1.1) for σ ∈
(1, 2). The first one depends on the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler
(M–L) function, and the Laplace transform, while the second method depends on the
Lyapunov direct method and it is called M–L stability.



Abed-Elhameed and Aboelenen Advances in Continuous and Discrete Models         (2022) 2022:50 Page 6 of 16

Theorem 3.1 The zero solution of a generalized Caputo fractional-order system (1.1) for
σ ∈ (1, 2) is stable if:

1. | arg(λi( A
ρσ ))| > πσ /2.

2. f (0) = 0, lim‖x‖→0
‖f (x)‖
‖x‖ = 0,

where x ∈ R
n×1, A ∈R

n×n, t ∈R
+ and λi( A

ρσ ) are the eigenvalues of matrix A
ρσ .

Proof The initial conditions of system (1.1) are given as:

(
x1–ρ d

dt

)k

x(0) = xk , k = 0, 1. (3.1)

Using the ρ-Laplace transform and ρ-Laplace inverse transform, one obtains the solution
of (1.1) with the initial conditions (3.1) as follows:

x(t) = Eσ ,1

[
A

(
tρ

ρ

)σ ]
x1 +

tρ

ρ
Eσ ,2

[
A

(
tρ

ρ

)σ ]
x2

+
∫ t

0

(
tρ – sρ

ρ

)σ–1

Eσ ,σ

[
A

(
tρ – sρ

ρ

)σ ]
sρ–1f

(
x(s)

)
ds.

(3.2)

By part 2 of Theorem 3.1, there exists C > 0 and δ0 such that

∥∥x(t)
∥∥ < δ0 ⇒ ∥∥f

(
x(t)

)∥∥ < κ
(σ – 1)‖A‖‖x(t)‖

C
, t ≥ 0, 0 < κ < 1. (3.3)

Using Eq. (3.3) and Lemma 2.3, (3.2) gives

∥∥x(t)
∥∥ ≤ c1‖x1‖

1 + ‖A‖( tρ
ρ

)σ
+

c2‖x2‖tρ

1 + ‖A‖( tρ
ρ

)σ

+ κ

∫ t

0

( tρ–sρ
ρ

)σ–1sρ–1(σ – 1)‖A‖
(1 + ‖A‖( tρ–sρ

ρ
)σ )

∥∥x(s)
∥∥ds

≤ c1‖x1‖
(1 + ‖A‖( tρ

ρ
)σ )κ

+
c2‖x2‖tρ

1 + ‖A‖( tρ
ρ

)σ

+ κ

∫ t

0

( tρ–sρ
ρ

)σ–1sρ–1(σ – 1)‖A‖
(1 + ‖A‖( tρ–sρ

ρ
)σ )

∥
∥x(s)

∥
∥ds.

(3.4)

Using the Gronwall–Bellman Lemma 2.4 and Eq. (3.4), we obtain

∥∥x(t)
∥∥ ≤ c1‖x1‖

(1 + ‖A‖( tρ
ρ

)σ )κ
+

c2‖x2‖tρ

1 + ‖A‖( tρ
ρ

)σ

+ κ

∫ t

0

( tρ–sρ
ρ

)σ–1sρ–1(σ – 1)‖A‖
(1 + ‖A‖( tρ–sρ

ρ
)σ )

(
c1‖x1‖

(1 + ‖A‖( tρ
ρ

)σ )κ
+

c2‖x2‖tρ

1 + ‖A‖( tρ
ρ

)σ

)

× exp

(∫ t

τ

κ
( tρ–sρ

ρ
)σ–1sρ–1(σ – 1)‖A‖

(1 + ‖A‖( tρ–sρ
ρ

)σ )
ds

)
dτ

=
c1‖x1‖

(1 + ‖A‖( tρ
ρ

)σ )κ
+

c2‖x2‖tρ

1 + ‖A‖( tρ
ρ

)σ
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+ κ

∫ t

0

(
c1‖x1‖

(1 + ‖A‖( τρ

ρ
)σ )κ

+
c2‖x2‖τρ

1 + ‖A‖( τρ

ρ
)σ

) ( tρ–τρ

ρ
)σ–1τρ–1(σ – 1)‖A‖

(1 + ‖A‖( tρ–τρ

ρ
)σ )1–κ σ–1

σ

dτ

≤ c1‖x1‖
(1 + ‖A‖( tρ

ρ
)σ )κ

+
c2‖x2‖tρ

1 + ‖A‖( tρ
ρ

)σ

+ κ

∫ t

0

(
c1‖x1‖

(1 + ‖A‖( τρ

ρ
)σ )κ

+
c2‖x2‖τρ

1 + ‖A‖( τρ

ρ
)σ

)(
tρ – τρ

ρ

)κ(σ–1)–1

(3.5)

× τρ–1(σ – 1)‖A‖κ σ–1
σ dτ

≤ c1‖x1‖
(1 + ‖A‖( tρ

ρ
)σ )κ

+
c2‖x2‖

t–ρ + ρ–σ‖A‖tρσ–ρ

+ κc1(σ – 1)‖x1‖A‖κ σ–1
σ –κ

∫ t

0
τρ–ρσ–1(tρ – τρ

)κ(σ–1)–1 dτ

+ κc2‖x2‖(σ – 1)‖A‖κ σ–1
σ –1

∫ t

0
τ 2ρ–ρσ–1(tρ – τρ

)κ(σ–1)–1 dτ

=
c1‖x1‖

(1 + ‖A‖( tρ
ρ

)σ )κ
+

c2‖x1‖
t–ρ + ρ–σ‖A‖tρσ–ρ

+ κc1(σ – 1)‖x2‖A‖κ σ–1
σ –κ �(1 – κσ )�(κ(σ – 1)))

ρ�(1 – κ)
tρ(1–κ)–1

+ κc2(σ – 1)‖x2‖A‖κ σ–1
σ –1 �(2 – σ )�(κ(σ – 1)))

ρ�(2 – σ + κ(σ – 1))
tρ(2–σ+κ(σ–1)–1).

Hence, the zero solution of (1.1) is locally asymptotically stable if κ < σ–1
σ

and ρ < 1
1–κ

. �

Remark 3.1 For the choice ρ = 1 in Theorem 3.1, we obtain the case of the classical frac-
tional system with order lying in σ ∈ (1, 2) [1].

3.1 The Mittag–Leffler (M–L) stability for system (1.1)
The definition of M–L stability and its theorem stability for the case σ ∈ (0, 1) is introduced
[34]. In this subsection, we present the definition of M–L stability for the case σ ∈ (1, 2).
A theorem to prove that the solution of system (1.1) is M–L stable is investigated using
the Lyapunov direct method.

Remark 3.2 From Theorem 3.1, for 1 < σ < 2, the solution of FDE

CDσ ,ρx(t) = λx(t),
(

x1–ρ d
dt

)k

x(0) = xk , k = 0, 1,
(3.6)

is expressed as:

x(t) ≤ Eσ ,1

[
λ

(
tρ

ρ

)σ ]
x1 +

tρ

ρ
Eσ ,2

[
λ

(
tρ

ρ

)σ ]
x2. (3.7)
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Lemma 3.1 Let x(t) ∈ C([0,∞],R) and σ ∈ (1, 2), if

CDσ ,ρx(t) ≤ λx(t),
(

x1–ρ d
dt

)k

x(0) = xk , k = 0, 1,
(3.8)

then one has

x(t) ≤ Eσ ,1

[
λ

(
tρ

ρ

)σ ]
x1 +

tρ

ρ
Eσ ,2

[
λ

(
tρ

ρ

)σ ]
x2. (3.9)

Proof In view of the inequality in (3.8), ∃θ (t) ≥ 0 holds

CDσ ,ρx(t) + θ (t) = λx(t), (3.10)

and from Theorem 3.1, we deduce that

x(t) = Eσ ,1

[
A

(
tρ

ρ

)σ ]
x1 +

tρ

ρ
Eσ ,2

[
λ

(
tρ

ρ

)σ ]
x2

–
∫ t

0

(
tρ – sρ

ρ

)σ–1

Eσ ,σ

[
λ

(
tρ – sρ

ρ

)σ ]
sρ–1θ (s) ds.

(3.11)

According to Remark 3.2, the equation CDσ ,ρx(t) = λx(t) has a solution z(t) as:

z(t) = Eσ ,1

[
A

(
tρ

ρ

)σ ]
x1 +

tρ

ρ
Eσ ,2

[
λ

(
tρ

ρ

)σ]
x2, (3.12)

furthermore, it has

x(t) – z(t) = –
∫ t

0

(
tρ – sρ

ρ

)σ–1

Eσ ,σ

[
λ

(
tρ – sρ

ρ

)σ]
sρ–1θ (s) ds, (3.13)

since θ (s) ≥ 0, Eσ ,σ > 0 for 1 < σ < 2, then x(t) ≤ z(t) for t ≥ 0. �

Definition 3.1 (M–L Stability) The trivial solution of system

CDσ ,ρx(t) = f
(
t, x(t)

)
,

(
x1–ρ d

dt

)k

x(0) = xk , k = 0, 1,
(3.14)

is M–L stable if it satisfies

x(t) ≤
{

Eσ ,1

[
λ

(
tρ

ρ

)σ]
ϕ1(x1) +

tρ

ρ
Eσ ,2

[
λ

(
tρ

ρ

)σ ]
ϕ2(x2)

} 1
β

, (3.15)

where β > 0, σ ∈ (1, 2), λ ≥ 0, locally the Lipschitz function ϕ1(x), ϕ2(x) satisfies ϕ1(0) =
ϕ2(0) = 0, ϕ1(x), ϕ2(x) ≥ 0 with Lipschitz constants ϕ10, ϕ20.
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Theorem 3.2 If a continuously differentiable function V (t, x(t)) : [0, +∞) × S → R+ is lo-
cally Lipschitz in x and

ν1
∥∥x(t)

∥∥l ≤ V
(
t, x(t)

) ≤ ν2
∥∥x(t)

∥∥k , (3.16)

CDσ ,ρV
(
t, x(t)

) ≤ –ν3
∥∥x(t)

∥∥k , (3.17)

where σ ∈ (1, 2), x ∈ S, l, k,νj > 0 (j = 1, 2, 3) are arbitrary constants, then the fixed point of
system (1.1) is Mittag–Leffler (M–L) stable.

Proof From the inequalities (3.16) and (3.17), we have

CDσ ,ρV
(
t, x(t)

) ≤ –
ν3

ν2
V

(
t, x(t)

)
, (3.18)

using Lemma 3.1, one has

V
(
t, x(t)

) ≤ V
(
0, x(0)

)
Eσ ,1

[
–

ν3

ν2

(
tρ

ρ

)σ]
+

tρ

ρ
V

(
0, x(1)(0)

)
Eσ ,2

[
–

ν3

ν2

(
tρ

ρ

)σ ]
, (3.19)

substituting (3.19) into (3.16), we obtain

∥
∥x(t)

∥
∥ ≤

(
V (0, x(0))

ν1
Eσ ,1

[
–

ν3

ν2

(
tρ

ρ

)σ ]
+

V (0, x(1)(0))
ν1

tρ

ρ
Eσ ,2

[
–

ν3

ν2

(
tρ

ρ

)σ ]) 1
l
. (3.20)

Let ϕ1 = V (0,x(0))
ν1

and ϕ2 = V (0,x(1)(0))
ν1

, then (3.20) takes the form

∥∥x(t)
∥∥ ≤

(
ϕ1Eσ ,1

[
–

ν3

ν2

(
tρ

ρ

)σ ]
+ ϕ2

tρ

ρ
Eσ ,2

[
–

ν3

ν2

(
tρ

ρ

)σ ]) 1
l
. (3.21)

Actually, V (t, x(t)) is locally Lipschitz with respect to x, and V (0, x(0)) = 0 and V (0,
x(1)(0)) = 0 hold if and only if x(0) = 0 and x(1)(0) = 0, respectively. Then, ϕ1 and ϕ2 also
satisfy locally Lipschitz condition. From Definition 3.1, the fixed point of (1.1) is M–L
stable. �

4 Control of chaotic generalized fractional systems (GFSs)
We introduce a technique to control the solutions of chaotic GFSs by linear feedback con-
trol. The GFS (1.1) can be written after adding the vector of control functions u(t) as:

CDσ ,ρx(t) = Ax(t) + f
(
x(t)

)
+ u(t). (4.1)

We can present the linear feedback control functions as u(t) = Kx(t), where K is n × n
constant matrix. Hence, the controlled system (4.1) becomes:

CDσ ,ρx(t) = (A + K)x(t) + f
(
x(t)

)
. (4.2)

We investigate the sufficient conditions to hold that system (4.2) is asymptotically stable
in the following theorem.
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Theorem 4.1 The system (4.2) is asymptotically stable for 1 < σ < 2 if:
1. We choose K s.t. the zero solution of CDσ ,ρx(t) = (A + K)x(t) is asymptotically stable.
2. lim‖x‖→0

‖f (x)‖
‖x‖ = 0.

Proof The proof is similar to that of Theorem 3.1. �

We give an example of chaotic GFSs with order lying in (1, 2) to test the validity of The-
orem 4.1.

4.1 An example
In this subsection, we control the solution of chaotic GF Lü system with order lying in
(1, 2) using linear feedback control. The chaotic GF Lü system takes the form:

CDσ ,ρx1(t) = a(x2 – x1),
CDσ ,ρx2(t) = –x1x3 + cx2,
CDσ ,ρx3(t) = x1x2 – bx3,

(4.3)

where a, b, and c are constant parameters. For the choice a = 36, b = 3, c = 20, and
σ = 1.11 and the initial values are x0 = (0.1, 0.3, 0.5)T and ẋ0 = (0.2, 0.4, 0.6)T , system (4.3)
has chaotic behavior, as shown in Fig. 1 for small time (t = 10). System (4.3) has different
chaotic behavior as shown in Figs. 1(a), (b), and (c) that correspond to the values ρ = 1,
ρ = 2.5, and ρ = 3, respectively. Figure 1(a) shows the chaotic behavior of the classical
fractional-order Lü system (ρ = 1), while the chaotic behaviors of generalized fractional-
order Lü systems for ρ = 2.5, and ρ = 3 are shown in Figs. 1(b) and (c). This means that
the complicated solution behavior of system (4.3) depends on the value of parameter ρ .

By adding control functions, system (4.3) can be written as

CDσ ,ρx1(t) = a(x2 – x1) + u1,
CDσ ,ρx2(t) = –x1x3 + cx2 + u2,
CDσ ,ρx3(t) = x1x2 – bx3 + u3.

(4.4)

Figure 1 The chaotic behavior of the GF Lü system (4.3) in (x1, x2) space for: (a) ρ = 1 (classical
fractional-order case), (b) ρ = 2.5, (c) ρ = 3
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Figure 2 The behavior of the chaotic system after adding the control (4.4) in (a) (t, x1) diagram, (b) (t, x2)
diagram, and (c) (t, x3) diagram

We can write the control functions as

⎛

⎜
⎝

u1

u2

u3

⎞

⎟
⎠ =

⎛

⎜
⎝

–10x1

–25x2

–20x3

⎞

⎟
⎠ . (4.5)

Using (4.5), the system (4.4) is obtained

CDσ ,ρ

⎛

⎜
⎝

x1

x2

x3

⎞

⎟
⎠ =

⎛

⎜
⎝

–46 36 0
0 –5 0
0 0 –23

⎞

⎟
⎠

⎛

⎜
⎝

x1

x2

x3

⎞

⎟
⎠ +

⎛

⎜
⎝

0
–x1x3

x1x2

⎞

⎟
⎠ , (4.6)

where

A + K =

⎛

⎜
⎝

–46 36 0
0 –5 0
0 0 –23

⎞

⎟
⎠ and f (x) =

⎛

⎜
⎝

0
–x1x3

x1x2

⎞

⎟
⎠ .

System (4.6) holds Theorem 4.1 as:
1. Obviously, the zero solution of CDσ ,ρx(t) = (A + K)x(t) is asymptotically stable.

2. lim‖x‖→0

√
x2

1(x2
2+x2

3)
‖x‖ ≤ lim‖x‖→0 ‖x‖ = 0.

The zero solution of system (4.6) is asymptotically stable, as shown in Fig. 2 for the same
choice of parameters and initial values as in Fig. 1(b).

5 Synchronization between two different chaotic generalized fractional
systems (GFSs)

In this section, we introduce the synchronization between two different chaotic GFSs us-
ing a linear feedback control method. We present an example to verify the validity of the
proposed theorem of synchronization.



Abed-Elhameed and Aboelenen Advances in Continuous and Discrete Models         (2022) 2022:50 Page 12 of 16

Definition 5.1 We can say that the drive system (1.1) is synchronized with the following
response system

CDσ ,ρy = By + f
(
y(t)

)
+ u, (5.1)

if ‖e(t)‖ = ‖y(t) – x(t)‖ → 0 as t → ∞, where 1 < σ < 2, ρ ≥ 0, y ∈ Rn is a state variable, B
is a (n × n) constant matrix and u ∈ Rn is a vector of control functions.

From systems (1.1) and (5.1), the error system can be written as:

CDσ ,ρe = Ae + (B – A)y + f (y) – f (x) + u. (5.2)

We investigate a theorem to calculate the analytical formula of control functions that
achieve synchronization between two different chaotic GFSs.

Theorem 5.1 The solution of the error system (5.2) can approach zero if the vector of con-
trol functions u takes the form

u = (A – B)y – Ke, (5.3)

where K = diag(k1, k2, . . . , kn) is again a matrix, σ ∈ (1, 2) and the initial values of the error
system (5.2) are e(j)(0) = e(j)

0 , j = 0, 1.

Proof Using the control functions (5.3), the system of the error (5.2) can be written as:

CDσ ,ρe = (A – K)e + f (y) – f (x), (5.4)

by taking the ρ-Laplace transform for system (5.4), then

sσLρ

{
e(t)

}
–

1∑

j=0

s2–j–1(e(j))(0) = (A – K)Lρ

{
e(t)

}
+ Lρ

{
f (y) – f (x)

}
, (5.5)

then,

Lρ

{
e(t)

}
=

1
sσ I – A + K

Lρ

{
f (y) – f (x)

}
+

1
sσ I – A + K

1∑

j=0

s2–j–1(e(j))(0), (5.6)

using Lemma 2.1, we obtain

lim
t→∞ e(t) = lim

s→0
sLρ

{
e(t)

}

= lim
s→0

[
s

sσ I – A + K
Lρ

{
f (y) – f (x)

}
+

s
sσ I – A + K

1∑

j=0

s2–j–1(e(j))(0)

]

= 0,

(5.7)

then the synchronization between the drive system (1.1) and the response system (5.1) can
be achieved. �
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Figure 3 The chaotic behavior of the GF Lorenz system (5.8) in (y3, y1, y2) space for ρ = 2.5 and σ = 1.11

5.1 Synchronization between two different chaotic generalized fractional (GF) Lü
and Lorenz systems

We investigate the synchronization between two different chaotic generalized fractional
Lü and Lorenz systems with order lying in (1, 2) as an example for the synchronization
scheme. The GF Lorenz system [35] has been written as:

CDσ ,ρy1(t) = a1(y2 – y1),
CDσ ,ρy2(t) = c1y1 – y1y3 – y2,
CDσ ,ρy3(t) = y1y2 – b1y3,

(5.8)

where a1, b1, and c1 are constant parameters. For the choice a1 = 10, b1 = 8/3, c1 = 28,
σ = 1.11, ρ = 2.5, and the initial values are y0 = (1, 0.5, 2)T and ẏ0 = (0.5, 1, 1)T , the system
(5.8) has chaotic behavior, as shown in Fig. 3.

We consider the drive system is the chaotic GF Lü system (4.3) and the chaotic GF
Lorenz system (5.8) is the response system. The response system after adding the con-
trol functions can be written as:

CDσ ,ρy1(t) = a1(y2 – y1) + u1,
CDσ ,ρy2(t) = c1y1 – y1y3 – y2 + u2,
CDσ ,ρy3(t) = y1y2 – b1y3 + u3.

(5.9)

By applying Theorem 5.1, the control functions are given as:

⎛

⎜
⎝

u1

u2

u3

⎞

⎟
⎠ =

⎛

⎜
⎝

(a1 – a)(y1 – y2) – k1e1

–c1y1 + (c + 1)y2 – k2e2

(b1 – b)y3

⎞

⎟
⎠ . (5.10)

Using the drive system (4.3), the response system (5.9) and the control functions (5.10),
the error system can be written as:

CDσ ,ρe1(t) = a(e2 – e1) – k1e1,
CDσ ,ρe2(t) = x1x3 – y1y3 + (c – k2)e2,
CDσ ,ρe3(t) = y1y2 – x1x2 – (b + k3)e3.

(5.11)



Abed-Elhameed and Aboelenen Advances in Continuous and Discrete Models         (2022) 2022:50 Page 14 of 16

Figure 4 Chaotic attractors for (a) the drive system (4.3) in (x1, x3, x2) space, (b) the response system (5.9) in
(y1, y3, y2) space

Figure 5 The synchronization errors of the drive system (4.3) and the response system (5.9) in (a) (t, e1)
diagram, (b) (t, e2) diagram, and (c) (t, e3) diagram

In the numerical treatment, the values of the parameters and the initial conditions of the
drive system (4.3) and for the response system (5.9) are the same values that are taken
in Fig. 1(b) and Fig. 3, respectively. The synchronization is achieved and the results are
shown in Figs. 4 and 5. Figure 4 shows the same chaotic attractor for drive system (4.3)
and response system (5.9), while the synchronization errors approach zero, as given in
Fig. 5.

6 Conclusion
We introduced the generalized fractional dynamical system with order in (1, 2). In Theo-
rem 3.1, the stability analysis of that system is investigated using the Mittag–Leffler func-
tion, the Gronwall–Bellman Lemma, and the Laplace transform. We proposed M–L sta-
bility of our system with order lying in (1, 2) based on the Lyapunov direct method in
Theorem 3.2. The chaotic GF Lü and Lorenz systems are presented. Using linear feedback
control, we illustrated the control of chaotic GFS in general and an example is given to
test the validity of Theorem 4.1. We investigated the synchronization between two dif-
ferent chaotic GFSs. The analytical formula of the control functions (5.3) that achieve
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synchronization are given in Theorem 5.1. Synchronization between the different GF Lü
and Lorenz systems is achieved. Other examples of GFSs can be similarly studied.
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